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The Denominator From Bayes Law

I Bayesian inference:

� (� jx) =
p(� )L(� jx)R

� p(� )L(� jx)d�
/ p(� )L(� jx)

I The \integrated likelihood" is the denominator of Bayes lawcalculated here by:

p(x) =
Z

L(� jx)p(� )| {z }
likelihood� prior

d�

I This is also called the \marginal likelihood," the \marginal probability of the data," or the \pre-
dictive probability of the data".

I Why do we treat this as a constant?

I This quantity is often ignored since it can be recovered later, but it is important in Bayesian model
comparison.
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Standard Bayesian Conventions

I Uncertainty always described with probability.

I The use ofprecisions rather thanvariances.

I Posterior description with quantiles.

I Required statement of all statistical assumptions.

I Much less emphasis on asymptotics.
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Credible Intervals and Sets

I The Bayesian analogue to the con�dence interval is the credible interval and more generally the
credible set, which does not have to be contiguous.

I Most of the time in practice, it is calculated inexactly the same wayas the con�dence interval.

I For instance calculating a95%credible interval under the Gaussian normal assumption means
marching-out1:96 standard errors from the mean in either direction, just likethe analagous
con�dence interval is created. (The di�erence lies in the interpretation.)

I A 100(1� � )% credible interval gives the region of the parameter space where the probability of
covering� is at least1 � � .

I In contrast, applying this new de�nition to the con�dence interval means that the probability of
coverage is either zero or one, since it either covers the true � or it doesn't.
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Credible Intervals and Sets

I De�ne C as acontiguous subset of the parameter space,� , such that a100(1� � ) credible
interval meets the condition:

1 � � =
Z

C
� (� jX )d�

for some chosen� level.

I Conventions: centered at mean or mode, equal tails.

I So credible intervals arenot necessarily unique!
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Credible Intervals and Sets, Example

I Suppose we have duration data,X , exponentially distributedp(X j� ) = �e � �X de�ned over(0; 1 ),
where interest is in the posterior distribution of the unknown parameter� .

I Specify the prior distribution ofp(� ) = 1=� , for � 2 (0:1 ).

I The posterior is:

� (� jX ) / p(� )L(� jX ) =
1
�
� n exp

"

� �
nX

i=1

x i

#

= � n� 1 exp

"

� �
nX

i=1

x i

#

:

I This means that� jX � G (� jn;
P

x i ), where putting the constants back in front to recover the
full form of this gamma posterior distribution produces:

� (� jX ) =
(
P

x i )n

�( n)
� n� 1 exp

h
� �

X
x i

i
:

I Since we know everything about this posterior distribution, we are free to choose any desired
credible interval.
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Credible Intervals and Sets, Example

I Browne, Freidreis, and Gleiber (1986) tabulate complete cabinet duration for eleven Western
European countries from 1945 to 1980:

Table 1: European Cabinet Duration Annualized, 1945-1980

Country N Average Duration

Austria 15 2.114

Belgium 27 1.234

Denmark 20 1.671

Finland 28 1.070

Iceland 15 2.080

Ireleand 14 2.629

Italy 38 0.833

Netherland 12 2.637

Norway 17 2.065

Sweden 15 2.274
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Credible Intervals and Sets, Example

I Country averages from the third column of the table are weighted byN in the second column to
re
ect the number of such events:X iN i .

I For a chosen� the end-points of an equal-tail credible interval can be calculated with:

�
2

=
Z L

0
� (� jX )d�

�
2

=
Z 1

H
� (� jX )d�

or we could simply use the followingRcommands for a95%credible interval:

dur <- c(2.114,1.234,1.671,1.070,2.168,2.080, 2.629,0. 833,2.637,2.065,2.274)
N <- c(15,27,20,28,15,15,14,38,12,17,15)
qgamma(0.025,shape=sum(N),rate=sum(N*dur))
[1] 0.52056
qgamma(0.975,shape=sum(N),rate=sum(N*dur))
[1] 0.67988
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Credible Intervals and Sets, Example

Equal Tail Credible Interval for Cabinet Duration
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Highest Posterior Density Intervals and Sets

I When looking at posterior distribu-
tions, we really care where the high-
est density exists on the support of
the posterior density, regardless of
whether it is contiguous or not.

I HPD created such that that no re-
gion outside of the interval will have
higher posterior density than any re-
gion inside the the HPD.

