
American University, Department of Government

Ph.D. Methodology Qualifying Exam, Summer 2020, due 5PM on August 20, answer 6 questions out of 8.

1. LINEAR AND GENERALIZED LINEAR MODELS. Suppose a researcher would like to estimate the

relationship between some vector of covariates and a dichotomous outcome variable, Y .

(a) If the researcher were to estimate this model using OLS, what would be the properties of the resulting

estimators? Would OLS be a good or bad idea, and exactly why?

(b) If the researcher were intent on using OLS, how might the researcher be able to fix some of the

problems you discussed in the previous question? What problems would remain un-addressable?

(c) Discuss, briefly, how logit and probit models address the shortcomings of using OLS when Y is

dichotomous. Be sure to address the assumptions inherent in these models.

(d) How would a researcher calculate predicted probabilities and marginal effects for these models, and

why would a researcher want to do so?

(e) How would a researcher report on (and calculate) the uncertainty surrounding the predicted proba-

bilities and marginal effects? Why would a researcher want to do so?

Answer:

(a) The linear model does not work well in this situation. The resulting estimators are biased and

predictions outside of [0 : 1] are possible.

(b) One can use truncated forms or the Constrained Linear-Probability Model. The unaddressed problem

is in the interpretation of the estimated coefficients.

(c) They should talk about the functional form of logit/probit and how this related to dichotomous

outcomes.

(d) They should discuss first differences for logit/probit and how the linear model can give misleading

predictions.

(e) Bootstrapping, simulation, etc. They should discuss the importance of standard errors.

2. MAXIMUM LIKELIHOOD ESTIMATION. Consider the following posited relationships:

Yi = Xiβ + ǫi (1)

V ar(ǫi) = exp(Ziγγγ)
2 (2)

Where Yi is a dichotomous outcome variable, X is a vector of covariates, and Z is a vector of covariates.

Consider the following estimator, built from these posited relationships:

ℓ(γγγ,β|Y,X,Z) =

n
∑

i=1

[

yi log
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. (3)

Answer the following questions:



(a) Translate the relationships in (1) and (2) into everyday English, including an explanation of why you

would use this specification. That is, how would you explain this set of posited relationships to an

undergraduate?

(b) Describe one substantive political science application to which this set of relationships might pertain.

(c) What are the criteria that researchers should use in determining how “good” this new estimator is?

(d) What are the ways in which a researcher would go about determining how ”good” this estimator

is? Specify the analytic and computational methods that a researcher could use to evaluate the

properties of this estimator (Note: you do not have to actually run these methods; just specify what

they are).

Answer:

(a) This is the Harvey Heteroscedastic Probit model (they don’t need to know that). They should know

that the coefficients in the denominator are variance modeling. They should say something about

probit in general.

(b) This is useful where there is heteroscedasticity and a dichotomous outcome.

(c) This is wide open and a gift. Look for something dumb here.

(d) They should discuss standard errors, AIC, predicted values, deviances, residual plots, etc.

3. DATA ANALYSIS. Using the following dataset construct a linear model (in R) with excellent fit properties

where the outcome variable is time, and all three explanatory variables are included. You may employ any

standard extensions or enhancements to the linear model, but not a GLM. Perform and report appropriate

diagnostics, giving details. Submit your regression model, the diagnostics, and a one page explanation of

the model results.



day output weight time

1 55 5593 1738

1 20 2011 491

0 35 3574 999

1 45 4593 1370

0 40 4072 1150

1 25 2524 684

0 45 4576 1650

1 30 3034 876

1 60 6095 1910

1 45 4561 1380

0 35 3562 995

1 25 2516 660

1 45 4566 1390

1 35 3559 1025

1 30 3036 821

Answer: This model doesn’t work unless there are interactions and transformations. Something like. . .

