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Missing value imputation
for physical activity data
measured by accelerometer

Jung Ae Lee1 and Jeff Gill2

Abstract

An accelerometer, a wearable motion sensor on the hip or wrist, is becoming a popular tool in clinical and

epidemiological studies for measuring the physical activity. Such data provide a series of activity counts at

every minute or even more often and displays a person’s activity pattern throughout a day. Unfortunately,

the collected data can include irregular missing intervals because of noncompliance of participants and

therefore make the statistical analysis more challenging. The purpose of this study is to develop a novel

imputation method to handle the multivariate count data, motivated by the accelerometer data structure.

We specify the predictive distribution of the missing data with a mixture of zero-inflated Poisson and Log-

normal distribution, which is shown to be effective to deal with the minute-by-minute autocorrelation as

well as under- and over-dispersion of count data. The imputation is performed at the minute level and

follows the principles of multiple imputation using a fully conditional specification with the chained

algorithm. To facilitate the practical use of this method, we provide an R package accelmissing. Our

method is demonstrated using 2003�2004 National Health and Nutrition Examination Survey data.
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1 Introduction

Accelerometers, also called activity monitors, are useful tools for measuring physical activity of
subjects in clinical and epidemiological settings. While there has been growing interest in
investigating the relationship between physical activity and health outcome,1 how to accurately
measure the physical activity has been controversial. Self-report measurements, collected from
diaries, questionnaires and interviews, have suffered from a variety of mis-measurements,
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primarily due to recall-biases or the subject’s desire to meet certain social norms.2,3 As an alternative
that is free from these potential sources of errors, accelerometer use has steadily increased since
1990s as a way to objectively assess human behavior(s) in daily life. This device is usually mounted
on the hip or wrist and produces a ‘‘count’’ value by integrating acceleration signals over every
second, every minute, or a researcher-specific epoch. The resulting output depicts a series of activity
counts over time that reveals a person’s pattern of activity throughout the day (Figure 1).

Researchers in medicine, public health, kinesiology, and other fields find that accelerometers are
important tools for measuring physical activities outside of a clinical environment. For instance,
post-radical prostatectomy patients are routinely told that exercise reduces their post-operative
periods of incontinence and impotence. Despite this admonition, compliance rates are lower than
expected and accelerometers provide an objective measure for physicians to assess their patient’s
exercise rate and prospects for improvement in urinary and sexual conditions. Classically,
accelerometers have been extensively used for overweight and obese patients during supervised
weight loss, including those receiving bariatric surgery. There are many more examples, but the
common purpose is to gain more insight into the activities of subjects during unsupervised times.

Despite the common perception that the accelerometer is an extremely accurate device, it can also
produce fairly noise datasets from a statistical perspective. A second problem is missing data
resulting from noncompliance of the participants; the device is sometimes removed from the hip
or wrist and no motion is recorded. This occurs during sanctioned off-time such as baths, showers,
swimming, but other periods of missing are deliberate and can bias subsequent analyses. For this
reason, existing studies recommend to include only valid days that have sufficient wearing time.4–7

As a result, there have been many efforts to determine the optimal criteria for the valid datasets.8–13

However, these data reduction criteria can cause significant reduction in sample size 14 and introduce
unwanted variance in subsequent estimations.15,16

The purpose of this study is to provide a statistical method to impute (‘‘fill-in’’) missing
accelerometer data. Suppose we observe multivariate count data in an N � T (typically N5T)
accelerometer dataset, where N is the total number of days and T is the total time points in a single
day. Such data are characterized by more zero values than typically predicted with standard count
models (‘‘zero-inflation’’) and a time-associated effect, whereby consecutive observations are highly
correlated (‘‘autoregressive covariance’’). To accommodate these characteristics, we specify an
imputation model based on a mixture of zero-inflated Poisson and Log-normal (ZIPLN)
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Figure 1. Illustration of physical activity pattern measured by accelerometer. The green dots are the observed

accelerometer counts. The smoothed fit (blue line), produced by a B-spline, is overlayed for visual convenience. The

red lines on top of each display indicate missing intervals. Panel (a) provides an example of a complete day that has a

missing rate during 9 am�9 pm that is 6.1% (� 10%) of that period. Meanwhile, panel (b) displays an example of an

incomplete day that has missing rate that is 22.2% (>10%) during the same period.
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distributions and demonstrate its efficacy with simulated and real public health data. At each
indexed minute in the data, we assume a univariate missing variable (e.g., activity count at 9:01
a.m.) with complete covariates, followed by multiple imputation with chained equations17 to fill-in
missingness.

The innovation of this work is two-fold. First, the developed method is a new type of multiple
imputation that is well suited to autocorrelated multivariate count data. This approach can be also
viewed as an extension to the well-known fully conditional specification,17 but incorporating a new
predictive distribution adapted to the unique structure of accelerometer data. Second, for applied
researchers working with accelerometer data, the imputation approach for irregular missing
intervals is easy to implement with our R package and conveniently substitues for the dominant,
but deeply flawed, case-wise deletion process. Thus, we expect this tool to provide the practical
guidance to a wide range of data users.

This paper is organized as follows. In Sections 2 and 3, we display a motivating example where we
discuss the missing value definition in accelerometer data. In Section 4, we propose a predictive
model suitable for the activity data peculiarity. In Sections 5–7, the imputation procedure based on
the ZIPLN is introduced along with some discussion.

2 Accelerometer missing data

In this section, we describe in detail the structure of missingness in accelerometer data and the
associated methodological challenges.

