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Motivation

| Sampling, randomization, and permutation are importanstovey research, genetics analysis,
and epidemiology.

| These tools allow us to control random processes with eguarid drawing.

| Most of these ideas are mathematically simple and easy toRlo i
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UsingRto Generate Normals

pnorm(1.5, mean=0, sd=1)
[1] 0.9331928

pnorm(4.75, mean=4, sd=1/2)
[1] 0.9331928

gnorm(c(0.25,0.5,0.75))
[1] -0.6744898 0.0000000 0.6744898

pnorm(1l) - pnorm(-1)
[1] 0.6826895

1 - 2*pnorm(-2)
[1] 0.9544997

diff(pnorm(c(-3,3)))
[1] 0.9973002
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Generating Distributional Quantities in General

| Four di erent queries:
d dist (x,<parameters>)
p dist (x,<parameters>)
g dist (p,<parameters>)
r dist (n,<parameters>)

density atx

cumulative distribution funtion fox

inverse cdf

generates n random numbers from distribution

| Common distributions included:

<dist> Distribution Parameters Defaults
beta beta shapel, shape?2 -, -
cauchy Cauchy location, scale 0,1
chisq chi-square  df -
exp exponential rate -

f = dfl, df2 - -
gamma Gamma shape, rate, scale = 1/rate -
Inorm log-normal mean, sd (of log) 0,1
logis  logistic location, scale 0,1
norm  normal mean, sd 0,1
t Student'st df -

unif uniform min, max 0,1
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Uniform Random Variables

| As noted in the table the uniform generatoRis the functionrunif .
| The only necessary entry is the number of values to be gederat

| The other optional parameters aren and max used according to:
runif(100, min=2, max=5)

which will produce 100 random variabl&é2; 5).
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Uniform Random Variables

| A easy check on the properties of this uniform generator is to
. look at a histogram of th¥ s,
. plot the pairs(Xj; X; + 1),

. look at the estimate autocorrelation function.

| Consider:
Nsim=10"3
x=runif(Nsim)
X1 <- X[-Nsim] # THESE TWO LINES OFFSET' THE TWO

X2 <- X[-1] # VECTORS BY ONE INDICE
par(mfrow=c(1,3),bg="wheat",fg="navy")
hist(x)

plot(x1,x2,pch="+")
acf(x)
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Uniform Random Variables

Note thatrunif does not involve randomness per se.
It is a deterministic sequence based on a random starting poi

The Rfunction set.seed can produce the same sequence:

set.seed(1)

runif(5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
set.seed(1)

li{))

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
set.seed(2)

li{E))

[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481

Setting the seed determines all the subsequent values.
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Make the Computer Do the Work

| Often you can get the right answer faster withan by analytics.

| For instance, what is the 90% con dence intervalNgg; 3)?

n.data <- rnorm(1000000,6,3)
sort(n.data)[c(50000,950000)]
[1] 1.0697 10.9266

or

mean(n.data) + c(-1,1)*gnorm(0.95)*sd(n.data)
[1] 1.0662 10.9299

or

gnorm(c(0.05,0.95),6,3)
[1] 1.0654 10.9346

| Notice the slight simulation di erence.
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Looking at Predictions from Regression Models

anaemia <- read.table("http://jeftgill.org/data/anaem la.dat",
header=TRUE,row.names=1)

anaemia.Im <- Im(Hb ~ PCV + Age + Menapause, data=anaemia)

preds <- sample(anaemia.Im$fitted.values,10"6,replace =TRUE)

par(mar=c(6,6,3,3),bg="slategrey",fg="black")

hist(preds,breaks=12,main="",col="gold")

points(anaemia$Hb,rep(1,length(anaemia$Hb)),col="re d",cex=2,pch=19)
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Looking at Predictions from Regression Models
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Looking at Predictions from Regression Models

library(mgcv)

prostate.df <- read.table("http://jeffgill.org/data/p rostate.full.dat",header=TRUE)

prostate.gaml <- gam(bm ~ stage + pf + loglp(sz) + s(ap) + s(hg ),
family=binomial(link=logit), data=prostate.df)

preds <- sample(prostate.gaml$fitted.values,1073,repl ace=TRUE)
par(mar=c(6,6,3,3),bg="slategrey",fg="black")

plot(1:1073,preds,pch="+")

abline(h=0.5,lwd=3,col="gold")
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Looking at Predictions from Regression Models
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More On Generating SamplesRn

| Sample values, e.¥. are used to make claims about population valugalsos? for 2).
| We have a very convenient way to generate samples from edd@gsiown) distribution.
| The sample command takes three arguments: source, size, replace,. prob

| Generating a sample with a discrete probability vector:

prob.vec <- ¢(0.2,0.3,0.5)
sample(1:3,1,replace=TRUE,prob=prob.vec)