> lin.fit <- lm(time ~ day*output*log(weight),data=lin.dat)

> summary(lin.fit)

Call:

lm(formula = time ~ day * output * log(weight), data = lin.dat)

Residuals:

Min 1Q Median 3Q Max

-26.531 -3.048 0.000 1.724 28.218

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82384.2 26215.5 3.143 0.0163

day -81411.5 26653.5 -3.054 0.0185

output -2603.3 1011.6 -2.574 0.0368

log(weight) -9769.3 4000.1 -2.442 0.0446

day:output 2700.7 1039.0 2.599 0.0355

day:log(weight) 9572.2 4077.3 2.348 0.0513



output:log(weight) 313.1 100.1 3.129 0.0166

day:output:log(weight) -319.2 102.7 -3.107 0.0172

Residual standard error: 16.92 on 7 degrees of freedom

Multiple R-squared: 0.9992,Adjusted R-squared: 0.9984

F-statistic: 1231 on 7 and 7 DF, p-value: 2.829e-10

The writeup should have the usual linear model diagnostics like Cook’s D, residuals plots, etc. The

explanation should correctly described the Wald statistics, R-square, F, and so on, without interpretation

errors.

4. CAUSAL INFERENCE. The following results refer to the New Haven voter mobilization experiment, in

which a random subset of the subject pool was assigned to be canvassed, but only some of those assigned

to be canvassed were actually canvassed. The outcome is voter turnout. (8 points each)

Voter turnout by experimental group, New Haven voter mobilization experiment.

Treatment Group Control Group

Turnout rate among those contacted by canvassers 54.43 (395)

Turnout rate among those not contacted by canvassers 36.48 (1,050) 37.54 (5,645)

Overall turnout rate 41.38 (1,445) 37.54 (5,645)

Note: Entries are percent voting, with number of observations in parentheses.

Sample restricted to households containing a single registered voter.

(a) Define a “Complier.” Answer: A complier is a subject who takes treatment if and only if assigned

to the treatment group. In this case, a complier is a subject who opens the door to a canvasser if

and only if assigned to the treatment group.

(b) Estimate the proportion of Compliers in the subject pool. Answer: pr.compliers ∼ 395

1445
= 0.2734.

The proportion of compliers is 0.273.

(c) Show (with algebra) that under the assumptions of non-interference and excludability, the CACE

(Complier-Average Causal Effect) is identified in this application. Answer: The CACE is defined as

E(Yi(1)− Yi(0)|Di(1) = 1).

• Expected value of voting rate (Y ) in the control group =

E(Yi(0)|Di(1) = 1) ∗ ITTd + E(Yi(0)|Di(1) = 0) ∗ (1− ITTd)



• Expected value of voting rate in treatment group =

E(Yi(1)|Di(1) = 1) ∗ ITTd + E(Yi(0)|Di(1) = 0) ∗ (1− ITTd)

• Expected value of rate of successful canvassing = E(Di(1)) = ITTd

• Expected value of voting rate among treatment group minus voting rate of control group =

(E(Yi(1)|Di(1) = 1)−E(Yi(0)|Di(1) = 1)) ∗ (ITTd) = CACE ∗ ITTd.

• CACE = (E(Yi(1)|Di(1) = 1)− E(Yi(0)|Di(1) = 1))/(ITTd).

(d) Are non-interference and excludability plausible in this example? Answer: Non-interference requires

that the subjects respond only to their own treatment assignment, and not to the treatment as-

signment of others. This would be violated if, perhaps, neighbors called each other after being

canvassed and talked about voting. The possibility of interference was explored experimentally by

Sinclair, McConnell, and Green (2012) – Having treated neighbors does not appear to increase

turnout. Excludability requires that nothing about assignment to canvassing itself affected potential

outcomes, only the canvassing itself. This is plausible in this experiment.

(e) Estimate (by hand) the CACE. Provide a substantive interpretation of your estimate. Answer: itt

∼ .4138 − .3754

ittd ∼ 395

1445

cace ∼ itt
ittd

The ĈACE is 0.14, meaning that compliers are 14 percentage points more likely to vote as a result

of canvassing.

5. RESEARCH DESIGN. Imagine that you want to do a empirical study of sentencing procedure in the

county courts of a state with 100 counties, 10 of which are urban. Your expectation is that the sentences

should be less severe in urban counties. The problem is that gathering the data is quite laborious, and it

requires that you spend a week pouring through the records in each of the counties. Hence, you decide

that you can only afford to include 20 counties in the analysis. How would you do the study?

Answer: There is a lot of lattitude on this question. Mark them down for saying something dumb or

leaving out something obvious.