2.1 Missing value definition

There are two ways to define missing values in accelerometer data: missing in days and missing
at time. Although these two approaches are related in the sense that the missing days are
determined by a certain amount of missing time per day, the two definitions have totally different
interpretations in terms of the imputation process. The missing in days approach leads to
an imputation model that provides summary statistics per day. For this approach, we first have
to select the complete days that contain sufficient wearing time, e.g., more than 10.8 h a day (90%
wearing during 9 a.m.�9 p.m.). This standard automatically classifies the incomplete days that have
less wearing time than 10.8 h, and these incomplete days are considered missing data (Figure 1(b)).
A conventional imputation method is then applied to fill in the total amount of physical activity
or moderate-to-vigorous physical activity on that missing day. This process involves an inference
based on the corresponding statistics of the complete days using the EM Algorithm or multiple
imputation (MI).4,5,18–22

Table 1. Missing rate during 9 am�9 pm. 16 incomplete days (� 10% missing rate) will be dropped,

resulting in 41.71% total missing rate by days, whereas the total missing rate by minutes is only 12.77%.

(Unit: %) Sun Mon Tue Wed Thu Fri Sat

Subject1 10 6 22 12 0 0 17

Subject2 0 0 0 0 21 41 11

Subject3 0 0 0 3 29 0 5

Subject4 0 78 1 0 11 69 13

Subject5 28 22 27 2 3 15 2
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A drawback with missing in days imputation is that it ignores the fact that the missing time per
day almost always varies across days. By simply dropping the incomplete days, one may lose some
valuable information as well as overestimate the total missing rate. The example in Table 1 shows
that the missing rate during the standard measurement day (9 a.m.�9 p.m.) varies across days and
subjects. Suppose we determine the incomplete days by the criterion of a �10% missing rate. The
total number of incomplete days for all five subjects in this example is 16 (4þ 3þ 1þ 4þ 4), resulting
in a total missing rate that is 41.71%, which is calculated by the number of incomplete days divided
by total days. Compared with this missing day approach, the total missing rate by minute is
considerably lower than that, only 12.77%, which is calculated by the amount of missing minutes
(or total length of the missing intervals) divided by total minutes during 9 a.m�9 p.m. Therefore, we
find that a minute level imputation method is more appealing than a day level imputation in that we
can minimize the data loss as well as maximize information that we partially have per day.

2.2 Missing interval

Here, we define the missing data as the missing counts per minute, which forms an irregular time
interval, rather than the incomplete day or the regularly segmented time period. One effective way to
detect the missing interval is to find some extended period of minutes where exact zeros succeed
more than P ¼ 20, 30, or 60 min.4,5,22,23 In the example of Figure 1 and Table 1, we defined the
missing interval by sustained zeros over 20min. Figure 2(a) shows the missing and non-missing
regions with bright (yellow) and dark (red) colors, respectively, by this criterion. It is not surprising
that there are many more zero counts during the obvious sleeping time. Our goal in this work is to
impute the missing intervals flagged by yellow in (a).

(a) Missing interval Missing rate over time(b)
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Figure 2. Illustration of missing interval definition. In panel (a), we define the missing interval by consecutive zeros

more than 20 min, which is flagged by the brighter color (yellow). In panel (b), the blue solid line indicates the percent

of zeros at each minute, and the red dotted line indicates the percent of non-wearing missingness. The shaded area

under the dotted line integrates to the overall missing rate of 15.54%.
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After defining the missing interval, the data set consists of three types of values: (1) positive
counts, indicating some physical activities, (2) zero counts continuing less than or equal P minutes,
indicating no-movement, (3) zero counts continuing more than P minutes, indicating non-wearing
missing time. Figure 2(b) describes the percent of these values at each minute. For instance, at
3 p.m., the zeros are 28.3% out of a sample size of 763, and the missing values are 11.8% since
only partial zeros are categorized as missing values. Notice that the total missing rate from the
shaded region in Figure 2(b) is 15.54% during 9 a.m. to 9 p.m. Our goal is to impute the missing
activity counts in the shaded area on the basis of information that we can obtain from the remaining
84.46% wearing time.

Accelerometer produced datasets are characterized by many zeros and autocorrelated non-
negative counts in T dimensions, where T is the total time points in a day. If the accelerometer is
set to record data at 1min epoch then T ¼ 1440. Zero-inflation during the wearing time occurs
because there are always left-out zeros (short term zeros less than P minutes) after sorting out the
missing interval by the P minutes criterion. Thus, the zero-inflation becomes more severe with a
P ¼ 60 min criterion than with a P ¼ 20 min criterion.

The minute-level measurement is important in the study of physical activity and exercise.
Researchers in this area are interested in not only the total amount of physical activity but also
the activity bouts, i.e., how long the activity last. The minute level imputation makes it possible to
preserve the accurate assessment of the rate and duration of such as exercise, sedentary behavior,
and sleep. To date, relatively little work has been done on the imputation using minute level
information. Morris et al.24 stochastically imputes the missing METs (i.e., metabolic equivalent)
during the irregular missing time interval, using a wavelet-based functional mixed Bayesian model.
This method assumes that the data are missing completely at random (MCAR, the distribution of
the missing data does not depend on other data missing or observed) and require a multivariate
normal assumption to randomly draw the missing-wavelet coefficients. Lee14 imputes counts per
minute taking into account the available information from the invalid days and then showed that the
combined method from both valid and invalid days improves the missing value imputation
performance.