I Therefore HPDs are not necessarily
contiguous.
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Highest Posterior Density Intervals and Sets

I A 100(1� � )% highest posterior density (HPD) is the subset of the supportof the posterior
distribution for some parameter,� , that meets the criteria:

C = f � :� (� jx) � kg;

wherek is the largest number such that:

1 � � =
Z

� :� (� jx)� k
� (� jx)d�

I The important di�erence is� : � (� jx) � k instead of a single contiguous interval as with the
credible interval.

I Sometimes this can be done analytically.
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Highest Posterior Density Intervals and Sets, Example

HPD Interval for a Different Dataset
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Example: Poverty Among the Elderly, Europe

I Governments often worry about the economic condition of senior citizens for political and social
reasons.

I Typically in a large industrialized society, a substantialportion of these people obtain the bulk of
their income from government pensions.

I An important question is whether there is enough support through these payments to provide
subsistence above the poverty rate.

I To see if this is a concern, the European Union (EU) looked at this question in 1998 for the (then)
15 member countries with two variables:

1. the median (EU standardized) income of individuals age 65and older as a percentage of the
population age 0{64,

2. the percentage with income below 60% of the median (EU standardized) income of the national
population.
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Example: Poverty Among the Elderly, Europe

I The data from the European Household Community Panel Surveyare:

Relative Poverty
Nation Income Rate
Netherlands 93.00 7.00
Luxembourg 99.00 8.00
Sweden 83.00 8.00
Germany 97.00 11.00
Italy 96.00 14.00
Spain 91.00 16.00
Finland 78.00 17.00
France 90.00 19.00
United.Kingdom 78.00 21.00
Belgium 76.00 22.00
Austria 84.00 24.00
Denmark 68.00 31.00
Portugal 76.00 33.00
Greece 74.00 33.00
Ireland 69.00 34.00
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Lowess Smooth: Poverty Among the Elderly, Europe

eu.pov <- read.table("http://jeffgill.org/files/jeffg ill/files/inc.pov_.dat_.txt",
row.names=1)

names(eu.pov) <- c("relative income", "poverty rate")
eu.pov <- eu.pov[-1,]

par(mfrow=c(1,1),mar=c(4,4,2,2),lwd=5)
plot(eu.pov,pch=15,xlab="",ylab="",ylim=c(2,37),xli m=c(61,104))
lines(lowess(eu.pov),col="purple",lwd=3)
text.loc <- cbind(eu.pov[,1],(eu.pov[,2]-1))
text.loc[14,2] <- text.loc[14,2] +2
text.loc[10,2] <- text.loc[10,2] +2
text(text.loc,dimnames(eu.pov)[[1]],cex=1.2)
mtext(side=1,cex=1.3,line=2,"Relative Income, Over 65" )
mtext(side=2,cex=1.3,line=2,"Poverty rate, Over 65")
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Example: Poverty Among the Elderly, Europe
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Simple Linear Bayesian Speci�cation: Poverty Among the Elderly, Europe

I For basic regressions thearm package by Andrew Gelman, Yu-Sung Su, Daniel Lee, and Aleks
Jakulin works nicely.

I Load the package and run a linear regression at the defaults:

I A useful function in this package isbayesglm, which is functionally equivalent to the regularglm.

library(arm)
eu.pov.out <- bayesglm(eu.pov[,2] ~ eu.pov[,1], prior.me an=0, prior.df=1,

prior.df.for.intercept=1, prior.mean.for.intercept=0 )
summary(eu.pov.out)
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Simple Linear Bayesian Speci�cation: Poverty Among the Elderly, Europe

Deviance Residuals:
Min 1Q Median 3Q Max

-12.218 -3.306 1.488 3.929 7.429

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.6859 12.2525 6.830 1.21e-05
eu.pov[, 1] -0.7647 0.1458 -5.246 0.000158

(Dispersion parameter for gaussian family taken to be 31.48 377)

Null deviance: 1275.73 on 14 degrees of freedom
Residual deviance: 409.29 on 13 degrees of freedom
AIC: 98.164
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Non-Bayesian Speci�cation: Poverty Among the Elderly, Europe

x.y.fit <- lm(eu.pov[,2] ~ eu.pov[,1])
summary(x.y.fit)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.6928 12.2526 6.831 1.21e-05
eu.pov[, 1] -0.7647 0.1458 -5.246 0.000158

Residual standard error: 5.611 on 13 degrees of freedom
Multiple R-Squared: 0.6792, Adjusted R-squared: 0.6545
F-statistic: 27.52 on 1 and 13 DF, p-value: 0.0001580
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Prior Sensitivity: Poverty Among the Elderly, Europe

eu.pov.out2 <- bayesglm(eu.pov[,2] ~ eu.pov[,1], prior.m ean=50, prior.df=100,
prior.df.for.intercept=-50, prior.mean.for.intercept =100)

summary(eu.pov.out2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.6578 12.2526 6.828 1.21e-05
eu.pov[, 1] -0.7642 0.1458 -5.243 0.000159