6. STATISTICAL COMPUTING



Consider the bivariate normal PDF:
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(
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for −∞ < µ1,mu2 < ∞, σ1, σ2 > 0, and ρ ∈ [−1 : 1].

For µ1 = 3, µ2 = 2, σ1 = 0.5, σ2 = 1.5, ρ = 0.75, calculate a grid search using R for the mode of this

bivariate distribution on R2. A grid search bins the sample space into equal space intervals on each axis

and then systematically tests each resulting subspace. First setup a two dimensional coordinate system

stored in a matrix covering 99% of the support of this bivariate density, then do a systematic search for

the mode without using “for” loops. Hint: see the R help menu for the apply function. There are other

approaches to not using for loops as well. Use the contour function to make a figure depicting bivariate

contours lines at 0.5, 0.9, and 0.95 levels.

Answer:

dmultnorm <- function(x,y,mu1,mu2,sigma.mat) {

rho <- sigma.mat[1,2]/prod(sqrt(diag(sigma.mat)))

nlizer <- 1/(2*pi*prod(sqrt(diag(sigma.mat)))*sqrt(1-rho^2))

e.term1 <- (x - mu1)/sqrt(sigma.mat[1,1])

e.term2 <- (y - mu2)/sqrt(sigma.mat[2,2])

like <- exp( -1/(2*(1-rho^2)) *

(e.term1^2 + e.term2^2 - 2*rho*e.term1*e.term2) )

nlizer*like

}

x.ruler <- seq(1.8,4.2,length=30); y.ruler <- seq(-1.2,5,length=30)

xy.cov.mat <- matrix(c(0.5^2,0.75*0.5*1.5,0.75*0.5*1.5,1.5^2),2,2)

xy.grid <- outer(x.ruler,y.ruler,dmultnorm,3,2,xy.cov.mat)

contours <- c(0.05,0.1,0.2,0.3)

contour(x.ruler,y.ruler,xy.grid,levels=contours,xlab="X",ylab="Y", cex=2)

7. CODE.

NBA playoff series are played in a “best of 7” format, where two teams play one another repeatedly until

one team wins four games. Assume that two teams A and B have an equal probability to win each game

in a best of 7 series. Write code to computationally estimate the probability that the series between A

and B will go to 7 games. What happens if the two teams are not equal? Add lines to your code that will



X

Y

2.0 2.5 3.0 3.5 4.0

−1
0

1
2

3
4

5

estimate the probability that a series between A and B goes to 7 games if the probability that team A wins

each game goes from 50% to 100% at intervals of 5 percentage points. Within each scenario, assume the

probability of team A winning each game is the same as the probability that team A wins each other game.

s t r e n g t h s <− seq ( . 5 , 1 , . 0 5 ) p7 <− c ( )

f o r ( s t r e n g t h i n s t r e n g t h s ) {

t o t a l <− 100000

s ims <− rep (NA, t o t a l )

f o r ( i i i n seq l e n ( t o t a l ) ) {

a <− 0

b <− 0

games <− 0

whi le ( a < 4 && b < 4) {

c <− r un i f (1 , 0 , 1 )

i f ( c > s t r e n g t h ) {

a <− a+1;

} e l s e {

b <− b+1

}

games <− games + 1



}

s ims [ i i ] <− games

}

prob <− sum( s ims==7)/ length ( s ims )

p7 <− c ( p7 , prob )

}

names ( p7 ) <− s t r e n g t h s

p7



8. NON-LINEAR MODELING. Consider the following R session:
X <- matrix(NA,32,3)

X[,1] <- c(2.66,2.89,3.28,2.92,4,2.86,2.76,2.87,3.03,3.92,2.63,

3.32,3.57,3.26,3.53,2.74, 2.75,2.83,3.12,3.16,2.06,

3.62,2.89,3.51,3.54,2.83,3.39,2.67,3.65,4,3.10,2.39)

X[,2] <- c(20,22,24,12,21,17,17,21,25,29,20,23,23,25,26,19,

25,19,23,25,22,28,14,26,24,27,17,24,21,23,21,19)

X[1:18,3] <- 0

X[19:32,3] <- 1

#X <- cbind(rep(1,32),X)

Y <- c(0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,1,1,1,0,1,1,0,1)

dimnames(X)[[2]] <- list("GPA","TUCE","PSI")

apply(X,2,summary)