3 Activity data example

To illustrate the challenges of missingness in accelerometer data, we use 2003�2004 National Health
and Nutrition Examination Survey (NHANES) dataset available at the website: http://wwwn.cdc.gov/
nchs/nhanes/search/nhanes03_04.aspx. From 7176 total participants in the physical activity survey, we
randomly select 218 individuals to give 1526 daily profiles (218� 7 days). Following Catellier et al.,4

‘‘non-wearing time’’ is defined by successive zeros over 20min. A ‘‘standard measurement day’’ is
9 a.m. to 9p.m., during which over 60% of the sample wore the device. Other periods have been
proposed in other literatures, but we find that these times represent sharp aggregate cutoffs in the
NHANES data. Furthermore, a ‘‘complete day’’ is defined as a day in which a subject wears the
accelerometer over 90% of the standard measurement day (at least 10.8 h). Requiring this standard
reduces the number of daily profiles considered to 576. At least three complete days of a person are
recommended for the reliable estimate of habitual physical activity.12 Therefore, some complete days
are dropped if the subject has only one or two completed days out of seven days, although some
incomplete days are included if the subject has already three or more complete days. So, 763 daily
profiles of 109 people (109� 7 days) remain. Note that 15.54% missingness remains, as shown in
Figure 2(b), after such processing. Table 2 summarizes the characteristics of the final dataset. From the
table, we see that the mix of demographics is nationally representable.
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4 Proposed method

4.1 Assumptions for MI

Our primary goal is filling-in the missing interval over T ¼ 1440 min of a day with plausible count
values. We do this by drawing imputations for non-wearing time from a specified distribution, a
probabilistic estimate of what would have likely occurred if the subject had worn the device.
Therefore, the predictive model is first built on actual wearing time, then the imputation process
is carried out for non-wearing time based on information gained from the wearing time. Multiple
imputation (MI) is known to be practically useful for doing this task under missing at random
(MAR), (the distribution of the missing data does not depend on the other missing data) or missing
at completely at random (MCAR) assumptions. In this paper, we assume that the wearing times and
the non-wearing times are not fundamentally different and there are no ‘‘shocks’’ in the non-wearing
periods. This assumption is more convenient than optimal and is equivalent to the MAR assumption
in standard missing data analysis. It is possible for accelerometer data to be NMAR: the distribution
of the missing data depends on other missing data.25,26 Thus far, there is no general test for the
missing mechanism MAR (or MCAR) versus NMAR. In fact, with any method, the NMAR
mechanism is hard to specify. Therefore, our method takes advantage of the simplicity of MI
model under MAR and demonstrates the reasonablility of MAR assumption (Section 6 and
Appendix 1.1). Handling NMAR missing accelerometer data is a separate challenge from that
addressed here.

There are two problems with directly applying the standard MI process to accelerometer missing
data. First, the probability model specified by normal or other standard distribution is not suitable
for minute level activity count data. Second, the high dimensionality of accelerometer data (N<T)
where some of dimensions are strongly correlated makes it hard to use any method that is developed
for N>T rectangular multivariate data. Our method provides a way to obtain a suite of complete
datasets tailored to these challenges, where researchers are then able to perform the needed analysis
and combine the results in the usual second part of the MI process. It is also important to note that
the main value of MI stems from its wide applicability and production of unbiased coefficient
estimators under MAR with standard rectangular data structures. It is usually not optimal in the
sense that customized imputation schemes that exploit unique structures in particular datasets and
sometimes impose additional distributional assumptions are likely to produce the smaller standard
deviations for a column with missing data and smaller standard errors for the associated coefficient
estimate. This is the philosophical basis for our approach to improving imputation schemes for
accelerometer missing data.

4.2 Zero-inflated Poisson model

Zero-inflated Poisson (ZIP) regression was first introduced in Lambert27 although the ZIP
distribution, without covariates, had been discussed earlier elsewhere.28,29 The main purpose of

Table 2. Summary of data (No. of participants ¼ 109, N ¼ 763 days).

Age(%)a Sex (%) BMI (%) Race (%)

Youth 38.5% Male 50.5% �25 42.2% White 44.0%

Adult 61.5% Female 49.5% >25 57.8% Others 56.0%

aYouth indicates 7�19 yrs and Adult indicates 20�85 yrs.
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this approach is to deal with so called ‘‘structural’’ zeros in modeling count data that exceed those
predicted by a regular Poisson generalized linear model (GLM). The same principle is applied to
handle the physical activity counts data that often encounter excess zeros resulting from frequent no-
movement by subjects. The ZIP regression model assumes that zeros are observed with probability
�, and the rest of observations come from a Poisson(l) with probability 1� �. Let Y1, . . . ,YN be a
sample of size N independently drawn from

Yi �
0 with probability �i

PoissonðliÞ with probability 1� �i

�
and the probability mass function is given by

P Yi ¼ hð Þ ¼
�i þ 1� �ið Þe�ki for h ¼ 0

1� �ið Þe�lilhi =h! for h ¼ 1, 2, . . . :

(
ð1Þ

Accordingly, the regression model with this ZIP distribution consists of two GLM components. The
first part is a logistic regression, specified by logitð�iÞ ¼ uTi c, where the response variable states zero
or nonzero status and c is a regression coefficient vector for covariates uTi . The second part is a
Poisson regression, specified by logðliÞ ¼ xTi b, where the response variable is a non-negative count
from a Poisson(li) and b is a regression coefficient vector for covariates xTi . This separation allows
the predictors in each model to perform different roles; for example, what causes exact zeros
(no-movement) is different from what causes vigorous activities. For these covariates, we can
consider age, sex, race, body mass index, weekday vs. weekend, and others. The mean and
variance of ZIP distribution are

E Yið Þ ¼ 1 � �ið Þli , VarðYiÞ ¼ lið1 � �iÞð1 þ �iliÞ

where we can see that when �! 0, i.e., zero-inflation disappears, the mean and variance become the
same, holding the mean-variance relationship of standard Poisson distribution.