[1] 3
sample(1:20,5,replace=TRUE,prob=rep(1/20,20))
[1] 8 2 2 11 20

| If you do not specify a probability statemdtvill use the uniform distribution.
| The default is sampling without replacement.

| For more complex, multistage etc., sampling plans useatin@ling package.
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Sampling From the Poisson Distribution
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1] 1424444331

sample(rand.pois,10)

1] 4363543364

sample(rand.pois,10)

[1]1 2 234313631
sample(rand.pois,10)

112324444415
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Monte Carlo Introduction

Simulation work in applied statistics replaces analytwcak with repetitious, low-level e ort by
the computer.

If a distribution is di cult or impossible to manipulate alg#cally, then it is often possible to
create a set of simulated values that share the same diginblproperties, and describe the
posterior by using empirical summaries of these simulatedsv

This process was termdtbnte Carlo simulation by von Neumann and/or Ulam (although some
accounts attribute the naming to Metropolis) because ¢ tesedomly generated values to perform
calculations interest, perhaps reminiscent of expected galculations in gambling.
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Basic Monte Carlo Integration

| Supposeg(x) is di cult to express or manipulate but for which we could gyate samples on an
arbitrary support of interestfa:b|.

| A common quantity of interest is
Zy,

la;d = g(x)h(x)dx;

a

that is, the expected value of some functham,), of x distributedg(x).

| A substitute for analytically calculating this is to randgmeneraten values ok from g(x) and
calculate:

1 X

N iz

Ma; 4 = h(xi):

| The idea is to replace analytical integration with sumnmaffom a large number of simulated
values, rejecting (ignoring) values outsidgdd
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Basic Monte Carlo Integration (cont).

| By the strong law of large numbef$a; b converges with probability one to the desired value,

| [a; 0.

| Although(a; J now has \simulation error," this error is measured by theigoap variance of
the simulation estimate:
1 X

Var(l'\[a;d)=n(n—1) (h(xi) MMa;B)?
i=1

| Note that the researcher fully controls the simulation sizend therefore the simulation accuracy
of the estimate.
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Basic Monte Carlo Integration (cont).

| Because the central limit theorem applies here as loRgélk[a; ) is nite, credible intervals
can be easily calculated by

g g

[95%ywer; 95%pped = [la;d  1:96 Var(a;d); MNa; g +1:96 Var(la;d) ;

or by reporting the:025and 0:075quantiles of the set df(x;).

| Bayesian context: replagéx) with a posterior statement( jx) andh(x) with h( ). Sol [a; [
is really the posterior expectationidf ):
. £ 1 X
EfhC))l= " (pxhC)d — h():

i=1
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Basic Monte Carlo Integration (cont).

| Example, standard normal PDF over a speci c region, suppeseant:
yA 1
I[ 221]=  x® (x)dx;
2
1 X
N 21] = = X2

=1
| inR
norm.sample <- rnorm(100000)

mean(norm.sample[norm.sample>-2 & norm.sample <1]*2)
[1] 0.5747261

| we can also \check" the algorithm with a related problem:

length(norm.sample[norm.sample>-2 & norm.sample <1])/1 00000
[1] 0.81989

(pnorm(2)-pnorm(0))+(pnorm(1)-pnorm(0))

[1] 0.8185946
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Basic Monte Carlo Integration (cont).

| How about a \harder" problem:

Z
I[e; 1= arctan«x%)C(xj =3; =2)dx
(S]
| Recall that: 1 1
Cxj; )= 55 1 <x; < 1;0<:
1+ *—
| Rcode:

c.sample <- rcauchy(100000,3,2)
mean(atan(c.sample[c.sample > exp(1l) & c.sample < pi|N1/ 3)))
[1] 1.058232
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Rejection Sampling

| If we cannot produce random values from the posterior aéstfeve cannot do MC integration
as just described.

| New idea: rejection sampling according to...

1. nd some other distribution that is convenient to sampbent

2. initially it must enclose the target distribution,

3. compare generated values with PDF form and decide whigsva keep and which to reject,
4. integral of interest is the normalized ratio of theseegalu

| \Rejection sampling" used in two contexts: obtaining disi@mal integral quantities, and gener-
ating random variables.

| Rejection sampling can be particularly useful in detengithhe normalizing factor for nonnor-
malized posterior distributions.
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Continuous Form with Bounded Support

| Bounded support: de ned, non-in nite range of some PDF loerofunction.

| Posit a functionf (x) such thatf (x) can be evaluated for any value over the support:of

Sk =[A;B].
| Determine the maximurdensity value by either:

1. analytical root nding,
2. numerical techniques such as gridding, Newton-RapBbkgretc.

| Now we de ne arectangle (or hyper-rectangle) that bouhgesdible values for the péi, f (x)).
Other geometric forms work too.

| Sample the two-dimensional random variable in this relang independently sampling uni-
formly over[A; B ] and[0; x] and pairing.

| Count the proportion of points that fall in the region of nets.
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Continuous Form with Bounded Support (cont.)

| The value of the integral, the area under the curve is justdhe of points under the curve to
the total number of points scaled by the size of the box:

: Z
number of points under curve . B

. size of box f (x)dx:
total number of points Nt

| Discrete problems turn out to be much more straightforwant ia usually a matter of counting
bin heights and taking a weighted sum.

| The degree of accuracy is entirely controlled by the résgatltrough the number of points
generated.
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Continuous Form with Bounded Support (cont.)

| 100 points sampled uniformly from the two-dimensionaingt® over[(A; B); (O; max( (x)))] =
[(0; 10} (O; 0:4)]. In total 27 values fell into the area we wish to integrateyesobtain the size of
the interval from:(27=100)(10 0:4) = 1:04

max(f(x))
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Measuring the Area Under a Quadratic

| Question: what s the
area underf (x) =
X%+ 3X + 7x?

| This is not a di cult
integral, but let's do
it computationally.
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Measuring the Area Under a Quadratic

f.x <- function(x) -x"2 +3*x +7*X

ruler <- seq(-1,11,length=300)
par(bg="grey70",fg="navyblue",lwd=1.5)
plot(ruler, f.x(ruler),type="1")
abline(h=c(0,25),lwd=2)
abline(v=c(0,10),lwd=2)

n <- 100000

samples <- cbind(runif(n,0,10), runif(n,0,25))
10*25*sum(samples|,2]<f.x(samples[,1]))/n
[1] 166.0825
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Continuous Form with Unbounded Support

| Now address the integral of some funcfigr) in which the analytical solution is di cult or
iImpossible, and the form b{x) has unbounded tails.

| Specify a \majorizing functiong(x), which for every value of in the support of (x) has the
property thatg(x) f (x).
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Continuous Form with Unbounded Support (cont.)

| If the target distribution has unbounded tails, then obslguhe majorizing function must also
have this property, and simply picking a PDF §g9x) which has heavier tails thdn(x) will not
work since it will then have other regions where it is nobumify greater than the target.

| The solution is to use a multiplication factor so that:

f(x)  kg(x); 8x;k> 1

| Samplex; fromg(x) and then make an accept/reject decision based(oi).
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Continuous Form with Unbounded Support (cont.)

| Steps:
1. calculate (x;)=kg(x;),
2. randomly draw a uniform(0,1) variate,
3. accepk; if this uniform is less thah(x;)=kg(x;),
4. repeat many times.

| If the majorizing distribution is very dissimilar from therdet distribution, then the sampling
procedure would be less e cient (more values rejected).
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Example: Enveloping with an Exponential Density

| Start with nonnormalized folded normal kernel;

f(x)! exp[ x>=2} x O

| In order to normalize this distribution, we require the gnéd quantity in the denominator of the
right-hand side of Bayes' law: Z,

| (X) = exp[ x%=2]dx
0

| Use an exponential enveloping distribution:

g(x) = kexp[ x]

but what value ok is best to ensure coverage but maximize algorithmic e gibgianinimizing
rejected values?



Numerical Methods Primer, Je Gill [32]

Example: Enveloping with an Exponential Density (cont.)

The left panel shows prospective expo-
nential function along with the folded
normal kernel (in bold). The expo-
nential functions displayed are feor=

1:0; 1.5; 2.0; 2:5; 3.0 as indicated by the

X = 0 point: kexp[0] =K.

The right panel shows the optimal expo-
nential enveloping function.
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Example: Enveloping with an Exponential Density (cont.)

| To nd the optimal coverage exponential, equate the twotiome and solve for thie that gives
the roots to the resulting quadratic equation:

g(x) kexp[ x]=exp[ x*=2] f(x)
k =expx x°=2]
0=x° 2+ 2log:

Equate the two possible quadratic solutions, one of which Ineul.:
1 = 2lok
) k =exp(1=2).

| Using this valuel = 1:649 in g(x) = kexp[ x], we get the enveloping function where the single
point of intersection occurs Hit 0:607]
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Example: Enveloping with an Exponential Density Steps

2. For eaclx;, calculate the corresponding value of the majorizingitumatg(x;) = (1:649)exp[ Xi]
3. Draw a random uniform value for eagtover the interval fron® to kg(x;): uy;.