Constant GPA TUCE PSI

Min. 1 2.060 12.00 0.0000

1st Qu. 1 2.813 19.75 0.0000

Median 1 3.065 22.50 0.0000

Mean 1 3.117 21.94 0.4375

3rd Qu. 1 3.515 25.00 1.0000

Max. 1 4.000 29.00 1.0000

spector.logit <- glm(formula = Y ~ X, family=binomial(link=logit))

summary.glm(spector.logit)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9551 -0.6453 -0.2570 0.5888 2.0966

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -13.02119 4.91635 -2.649 0.00808

GPA 2.82609 1.26051 2.242 0.02496

TUCE 0.09516 0.14135 0.673 0.50083

PSI 2.37866 1.06242 2.239 0.02516

---

Null deviance: 41.183 on 31 degrees of freedom

Residual deviance: 25.779 on 28 degrees of freedom

AIC: 33.779

Now answer the following questions. You do not need to re-run the model.

(a) Write the likelihood function for this model and give its value at the MLE.

(b) Briefly comment on the quality of this model using Wald tests.



(c) Calculate the first differences:

• for GPA across the interquartile range,

• for TUCE across the interquartile range,

• for PSI.

(d) Prove that using the linear probability model for these data violates the standard assumptions.

Answer:

(a) Something along the lines of. . .

L(β|X,Y) =
∏

yi=0

[1− F (Xiβ)]
∏

yi=1

[F (Xiβ)]

=
n
∏

i=1

[1− F (Xiβ)]
1−yi [F (Xiβ)]

yi

ℓ(β|X,Y) =

n
∑

i=1

[(1− yi) log(1− F (Xiβ)) + yi log(F (Xiβ))]

with F ()i = 1/[1 + exp(Xiβ)].

(b) Only TUCE fails.

(c) Calculating (take the difference in values below). . .

ilogit <- function(Xb) 1/(1+exp(-Xb))

spector.mean.vec <- apply(X,2,mean)

gpa.25 <- c(1,quantile(X[,1],0.25),spector.mean.vec[2:3])

gpa.75 <- c(1,quantile(X[,1],0.75),spector.mean.vec[2:3])

( pred.25 <- ilogit(gpa.25 %*% spector.logit$coefficients) )

[1,] 0.1251315

( pred.75 <- ilogit(gpa.75 %*% spector.logit$coefficients) )

[1,] 0.5101576

tuce.25 <- c(1,spector.mean.vec[1],quantile(X[,2],0.25),spector.mean.vec[3])

tuce.75 <- c(1,spector.mean.vec[1],quantile(X[,2],0.75),spector.mean.vec[3])

( pred.25 <- ilogit(tuce.25 %*% spector.logit$coefficients) )

[1,] 0.2155509

( pred.25 <- ilogit(tuce.75 %*% spector.logit$coefficients) )

[1,] 0.3116951

psi.0 <- c(1,spector.mean.vec[1:2],0)

psi.1 <- c(1,spector.mean.vec[1:2],1)

( pred.0 <- ilogit(psi.0 %*% spector.logit$coefficients) )

[1,] 0.1067571



( pred.1 <- ilogit(psi.1 %*% spector.logit$coefficients) )

[1,] 0.5632555

(d) Wrong distributional implications:

Yi = α+ βxi + ǫ ⇒ πi = α+ βxi, (4)

but since Yi ∈ {0, 1}, then ǫi is dichotomous not normally distributed:

ǫi = 1− E[Yi] = 1− (α+ βxi) = 1− πi

or

ǫi = 0− E[Yi] = 0− (α+ βxi) = −πi

The expectation is okay:

E[ǫi] = E[Yi − α− βxi] = πi − πi = 0, (5)

but the variance is wrong:

Var[ǫi] = E[ǫ2i ]− (E[ǫi])
2 = E[ǫ2i ], (6)

which turns out to be:

E[ǫ2i ] =

1
∑

i=0

ǫ2i p(ǫi)

= (1− πi)
2(πi) + (−πi)

2(1− πi)

= (1− πi)[(1− πi)(πi) + π2

i ]

= (1− πi)πi

= πi − π2

i .

This is a quadratic form and is therefore heteroscedastic, especially near zero and one.