A similar approach to handle zero-inflated count data is also introduced in Mullahy30 and is
referred to as a hurdle model. This model utilizes a zero-truncated Poisson distribution, i.e.,
PðYi ¼ h jYi 4 0Þ ¼ lh=ððeli � 1Þh!Þ: Thus, the probability mass function in equation (1) is
modified to

P Yi ¼ hð Þ ¼
�i for h ¼ 0
1� �ið Þlhi =ððe

li � 1Þh!Þ for h ¼ 1, 2, . . . :

�
The hurdle model provides results that are nearly identical to the ZIP model in our empirical results,
so we choose to use the more intuitive ZIP model.

4.3 Multivariate ZIP regression on activity data

Again consider an N by T data matrix, where N is the total number of daily profiles and T is the total
number of time points in a day; T¼ 1440 for a 1min epoch. We define two sets of indices
N ¼ f1, . . . ,Ng and T ¼ f1, . . . ,T g and denote i 2 N and t 2 T . Because the wearing versus
non-wearing status of N observations varies across time, as seen in Figure 2(b), it is necessary to
partition N into two parts, N ¼ W[Wc, by creating a subset W that only includes indices of the
wearing status, whileWc is the complement set ofW containing the non-wearing profile indices. The
elements of W and Wc change as time proceeds (we omit the subscript t in some situations for
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simplicity). Furthermore, assume that there were no movements if the subjects did not wear the
device during regular sleeping time. This narrows the focus on only the daytime hours, 9 a.m. to
9 p.m., so the domain is D ¼ f541, . . . , 1260g where D � T . Therefore

PðYit ¼ 0 j i 2 Wc
t and t 2 DcÞ ¼ 1 ð2Þ

Because of assumption (2) that treats the missingness outside of the domain D as the extended
sleep period, our method may not be useful for a sleep study that requires sensitive detection of the
onset of the sleep/wake-up time. Thus, we recommend that our method be used primarily for the
studies focused on daytime activity(or inactivity).

The prediction from ZIP regressio is based on the expected value of a ZIP random variable in
equation (2), which is expressed as a conditional expectation in the regression context by
substitution:

E Yijui, xið Þ ¼ 1� logit�1ðuTi cÞ
� �

exp xTi b
� �

, i 2 W ð3Þ

where ui and xi are vectors of covariates for logit and Poisson model, respectively, and c are the
corresponding coefficient vectors. Now, we consider the multivariate setting where the ZIP
regression is applied for multiple time points t 2 D. An important consideration for this model
is how to incorporate the time dependency. It makes sense in serial physical activity data that the
level of motion in the current minute is correlated with those that follow. Therefore, modify the
regression model (3) by adding autoregressive terms Hi, t�1 as follows

E Yi, tjYi, t�1, ui, xi
� �

¼ 1� logit�1 uTi ct þ �tHi, t�1Þ
� �

exp xTi bt þ �tHi, t�1Þ, 8t 2 D
��

ð4Þ

the ith day’s expected activity count at a time point t. Our choice of the autoregressive term
is Hi, t�1 ¼ logðYi, t�1 þ 1Þ, which gives a convenient interpretation of the coefficient so that
�t / corðlogðYtÞ, logðYt�1ÞÞ / corðYt, Yt�1Þ when �t ! 0. Adding one avoids computational
problem from a logarithm on zeros. The regression coefficients ĉt, �̂t, b̂t and �̂t are obtained by
maximum likelihood estimation with EM Algorithm27 at each time point t. Due to the conditionality
on the past values, we run the model in sequence on t 2 D, so that the variables Hi, t�1 are ready for
the model at time t. Equation (4) improves the prediction accuracy for wearing time (see Figure 4)
but not the imputation performance for the missing data (see Figure 5). This is for two stated
reasons: over-dispersion and the restriction to only include one lag variable. Thus model (4) is
not our final model, but it motivates a new proposal in Section 4.3.

4.4 Poisson Log-normal mixture to handle autocorrelation

One of the key features of the model in equation (4) is the autoregressive term, where the
model runs successively on minutes and consequently describes the autoregressive relationship
in multivariate data. Since corðYt, Yt�1Þ4 corðYt, Yt�2Þ the serial effect diminishes over time.
This autoregressive assumption fits well for activity data, which has a banding correlation
structure as shown in Figure 3(a). In this figure, the activity count at 10:00 a.m. is highly
correlated with those at adjacent minutes (bright color) but not necessarily those at 9:30 or
9:00 a.m. (dark color). The question naturally arises as to how many lag or lead variables are
sufficient to deal with the autocorrelated activity data. Let K be the lag or lead index from a
present time point t; for example, with K ¼ 2, we consider the conditional distribution Yt given
Yt�2, Yt�1, Ytþ1, Ytþ2. Note that the model (4) is a regression model, not a stochastic time series
model, which means simply including Yt�k, k ¼ 1, . . . ,K as predictors together will not work
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because of the multicollinearity problem. It is appropriate to frame the model as a conditional
multivariate count data in T-dimensional space. Luckily, due to the autoregressive correlation, we
only need to include the 2K neighboring dimensions.