(Dispersion parameter for gaussian family taken to be 31.48 379)

Null deviance: 1275.73 on 14 degrees of freedom
Residual deviance: 409.29 on 13 degrees of freedom
AIC: 98.164
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Graphing: Poverty Among the Elderly, Europe

par(mfrow=c(1,1),mar=c(4,4,2,2),lwd=5)
plot(eu.pov,pch=15,xlab="",ylab="",ylim=c(2,37),xli m=c(61,104))
abline(eu.pov.out2$coefficients,col="forest green")
text.loc <- cbind(eu.pov[,1],(eu.pov[,2]-1))
text.loc[14,2] <- text.loc[14,2] +2
text.loc[10,2] <- text.loc[10,2] +2
text(text.loc,dimnames(eu.pov)[[1]],cex=1.2)
mtext(side=1,cex=1.3,line=2,"Relative Income, Over 65" )
mtext(side=2,cex=1.3,line=2,"Poverty rate, Over 65")
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Graphing: Poverty Among the Elderly, Europe
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ANES Data from 2012

I Suppose we are interested in survey \mode e�ects" such as whether face-to-face versus internet
responses di�er.

I To analyze the potential consequences of mode e�ects on the uncertainty that surrounds public
opinion data, we examine the American National Election Studies 2012 Time Series Study.

I The ANES 2012 study is the 29th installment in a longstandingseries of election studies that go
back to 1948.

I The 2012 edition di�ers from its predecessors signi�cantly, and lends itself exceptionally well to our
analysis because it is the �rst ANES study that implements a dual-mode design by incorporating
a traditional ANES face-to-face sample as well as a separatesample interviewed on the Internet.

I Both samples were independently drawn and data collection was conducted independently in the
two modes as well.
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ANES Data from 2012

I Download the data inR(or go to the class page and click):

f2f.anes <-
read.table("http://jeffgill.org/files/jeffgill/file s/f2f.anes_.1.dat_.txt")

inet.anes <-
read.table("http://jeffgill.org/files/jeffgill/file s/inet.anes_.1.dat_.txt")

dim(f2f.anes)
[1] 2054 54
dim(inet.anes)
[1] 3860 54



JEFF GILL: Multilevel/Hierarchical Models [24]

ANES Data from 2012

I Look at the variables:
names(f2f.anes)
[1] "weight_ftf" "presvote2012_x" "gender_respondent_x " "dem_edu"
[5] "dem_birthyr" "dem_racecps_white" "dem_racecps_bla ck" "dem_hisp"
[9] "dem_marital" "pid_x" "libcpre_self" "interest_atte ntion"

[13] "candrel_dpc" "cses_econ" "ftcasi_illegal" "egal_w orryless"
[17] "interest_voted2008" "prmedia_atinews" "prmedia_w ktvnws" "prmedia_attvnews"
[21] "prmedia_atpprnews" "prevote_regist_addr" "prevot e_intpreswho" "prevote_intpresst"
[25] "congapp_job" "presapp_track" "presapp_job" "presa pp_econ"
[29] "presapp_foreign" "presapp_health" "presapp_war" " ft_dpc"
[33] "ft_rpc" "ft_dvpc" "ft_rvpc" "ft_dem"
[37] "ft_rep" "finance_finfam" "finance_finpast" "finan ce_finnext"
[41] "health_insured" "health_2010hcr" "health_self" "h ealth_smokeamt"
[45] "likelypct_whatpct1" "campfin_limcorp" "ineq_incg ap_x" "effic_complicrev"
[49] "effic_carerev" "econ_ecpast_x" "econ_unpast_x" "p reswin_dutychoice_x"
[53] "war_terror" "gun_control"
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Some 2 and 3 Point Items

Variable Name Variable Description

cses econ State of Economy
campfin banads Ban Corporate/Union Ads
ineqinc ineqreduc Gov't Reducing Income Inequality
econ ecpast National Economy: Better/Worse
econ unpast Unemployment: Better/Worse
mip prob2pty Best Party to Handle MIP #2
iran nuksite Bombing Iran's Nuclear Sites
auth consid Important for Child: Considerate or Well-Behaved
finance finpast Better/Worse O� Than Year Ago
interest wherevote Know Where to Vote
tea suppln Tea Party: Leaning Towards Support/Opposition
preswin dutyst Voting as Duty: Feeling Strength
fedspend schools Public Schools: More or Less Spending
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Some 4 and 5 Point Items