4. Accept this draw as being frdnix) if uy, is less thar (x;).

5. The number of accepted values relative to the total numiberaws is proportional to the ratio
of the area under the target function to the area under thenzag function. So:
Z :
number of accepted points
)= fx)dx= kK pted p

0 total number of draws
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Example: Enveloping with an Exponential Densgtt§ode

n <- 1000000

X.expo <- rexp(n, rate=1)

x.k.expo <- 1.649*exp(-X.expo)

u.vals <- rep(NA,n)

for (i in 1:n) u.vals[i] <- runif(1,0,x.k.expol[i])

f.x <- exp(-x.expo”™2/2)

accepted <- 0

for (i in 1:n) if (u.vals[i] < f.x[i]) accepted <- accepted+1
1.649*accepted/n

[1] 1.252678
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Example: Enveloping with an Exponential Density (cont.)

For onlyn = 100draws, we get
the reasonably accurate result
of 1:.2546 which is very close
to the true value 0f:25314
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Bootstrapping for Standard Errors

| Big Idea : sometimesitis di cult to get the sampling properties oeatimator, even a commonly
used one.

| Some statistics have known variance properties for nitgpks and some do not. Does this
mean we should only use the former unless we have populkataéh d

| De nitive citations: Efron (1979), Efron and Tibshiran9gB).

| Case Study: suppose we have a dataset on leukemia, ignoring a wholef hbsigs and
condensing our analysis down to two variall#¥34 Count/10 a dichotomous outcome indicating
that there was a relapse from a remission stage:

Relapse |94 197 16 38 99 141 23
No Relapse52 104 146 10 50 31 40 27 46

| Note that these data anenbalanced
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Bootstrapping for Standard Errors

| The question is whether there is a di erence by CD4 counttlaaatural choice of test is the
dl erence Of meanS(re|apse: 86.86 Xno re]apse: 56.22

| This is easy since we know that:

relapse

q
SE(Xrelapsg - (52 _nrelapsg = 2524
q

SE(Xno relapsg = (32 =Nno relapsd = 14:14

no relapse

| But we also know that the mean is not very resistant to ostigard it could be that a notable
case, and one could be driving the subsequent ndings.

| So what about using the median instead of the mean? Thisimuslzhoice in one sense, but it
leaves us with no closed form solution for the standard. error
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Bootstrapping for Standard Errors

| So consider the following algorithm, for some statististexfast, :

1. DrawB \bootstrap” samples of size independentlywith replacement from the sample
x of sizen:

X Lx %:i:xB

(note the notation to di erentiate the bootstrap samplarirthe original sample).

2. Calculate the sample statistic of interest,for each bootstrap sample, and the mean of these

statistics:
X8

1
B
b=1

3. Estimate the bootstrap standard error of the statistic by

1 X®
Var():B—1
b=1

where obviousI$E( ) = g Var( ).

| We call the limit of this standard error &goes to in nity is called th&eal bootstrap estimate,
and this procedure is called thenparametric bootstrap estimate.
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Bootstrapping for Standard Errors

relapse <- ¢(94,197,16,38,99,141,23)
no.relapse <- ¢(52,104,146,10,50,31,40,27,46)
B <- 1000

no.relapse.mat <- relapse.mat <- NULL

for (i in 1:.B) {

relapse.mat <- rbind(relapse.mat, sample(relapse,lengt h(relapse),
replace=TRUE))
no.relapse.mat <- rbind(no.relapse.mat,sample(no.rela pse,length(no.relapse),

replace=TRUE))
}

relapse.mean <- mean(apply(relapse.mat,1,mean))
relapse.se <- sqrt(var(apply(relapse.mat,1,mean)))
no.relapse.mean <- mean(apply(no.relapse.mat,1,mean))

no.relapse.se <- sqgrt(var(apply(no.relapse.mat,1,mean )
relapse.median <- mean(apply(relapse.mat,1,median))
relapse.median.se <- sqrt(var(apply(relapse.mat,1,med 1))

no.relapse.median <- mean(apply(no.relapse.mat,1,medi  an))
no.relapse.median.se <- sqrt(var(apply(no.relapse.mat ,1,median)))
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Bootstrapping for Standard Errors

final.relapse.mat <- rbind( c(relapse.mean, relapse.se,
no.relapse.mean, no.relapse.se),
c(relapse.median, relapse.median.se, no.relapse.media n, no.relapse.median.se) )
dimnames(final.relapse.mat) <-
list( c("Mean","Median"), c("Relapse Est","Relapse SE",
"No Relapse Est","No Relapse SE") )

final.relapse.mat

Relapse Est Relapse SE No Relapse Est No Relapse SE
Mean 88.19143 21.57597 54.86444 12.45360
Median 84.37000 36.40226 44.07000 12.65810