In what follows, we modify the model (4) assuming the multivariate Poisson Log-normal
distribution.31 Suppose Y follows a multivariate Poisson Log-normal distribution with a
dimension of d ¼ 2K þ 1. This is a mixture of d independent Poisson’s and a d-variate Log-
normal distribution. With a sample size of N, it can be written as

Yijli � PoissonðliÞ

li ¼ exp xTi bþ ei
� �

, for i 2 W
ð5Þ

where ei � Nd ð0, �Þ with � denoting a d � d variance covariance matrix, i.e., li � LNd ðx
T
i b, �Þ.

This assumption modifies the model to be

EðYi,tjui, xiÞ ¼ 1� �itð Þ exp xTi bt þ eit
� �

, 8t 2 D ð6Þ

For simplicity, we treat ð1� �itÞ as a constant due to its role as a weight for the overall expectation
which is minimized when �it ! 0 or lit ! 1. Let Zt ¼ log Ytð Þ � xTi bt, and
Z ¼ Zt�K, . . . ,Zt�1, Ztþ1, . . . ,ZtþKð Þ

T, a set of K lag and K lead variables of Yt. Thus
Z � N2K 0, �zzð Þ. Also denote �yz ¼ CovðZt, ZÞ. By the property of normal conditional
distribution, the imputation model given K lag and K lead variables is expressed by

E Yi,tjZi, ui, xi
� �

/ expðxTi bt þ �yz�
�1
zz ZÞ, 8t 2 D ð7Þ

This model in equation (7) is an update of equation (4) adding both the lag and lead effects.

0.0
Original data Residuals (zip) Residuals (ziplin)(a) (b) (c)
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Figure 3. Heatmap of correlation matrix of activity data over 9 a.m. to 10 a.m. Each panel shows a 60 by 60

matrix with the absolute correlation coefficients jrj 5 1, where the brighter color indicates the higher correlation.

In (a), the original activity count data displays the autoregressive correlation structure banding around the diagonals.

In (b), the correlation matrix of the residuals from the ZIP model with lag1 term shows that the autoregressive

pattern is considerably reduced but not completely. Lastly, (c) displays the correlation matrix of residuals from the

ZIPLN model with K ¼ 3, showing that the autocorrelation structure disappears.
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4.5 Test for autocorrelation

We can evaluate these two models (4) and (7) in terms of the amount of autocorrelations remaining
in the residuals. It is expected that the residual correlation matrix is close to an identity matrix if the
model effectively removes the autocorrelation. Figure 3(b) exhibits the correlation matrix of the
residuals from the ZIP regression with one lag term in equation (4), showing that the autoregressive
pattern is significantly reduced compared to the original data in (a) but not completely. Panel (c) in
this figure displays the covariance matrix of residuals from a mixture of the ZIPLN model in
equation (7) with K ¼ 3, conditioning on three lag and three lead variables. It is clearly seen that
the autocorrelation structure disappears.

In addition to the graphical diagnostics in Figure 3, we can actually test for whether the
autocorrelation has been removed after fitting the model. Denote the correlation matrix of
residuals RT�T. We perform a test of whether the matrix R is from the uncorrelated data. First,
create an I0 matrix, which is a correlation matrix independently drawn from N ð0, �2Þ for all t 2 T ,
setting �2 ¼ l̂tð1� �̂tÞð1þ �̂tl̂tÞ from the marginal ZIP distribution. Second, test the null
hypothesis of the equal covariance matrix, H0 :�R ¼ �I0 , meaning the population covariance of R
and I0 is equal by applying the Q2

2 statistic introduced by Srivastava and Yanagihara.32 The Q2
2

statistic is computed based on the difference between tr Rð Þ2= tr Rð Þ
� �2

and tr I0ð Þ
2= tr I0ð Þ
� �2

and
follows a chi-squared distribution under the null hypothesis, thus a smaller value of Q2

2 statistic
(i.e., large p-value) means greater similarity between the two covariance (or correlation) matrices.
This statistic is known to be effective to test the equality of covariance matrix when the dimension is
relatively large to the sample size.32,33 Table 3 summarizes the results from different models
indicating that the ZIPLN model with both lag and lead effects has removed the autocorrelation
effectively. Furthermore, we can understand the effect of levels of K (how many lag and lead
variables are necessary for the imputation model) and find that K ¼ 1 is satisfactory at 0.05 level,
but K ¼ 3 is optimal.

Table 3. The Q2
2 statistic for the test of the equal correlation matrix of residuals by

different models. A smaller Q2
2 statistic (i.e., large p-value) indicates a great similarity of two

correlation matrices, R and I0, meaning the model effectively remove the autocorrelation.

The ZIPLN mixture with both lag and lead variables generally perform better with the

optimal K ¼ 3.

GLM ZIPLN (lag and lead)

stat p-val stat p-val

Original data 241.54 <0.0001 K¼1 3.5217 0.0606

ZIP (L0L1) 15.96 0.0001 K¼2 3.0561 0.0804

ZIP (L1L1) 7.47 0.0063 K¼3 3.0137 0.0826

ZINB (L1L1) 28.44 <0.0001 K¼4 3.0234 0.0821

K¼5 3.0933 0.0786

K¼6 3.1001 0.0783

K¼7 3.1310 0.0768

K¼8 3.1803 0.0745

K¼9 3.1886 0.0742

K¼10 3.2449 0.0716
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4.6 Prediction accuracy for wearing time

Different models are compared in terms of prediction accuracy. Only wearing time can be evaluated
for the prediction accuracy because both the true and predicted values simultaneously exist . If a
model predicts well for the wearing time, it should be in the non-wearing time under the MAR
assumption. We calculate the prediction accuracy in two ways: the root mean squared errors
(RMSE) of counts in equation (8), and the mean area difference (MAD) between the prediction
curve and true curve in equation (9). In both measures, a lower value indicates the smaller errors in
the prediction, therefore a better predictive model. The first measure is