Variable Name Variable Description

resent deserve Blacks: Gotten Less Than Deserved
cses govtact Gov't Reducing Income Inequality
resent try Blacks: Must Try Harder
ecperil payhlthcst Able to Pay Health Care
egal worryless Worry Less About Equality
ctrait dpccare Dem Cand: Cares About People Like Me
ecblame pres Blame President for Economy
ctrait rpclead Rep Cand: Strong Leadership
ctrait dpcmoral Dem Cand: Is Moral
ctrait rpcmoral Rep Cand: Is Moral
finance finpast x Better/Worse O� Than Year Ago (5 point scale)
likelypct howlikvt1 Likelihood of Voting
trustgov trustgstd Trust Gov't in Washington
cses diffvote Vote Makes a Di�erence
gayrt discstd x Favor Laws Against Gays/Lesbian Job Discrim
egal equal Provide Equal Opportunities
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Some 7 and 11 Point Items

Variable Name Variable Description

cses dptylike Democratic Party Like (0-10)
cses rptylike Republican Party Like (0-10)
cses rpclike Republican Pres Cand Like (0-10)
cses rptyleft Left-Right Republican Party (0-10)
cses dpclike Democratic Pres Cand Like (0-10)
cses rpclike Republican Pres Cand Like (0-10)
wpres gdbd x Good/Bad: Woman Pres
womenbond x Working Mother's Bond with Child
abort sex x Legal Abortion to Select Child Gender
budget deficit x Favor Reducing Budget De�cit
scourt removex Possibility to Remove Sup Court Judges
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Some 101 Point Items

Variable Name Variable Description

ftgr unions FT: Unions
ftgr fedgov FT: Federal Government
ftcasi illegal FT: Illegal Immigrants
ft dpc FT: Democratic Presidential Candidate
ft rpc FT: Republican Presidential Candidate
ft dvpc FT: Democratic Vice Presidential Candidate
ft rvpc FT: Republican Vice Presidential Candidate
ft dpcsp FT: Spouse of Democratic Presidential Candidate
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ANES Data, Linear Model, Face-to-Face

I f2f.linear.out <- bayesglm(ft_dpc ~ health_insured + inte rest_voted2008
+ gun_control + congapp_job + dem_racecps_black,
prior.mean=0, prior.df=1, prior.df.for.intercept=0,
prior.mean.for.intercept=1, data=f2f.anes, weights=we ight_ftf)

summary(f2f.linear.out)

I Face-to-face results:
Estimate Std. Error t value Pr(> jtj)

(Intercept) 84.9985 4.2595 19.955 < 2e-16
healthinsured 4.0757 1.7892 2.278 0.0228
interestvoted2008 -0.2391 1.4213 -0.168 0.8664
gun control -9.0931 0.6507 -13.974 < 2e-16
congappjob -9.9348 1.4983 -6.631 4.26e-11
demracecpsblack 30.1378 1.8654 16.157 < 2e-16

(Dispersion parameter for gaussian family taken to be 805.6735)

Null deviance: 2173744 on 2053 degrees of freedom

Residual deviance: 1650019 on 2048 degrees of freedom

AIC: 20579
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ANES Data, Linear Model, Internet

I inet.linear.out <- bayesglm(ft_dpc ~ health_insured + int erest_voted2008
+ gun_control + congapp_job + dem_racecps_black,
prior.mean=0, prior.df=1, prior.df.for.intercept=0,
prior.mean.for.intercept=1, data=inet.anes, weights=w eight_web)

summary(inet.linear.out)

I Internet subset results:
Estimate Std. Error t value Pr(> jtj)

(Intercept) 82.8155 3.2436 25.532 < 2e-16
healthinsured 2.8211 1.3852 2.037 0.0418
interestvoted2008 0.4189 1.1946 0.351 0.7259
gun control -11.5795 0.5036 -22.995 < 2e-16
congappjob -8.5299 1.1919 -7.156 9.87e-13
demracecpsblack 34.2749 1.4854 23.074 < 2e-16

(Dispersion parameter for gaussian family taken to be 904.4944)

Null deviance: 4674189 on 3859 degrees of freedom

Residual deviance: 3485921 on 3854 degrees of freedom

AIC: 38634
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Logit Model for Survey Responses in Scotland

I These data come from the British General Election Study, Scottish Election Survey, 1997 (ICPSR
Study Number 2617).

I These data contain 880 valid cases, each from an interview with a Scottish national after the
election.

I Our outcome variable of interest is their party choice in theUK general election for Parliament
where we collapse all non-Conservative party choices (abstention, Labour, Liberal Democrat, Scot-
tish National, Plaid Cymru, Green, Other, Referendum) to one category, which produces 104
Conservative votes.

I For a logit model theprior.scale is 2.5 , and for a probit model the prior scale is2.5*1.6
(typical assumptions are1 and1.6 ).
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Logit Model for Survey Responses in Scotland, Explanatory Variables

I POLITICS, which asks how much interest the respondent has in political events (increasing scale:
none at all, not very much, some, quite a lot, a great deal).

I READPAP, which asks about daily morning reading of the newspapers (yes=1 or no=0).

I PTYTHNK, how strong that party a�liation is for the respondent (categorical by party name).

I IDSTRNG(increasing scale: not very strong, fairly strong, very strong).

I TAXLESSasks if \it would be better if everyone paid less tax and had topay more towards their
own healthcare, schools and the like" (measured on a �ve point increasing Likert scale).

I DEATHPENasks whether the UK should bring back the death penalty ((measured on a �ve point
increasing Likert scale).

I LORDSqueries whether the House of Lords should be reformed (askedasremain as is coded as
zero andchange is neededcoded as one).

I SCENGBENasks how economic bene�ts are distributed between England and Scotland with the
choices: England bene�ts more =� 1, neither/both lose = 0, Scotland bene�ts more = 1.
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Logit Model for Survey Responses in Scotland, Explanatory Variables

I INDPARasks which of the following represents the respondent's view on the role of the Scottish
government in light of the new parliament: (1) Scotland should become independent, separate
from the UK and the European Union, (2) Scotland should become independent, separate from
the UK but part of the European Union, (3) Scotland should remain part of the UK, with its own
elected parliament which has some taxation powers, (4) Scotland should remain part of the UK,
with its own elected parliament which has no taxation powers, and (5) Scotland should remain
part of the UK without an elected parliament.

I SCOTPREF1asks \should there be a Scottish parliament within the UK? (yes=1, no=0).

I RSEX, the respondent's sex.

I RAGE, the respondent's age.

I RSOCCLA2, the respondents social class (7 category ascending scale).

I TENURE1, whether the respondent rents (0) or owns (1) their household.

I PRESBm a categorical variable for church a�liation, measurementof religion is collapsed down to
one for the dominant historical religion of Scotland (Church of Scotland/Presbyterian) and zero
otherwise and designated
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Logit Model for Survey Responses in Scotland

I Run a probit model for the conservative/not-conservative outcome with these covariates:

I Results given across two slides. . .

scot.mat <- read.table("http://jeffgill.org/files/jef fgill/files/scotland.dat_.txt",
sep=",",header=TRUE)

scot.out <- bayesglm(VOTE ~ POLITICS + READPAP + PTYTHNK + IDSTRNG + TAXLESS
+ DEATHPEN + LORDS + SCENGBEN + SCOPREF1
+ RSEX + RAGE + RSOCCLA2 + TENURE1 + PRESB
+ IND.PAR,
data=scot.mat, family=binomial(link="logit"))

summary(scot.out)
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Logit Model for Survey Responses in Scotland, Results

Estimate Std. Error z value Pr(> jzj)
(Intercept) -1.520579 1.026848 -1.481 0.13865
POLITICS 0.369950 0.141111 2.622 0.00875
READPAP 0.412143 0.333149 1.237 0.21604
PTYTHNK -0.987682 0.171090 -5.773 7.79e-09
IDSTRNG 0.384849 0.141462 2.721 0.00652
TAXLESS 0.219942 0.134571 1.634 0.10218
DEATHPEN 0.168560 0.104639 1.611 0.10721
LORDS -0.798360 0.287346 -2.778 0.00546
SCENGBEN 0.586385 0.200590 2.923 0.00346
SCOPREF1 -1.651397 0.339557 -4.863 1.15e-06
RSEX 0.705948 0.310589 2.273 0.02303
RAGE 0.019811 0.007722 2.566 0.01030
RSOCCLA2 -0.246593 0.108432 -2.274 0.02296
TENURE1 0.851254 0.336873 2.527 0.01151
PRESB -0.225592 0.304528 -0.741 0.45882
IND.PAR 0.568041 0.349059 1.627 0.10366
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Logit Model for Survey Responses in Scotland, Results