RMSE ¼
X
t2D

X
i2W

Yit � Ŷit

� �2
Dj j Wj j

8><>:
9>=>;

1=2

; ð8Þ

where Dj j indicates the cardinality of a set D, and Yit and Ŷit are the true count and predicted count,
respectively, at each i and t. The second measure is

MAD ¼
X
t2D

X
i2W

Xi tð Þ � X̂iðtÞ
			 			
Dj j Wj j

; ð9Þ

where XiðtÞ and X̂iðtÞ are the smoothing function values at time t fitted from the true count and
predicted count, respectively, and the absolute difference is computed. The smoothing function is
computed from B-spline with 155 knots.34

The results of the prediction accuracy are summarized in Table 4. The ZIPLN mixture model
performs better than the standard GLM, especially when both the lag and lead variables are
included. Including zero-inflation improves the prediction (ZIP>Poisson). Including a lag 1
variable in the Poisson part improves the prediction (ZIP L0L1>ZIP). Including a lag1 variable
in both logit and Poisson parts improves the prediction (ZIP L1L1>ZIP L0L1). Zero-inflated
Negative Binomial model (ZINB) does not improve the prediction. Furthermore, we compare
these models in terms of the Akaike information criterion (AIC) statistic35 and the non-nested
test.36 These results are summarized in Figure 7 in the Appendix, where the ZINB model
performs noticeably better in terms of the AIC because the Negative Binomial model is more

Table 4. Comparison of prediction accuracy for wearing time. The smaller RMSE or

MAD indicates the better performance in prediction.

GLM ZIPLN (lag and lead both)

RMSE MAD RMSE MAD

Poisson 543271.0 337.2 K¼1 254299.1 118.1

ZIP 543323.1 337.0 K¼2 258069.8 129.2

ZIP L0L1 347373.2 160.2 K¼3 261339.0 135.6

ZIP L1L1 329017.8 148.4 K¼4 263715.5 138.9

ZINB L1L1a 383753.2 189.5 K¼5 265230.1 140.8

aThe best GLM model in terms of goodness of fit (AIC).
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appropriate for over-disperse data. However, none of these GLM models improve upon any ZIPLN
specification since the latter is tailored for both over-dispersion and autocorrelation by including the
possible impact of both lagged and leading variables.

Once the minute-successive model is completed, we can display the predicted results for all times
in each day, and it allows us to present and compare the prediction curves among methods as shown
in Figure 4. In this figure, the prediction curves by different methods are compared to the original
curve of the true data points, which is the thin black line. The closer to the original curves indicates
the better prediction performance. The difference of the areas between the original curve and other
prediction curves means the MAD measure in equation (9). The prediction from the ZIPLN, which
is presented by the thick pink line, is the closest to the true curve than any other method. Note that
the missing interval is marked with the red line on the top, which is excluded for the computation of
prediction accuracy at this time. We will evaluate the imputation accuracy for the missing interval
through a simulation in Appendix 1.1.

5 Imputation for missing activity counts

Multiple imputation (MI) is widely accepted as the optimal method for imputing MCAR and MAR
missing data ever since Rubin’s original work.37 The basic idea is to create multiple complete
datasets by drawing samples from the posterior distribution for each missing value conditional on
the observed values, then run multiple parallel models and finally combine the results for one model
summary accounting for average within-model variance as well as between-model variance. It is
attractive in the sense that the method stresses the uncertainty that could be caused by the missing
values instead of estimating the ‘‘best’’ value, which can never be correct. Many extensions and
specialized versions have been developed subsequently,17,38�40 but the core idea of creating replicate
full datasets and then combining is preserved.

Our extension to this process applies the fully conditional specification (FSC),17,39 also known as
multiple imputation with chained equations (MICE), which is implemented with an open-source
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software R package.41 The MI process by FSC is summarized in three steps: (1) model specification,
(2) imputation draws from the specified model, and (3) repeated iteration. In our version of this well-
known process, we extensively discussed the step (1) in Section 4, and the details for the steps (2) and
(3) are provided in the next section.

5.1 Parametric imputation

Parametric imputation is powerful when there is an explicit model that is known or safely assumed. Let
Y be an incomplete data vector with missing values and denote Yobs ¼ fYi, i 2 Wg and
Ymis ¼ fYj, j 2 W

cg. For normal data, the imputed value Ŷj is a draw fromNðX�, �2Þ: In other words

Ŷj ¼ X _�þ _e

where _� is a draw from Nð�, �2 X0Xð Þ
�1
Þ, _e is a draw from Nð0, �2Þ, and the parameters � and �2 are

estimated from the observed data. With a specified prior distribution, this is called Bayesian
imputation under the normal linear model.37,39 The idea is that the imputation should reflect the
parameter uncertainty and prediction errors under the assumption that the missing data distribution
is the same as the observed data. The methodological details are well explained in van Buuren39 and
easily accessible through their statistical software.41 A related procedure for missing outcome
variables introduced by Little and Rubin42 uses the EM Algorithm to cycle between Ŷ

ðkÞ
j ¼ X�̂ðkÞ

(E-Step) and � kþ1ð Þ ¼ dX0Xð Þ
�1X (M-Step) at the kth step for the missing data. Recently, a Bayesian

imputation for ZIP and Negative Binomial distribution has been introduced by Kleinke and
Reinecke.43 In this approach, one can draw the missing count values from the estimated
probability, P̂ Yj ¼ h

� �
, h ¼ 0, 1, 2, . . . : Unfortunately, our predictive distribution, the ZIPLN,

does not have a simplified probability density function that is tractable enough for this approach.31

Our proposed imputation algorithm, a Bayesian imputation model under the ZIPLN assumptions, is
described below in the box.

Imputation Steps under Zero-inflated Poisson Lognormal model

Start with data with initial imputation.

(1) Fit the ZIP model with Yobsat a time point t.
(2) Set B̂ ¼ ĉ, b̂

� �T
from the coefficients of both logit and poisson models.

(3) Compute the variance-covariance matrix of the coefficients, V ¼ CovðB̂Þ:
(4) Update the parameters from a posterior distribution _B ¼ B̂þ V�1=2z where z � N 0, 1ð Þ:
(5) Compute _�j and _lj with the updated parameters for Ymis.

_�j ¼ logit�1 uT _c
� �

_lj ¼ expðxT _bÞ
(6) Draw zero imputations based on the _�j ¼ P̂ðYj ¼ 0Þ as follows:

Ŷj ¼ 0 if _�j 4 uj, where uj � unifð0, 1Þ
(7) Draw non-zero imputations based on _lj and the log-normal error term.

Ŷj ¼
_lj exp _eð Þ, where _e ¼ �̂yz�̂

�1
zz Z

with for example setting K ¼ 1, Z ¼ log Yj, t�1

� �
� xTb̂t�1, log Yj,tþ1

� �
� xTb̂tþ1

h iT
This procedure will continue 8t 2 D, which gives a single iteration. Two or three iterations are

shown to be sufficient.
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Note that the MI involves a doubly iterative process, within a fixed minutes and across the data.
A similar approach is found in Nevalainen et al.44 and Welch et al.,45 with so called two-fold FCS for
longitudinal missing data, but these are applied to longer time intervals with only one and one lead.

The imputation difference across different models is given in the panels of Figure 5. Clearly the
Normal assumption is inappropriate due to the zero-inflation and non-negative count data as shown
in the first panel. The ZIP distribution generates some zero imputations based on the estimated
probability of zero, but it fails to handle over-dispersion (second panel). The ZINB distribution shows
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demonstrably better performance given the over-dispersion problem that the ZIP model is not designed to
handle. However, it works less well in the third panel and is computationally intensive. Conversely, the
ZIPLN shows much great coalescence with the observed data in the fourth panel of Figure 5.

An example of complete data after a Bayesian imputation under ZIPLNmodel is displayed in Figure 6.

5.2 Semiparametric imputation

As suggested by Little,46 we apply the predictive mean matching (PMM) integrated with a Bayesian
regression model. The idea is to find the candidate donors among the observed values where each of
the missing values is replaced by this process. Rubin47 originally introduced this method in a
simplified form to impute a missing entry Yj

Ŷj ¼ Yk

where ð�̂j � �̂kÞ
2
� ð�̂j ���̂iÞ

2 for all observed values i, �̂j is the predicted mean of Yj, and Yk is the
observed value that turned out to be the closest candidate for Yj. A natural extension for the MI process
is to find a few number of donors under these circumstances (usually draw three to ten to provide
multiple imputed values). Again, Little46 suggests a refined version using the Bayesian regression
specification to reflect uncertainty in estimating parameters. That is, under the standard normal
assumption, �̂j ¼ xTj b̂ can be replaced by ~�j ¼ xTj

_b where _b is a draw from the posterior distribution.
Our second proposal for the activity missing counts is to apply the PMM imputation,

as suggested by Little, where the predicted means ~�j, �̂i are provided by the ZIPLN model.
Note that the predicted mean values themselves, for any specific models, will not be used as
the imputed values, but will be used for the comparison among the profiles. We found that when
the ZIPLN model is used, the quality of donors substantialy improved in terms of predictive ability.
The simulation study for the imputation accuracy for the missing intervals is provided in
Appendix 1.1.

Some literatures describe the PMM as a hot deck imputation.48,49 One common property is that
each missing entry is replaced with an observed value based on the ‘‘similarity’’ of the profiles. PMM
is one of distance metrics doing this task effectively in that sense. Since a random draw is made
among the observed only, it holds the assumption that missing data follow the same distribution as
the donors. So the PMM imputation may not be effective when there is not enough data. In terms of
the computational time, the parametric method is slightly faster than the semiparmetric PMM
procedure that computes all possible pairwise distances.

6 A diagnostic for MAR from the model imputations

There is no general method to test the MAR and the missing completely at random (MCAR)
assumptions against not missing at random (NMAR).25,26 But we can graphically check whether
the imputed data from our procedure were reasonably consistent with the observed data under the
MAR assumption. Raghunathan and Bondarenko50 proposed a practical way to check this; that is,
if the imputations are reasonable under the MAR assumption, then the Yobs and Ymis should have
similar distributions conditional on the propensity score. The propensity scores between 0 and 1, are
computed by a logistic regression of a missing indicator vector conditional on some covariates such
as age, sex, race, body mass index, and weekday vs. weekend. We found that our proposed
imputations for both parametric and semi-parametric processes meet this criterion in general. In
doing this, there was no evidence to show violations of the MAR assumption.
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7 Conclusion

There are methods to handle the correlated multivariate counts data such as multivariate Poisson
model51 or multivariate ZIP model.52,53 However, such methods are developed for bivariate or
trivariate cases rather than the large dimensional data produced by accelerometers. Another
critical issue is that the multivariate Poisson (or negative binomial) distribution does not support
negative correlation among different discrete random variables,54 and the probability density
function or its other generalized versions are not practical for such applications.31

Alternatively, our work uses the multivariate Poisson Log-normal (MVPLN) model, which has
also been shown to be useful in many regression applications,55–57 due to the flexibility that allows
for both positive and negative correlation through the normal distribution variance-covariance
matrix component. The popularity of MVPLN model is also due to the tractable form of the
expectation and variance of this mixture distribution although there does not exist a simplified
form of the probability density function.31

In addition, we explored the imputation methods for longitudinal time series data58–61 due to the
fact that it is a missing time interval problem. However, the longitudinal missing data typically
assume a monotone trend during the missing interval, and this assumption is not suitable for a
physical activity time series that has more complex pattern. As shown, the activity data are much
noisier and much less smooth than typical longitudinal data and displayed over a very large
dimension, usually larger than a sample size. So we also provide prescriptive evidence for future
methodological studies of accelerometer data.