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 639.38 on 879 degrees of freedom
Residual deviance: 340.64 on 864 degrees of freedom
AIC: 372.64

Deviance Residuals:
Min 1Q Median 3Q Max

-2.2572 -0.2931 -0.1577 -0.0627 3.3411
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Objects Produced

names(scot.out)
"coefficients" "residuals" "fitted.values" "effects" "R "
"rank" "qr" "family" "linear.predictors" "deviance"
"aic" "null.deviance" "iter" "weights" "prior.weights"
"df.residual" "df.null" "y" "converged" "boundary"
"prior.mean" "prior.scale" "prior.df" "prior.sd" "dispe rsion"
"model" "call" "formula" "terms" "data"
"offset" "control" "method" "contrasts" "xlevels"
"keep.order" "drop.baseline"
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Percent Predicted Correctly

scot.pred <- scot.out$fitted.values
scot.pred[scot.pred < 0.5] <- 0
scot.pred[scot.pred > 0.5] <- 1
table(scot.pred,scot.mat$VOTE)

scot.pred 0 1
0 750 49
1 26 55

sum(diag(table(scot.pred,scot.mat$VOTE)))/nrow(scot .mat)
[1] 0.9147727
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Percent Predicted Correctly

mean(scot.pred)
[1] 0.09204545
scot.pred <- scot.out$fitted.values
scot.pred[scot.pred < mean(scot.pred)] <- 0
scot.pred[scot.pred > mean(scot.pred)] <- 1
table(scot.pred,scot.mat$VOTE)

scot.pred 0 1
0 667 12
1 109 92

sum(diag(table(scot.pred,scot.mat$VOTE)))/nrow(scot .mat)
[1] 0.8625
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Application: Poisson Model of Military Coups.

I Sub-Saharan Africa has experienced a disproportionately high proportion of regime changes due
to the military takeover of government for a variety of reasons, including ethnic fragmentation,
arbitrary borders, economic problems, outside intervention, and poorly developed governmental
institutions.

I These data, selected from a larger set given by Bratton and Van De Walle (1994), look at potential
causal factors for counts of military coups (ranging from 0 to 6 events) in 33 sub-Saharan countries
over the period from each country's colonial independence to 1989.

I Included are 99 variables describing governmental, economic, and social conditions for the 47
cases. Also provided are data from 106 presidential and 185 parliamentary elections, including
information about parties, turnout, and political openness.

I Seven explanatory variables are chosen here to model the count of military coups:Military
Oligarchy (the number of years of this type of rule);Political Liberalization (0 for no
observable civil rights for political expression, 1 for limited, and 2 for extensive);Parties (number
of legally registered political parties);Percent Legislative Voting ; Percent Registered
Voting ; Size (in one thousand square kilometer units); andPopulation (given in millions).
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Application: Poisson Model of Military Coups.

I The focus here is an outcome variable included in Bratton andVan De Walle's work (1994, p.
479), but not featured as a modeled result: regime change through military coups.

I This is a well-studied issue (Bienen 1979; Decalo 1976a and 1976b; Feit 1968; Jackman, et al.
1986; Johnson, et al. 1984), but not necessarily so from astatistical perspective.

I Military Coups is operationalized as the successful number of military coups for a country over
the period from independence to 1989 (ranging from zero to six events). This outcome variable is
de�ned only over a positive integer sample space and therefore requires a generalized linear model
link function appropriate to counts.
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Application: Poisson Model of Military Coups.

I A generalized linear model for these data with the Poisson link function is speci�ed as:

g� 1(� ) = g� 1(X � ) = exp [X � ] = E[Y ] = E[Military Coups ]:

I In this speci�cation, the systematic component isX � , the stochastic component isY = Military Coups ,
and the link function is� = log(� ).

I We can re-express this model by moving the link function to the left-hand side exposing the linear
predictor:g(� ) = log(E[Y ]) = X � (although this is now a less intuitive form for understanding
the outcome variable).

I Left out of the discussion above are the prior distributions: again we will assume Student's-t for
the coe�cients.

I Get the data:
africa.dat <- read.table("http://jeffgill.org/files/j effgill/files/africa.dat__1.txt")
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Looking At the Variables

names(africa.dat)
[1] "CNTRYCDE" "REGION" "POP" "SIZE" "COLONIAL" "BORDERS"
[7] "DATEINDP" "GNPPC" "GROWTH" "ENERGY" "MANUF" "AGLABOR"

[13] "INFLATN" "ADJPROGS" "AIDFLOWS" "DEBT" "SERVICE" "URBAN"
[19] "ETHNIC" "PCTTRAD" "PCTCATH" "PCTPROT" "PCTMUSL" "RADIOS89"
[25] "TELEV89" "PARTY75" "PARTY89" "PARTY93" "UNION89" "BUSIN75"
[31] "BUSIN89" "CHURSCH" "CHURMED" "DAILY75" "DAILY89" "DAILY93"
[37] "PERIOD75" "PERIOD89" "PERIOD93" "PUBLIS75" "PUBLIS89" "PUBLIS93"
[43] "CONSTIT" "DICTATOR" "MILITARY" "PLBSCTRY" "COMPTIVE" "SETTLER"
[49] "POLYACHY" "NUMREGIM" "REGCHANG" "MILTCOUP" "NUMELEC" "NUMLEGS"
[55] "NUMPRES" "COMPELEC" "YRSCOMP" "DATELAST" "PARTYLEG" "PCTSEAT"
[61] "MEANSEAT" "PCTTURN" "MEANTURN" "PCTVOTE" "MEANVOTE" "MEANPRES"
[67] "PROTFREQ" "PROTEST" "REPRESS" "POLLIB" "MANIP" "OPPCOH"
[73] "GOVTCOH" "MILTROLE" "INTLPR" "NATCON" "PRESELEC" "PRESDATE"
[79] "PRESCAND" "PRESVOTS" "PRESTURN" "LEGSELEC" "LEGSDATE" "LEGSCAND"
[85] "LEGSPRTY" "LEGSEATS" "LEGSTURN" "FREEFAIR" "INCBOUST" "LOSERACC"
[91] "PROTBEG" "POLLIBEG" "TRANSEND" "LIBCHANG" "BACKSLID" "OUTCOME"
[97] "DEMCHANG" "DEMLEVEL"
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Results: Poisson Model of Military Coups.

I The Rlanguage GLM call for this model is:

africa.out <- bayesglm(MILTCOUP ~ MILITARY + POLLIB + PARTY93 + PCTVOTE + PCTTURN
+ SIZE*POP + NUMREGIM*NUMELEC, family=poisson, data=africa.dat)
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Comments: Poisson Model of Military Coups.

I Note that the two interaction terms are speci�ed by using themultiplication character. The
iteratively weighted least squares algorithm converged inonly four iterations using Fisher scoring,
and the results are provided in the table.

I The model appears to �t the data quite well:

. an improvement from the null deviance of 62 on 32 degrees of freedom to a residual deviance
of 7:5 on 21 degrees of freedom

. evidence that the model does not �t would be supplied by a model deviance value in the tail
of a� 2

n� k distribution

. and nearly all the coe�cients have 95% con�dence intervals bounded away from zero and
therefore appear reliable in the model.
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Multivariate Linear Modeling in Matrix Notation

I Back to G&H Chapter 13.

I We have not yet described models in matrix algebra form, so rewrite the varying intercept/varying
slope speci�cation as:

yi � N (X iB j [i ]; � 2
y); for i = 1; : : : ; n

B j � N (M B ; � B ); for j = 1; : : : ; J

where:

. X is the919� 2 matrix of explanatory variables with a leading column of1's and the second
column for 
oor.

. B = ( �; � ) is the2� J matrix of estimated coe�cients for theJ groups from̂� j = 
 �
0 + 
 �

1 uj

and �̂ j = 
 �
0 + 
 �

1 uj .

. M B = ( � � ; � � ) is the 2-length mean vector of theB values.

. � B is the2 � 2 variance-covariance matrix of theB values.
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Multivariate Linear Modeling in Matrix Notation

I This is the matrix-notated version of the model that startedChapter 13.

I First level:
yi � N (� j [i ] + X i � j [i ]; � 2

y); i = 1; : : : ; n

I Second level:
�

� j

� j

�
� N

��
� �

� �

�
;
�

� 2
� �� � � �

�� � � � � 2
�

��
j = 1; : : : ; J

I We can also di�erentiate between modeled and un-modeled coe�cients:

yi � N (X 0
i �

0 + X i � j [i ]; � 2
y); i = 1; : : : ; n

whereX 0
i denotes the explanatory variables for thei th case that are not given a hierarchy.
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Multivariate Linear Modeling in Matrix Notation

I We have already estimated this model:

M̂ B = (1:4628; � 0:6811)

�̂ B =
�

�̂ 2
a �̂ �̂ a�̂ b

�̂ �̂ a�̂ b �̂ 2
b

�
=

�
0:122 � 0:337� 0:349� 0:344

� 0:337� 0:349� 0:344 0:188

�

since:

M3 <- lmer(y ~ 1 + x + (1 + x | county)); summary(M3)
Random effects:
Groups Name Variance Std.Dev. Corr
county (Intercept) 0.122 0.349

x 0.118 0.344 -0.337
Residual 0.557 0.746

number of obs: 919, groups: county, 85

Fixed effects:
Estimate Std. Error t value

(Intercept) 1.4628 0.0539 27.15
x -0.6811 0.0876 -7.78
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Multivariate Linear Modeling in Matrix Notation

I Generalize this to have:J groups,K individual-level explanatory variables, andL group-level
explanatory variables.