The goal of this study is to find an effective method for imputing accelerometer missing data, which we
have shown to have very different characteristics than conventional rectangular datasets of N4T. Our
main adjustment lies in specifying a viable imputation distribution with a mixture distribution of ZIPLN.
Using this specification, multiple imputation by chained equations are applied for N � T accelerometer
data matrix ðN5TÞ. We then demonstrate that under the ZIPLN model, both the parametric and semi-
parametric imputations work better than other competing methods in imputation performance. Therefore,
this missing data method is a useful addition to the literature for dealing with general multivariate count
data with under-dispersion (zero-inflation) and over-dispersion (autocorrelation) problems.

8 Software

To facilitate the practical use of this method, we provide an R package accelmissing, which can be
incorporated with the existing mice and pscl R packages.
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Appendix

A1.1. Imputation accuracy for missing intervals: A simulation study

Imputation by predictive mean matching (PMM) relies on a single summary statistic or the
distances computed by these statistics, instead of the distributional parameters. Because of
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Figure 7. Model comparison by Akaike information criterion (AIC) and Vuong test. The smaller AIC indicates the

better model. The high vuong statistic above the dashed-dotted line at 1.64 means the null hypothesis of equivalent

models is rejected at 0.05 significance level, i.e., the model 1 is better than the model 2.
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such simplicity and a lack of strict assumptions, PMM imputation is robust against misspecification
of the imputation model. Figure 8 also supports this fact by showing reasonable imputations
regardless of model specification in PMM imputations. However, there are some obvious
differences in terms of the donors’ predictive ability, which may depend on how effectively the
specified model, as a distance metric, captures the similarity or dissimilarity among the daily profiles.

Imputation is a form of prediction, so it is expected that a set of donors should contain predictive
information for a target missing value if the choice of donors were reasonable. In order to evaluate
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Figure 8. Comparison of PMM imputation at a fixed time point. The PMM imputations produce reasonable

imputations regardless of model specification.

Table 5. Imputaion accuracy of simulated missing data. The average of D donors are

compared to the true value by RMSE and MAD. The smaller value indicates the better

performance. Using ZIPLN model outperforms other methods.

Imputation method RMSE MAD

Mean 557137.4 331.5

Random sample (D¼1) 1193682.3 375.7

Random sample (D¼3) 711333.3 347.0

Random sample (D¼5) 665840.1 339.8

Random sample (D¼10) 612203.1 333.7

NORMþPMM (D¼1) 1098393.7 421.3

NORMþPMM (D¼3) 916131.1 454.8

NORMþPMM (D¼5) 833960.6 454.0

NORMþPMM (D¼10) 769614.4 458.1

ZIPþPMM (D¼1) 1080756.2 426.2

ZIPþPMM (D¼3) 834745.1 432.2

ZIPþPMM (D¼5) 760667.5 432.4

ZIPþPMM (D¼10) 697649.9 433.0

ZIPLNþPMM (D¼1) 505524.6 141.9

ZIPLNþPMM (D¼3) 348106.6 113.9

ZIPLNþPMM (D¼5) 319995.3 108.3

ZIPLNþPMM (D¼10) 301809.5 106.4

ZIP (m¼5) 691990.4 476.8

ZINB (m¼5) 696653.4 357.0

ZIPLN (m¼5) 308985.3 145.1
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the imputation accuracy, we need a simulation study according to the following steps. First,
randomly generate the missing intervals of 20�180min length. Second, produce imputations
under a specific model. Third, compare the true vs. imputed value. Imputation accuracy is
computed by RMSE and MAD, as done in Section 4.6. A single imputed value, averaged from D
donors, is compared to the true value.

For comparison, we impute the simulated missing data with four methods: (1) draw a random
sample from all observed values, (2) select donors based on the smallest distances d ð ~�j, �̂iÞ under
the normal linear model (NORMþPMM), (3) select donors based on the smallest distances
d ð ~�j, �̂iÞ under the zero-inflated Poisson model (ZIPþPMM), and (4) select donors based on the
smallest distances d ð ~�j, �̂iÞ under the zero-inflated Poisson Lognormal model (ZIPLNþPMM). The
results are summarized in Table 5. Note that the random sample imputation does not have any
predictive information. The PPM imputations by NORM or ZIP do not excel the performance of
the random imputation or even worse. The ZIPLN model outperforms the other methods. We also
compare these to the parametric imputation methods in which we use the average of five multiple
datasets (m ¼ 5). Here, the ZIPLN performs the best as well. Graphical comparison is also provided
in Figure 9.
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Figure 9. Comparison of imputation curve by different PMM methods. Five donors selected by each method are

averaged to impute the artificial missing interval (red line on the top). It is clear that the imputation from the ZIPLN

model performs superior since its imputation is closest to the true data, implying that the selected donors by this

method contain better predictive information than other methods.
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