I So the last model hadK = L = 2 with 
oor as the individual-level explanatory variable and
uranium as the group-level explanatory variable, each level also having an intercept.

I The generalized speci�cation is therefore:

yi � N ( B j [i ]
(1� K )

X i
(K � 1)

; � 2
y); for i = 1; : : : ; n

B j
(1� K )

� N ( U j
(1� L)

G
(L � K )

; � B
(K � K )

); for j = 1; : : : ; J

where:

. B is theJ � K matrix of individual-level coe�cients

. U is theJ � L matrix of group-level explanatory variables

. G is theL � K matrix of group-level coe�cients.
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Multivariate Linear Modeling in Matrix Notation

I Return to the model:
M4 <- lmer(y ~ x + u.full + x:u.full + (1 + x | county)); summary( M4)
Random effects:
Groups Name Variance Std.Dev. Corr
county (Intercept) 0.0156 0.125
x 0.0941 0.307 0.409 0.409
Residual 0.5617 0.749

number of obs: 919, groups: county, 85

Fixed effects:
Estimate Std. Error t value Correlation of Fixed Effects:

(Intercept) 1.4686 0.0353 41.6 (Intr) x u.full
x -0.6710 0.0844 -7.9 x -0.241
u.full 0.8081 0.0907 8.9 u.full 0.207 -0.092
x:u.full -0.4195 0.2271 -1.8 x:u.full -0.093 0.173 -0.231

I Such that withK = L = 2; J = 85:

. U
(85� 2)

is [1,x] for each county on each row.

. G
(2� 2)

is: "

 �

0 
 �
0


 �
1 
 �

1

#

=
�

1:4686 � 0:6710
0:8081 � 0:4195

�

. B
(85� 2)

= Û
(85� 2)

G
(2� 2)

is estimated by:

(a.hat.M4 <- coef(M4)$county[,1] + coef(M4)$county[,3]* u)
(b.hat.M4 <- coef(M4)$county[,2] + coef(M4)$county[,4]* u)
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Figure 13.2 from Gelman & Hill
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Modeling the Variance-Covariance Matrix

I When the number of modeled explanatory variables (L) is more than 2, then modeling the corre-
lation parameters (� ) is more challenging.

I Each correlation is constrained to[� 1 : 1], and the � B
(K � K )

matrix must be positive de�nite:

q0Xq > 0 for any conformable, non-nullq.

I This means that o�-diagonal values are not independent and have constraints imposed by sec-
ondary relationships, for example:r 2

12 + r 2
13 + r 2

23 � 2r12r13r23 � 1.

I G&H give the example:r12 = 0:9; r13 = 0:9, thenr23 � 0:62from:

0:9 + 0:9 + r 2
23 � 2(0:9)(0:9)r23 � 1

r 2
23 � 1:62r23 + 0:8 � 0

I This is called ajointly constrained parameter space.



JEFF GILL: Multilevel/Hierarchical Models [53]

Modeling the Variance-Covariance Matrix

I We want tomodel the variance-covariance matrix for the estimated parameters � B , with diagonal
elements� kk = � 2

k, and o�-diagonal elements� kl = � kl � k� l .

I Start with specifying aWishart distribution for the now random quantity� :

. PDF: W(� j�; � ) = j� j(� � (k+1)) =2

� k(� )j� j�= 2 exp[� tr( � � 1� )=2]

where:� k(� ) = 2 �k= 2� k(k� 1)=4 Q k
i=1 �

�
� +1� i

2

�
; 2� > k � 1;

� symmetric nonsingular (full rank), and� symmetric positive de�nite.

. E [� ij ] = � � ij

. Var[SI ij ] = � (� 2
ij + � ii � jj )

. Cov[SI ij ; � kl ] = � (� ik � jl + � il � jk ).

I Let X 1; : : : ;X n be independentNp(0; � ) giving ap � n data matrix X . The distribution of
M = XX 0 is a Wishart distribution.

I To make this application simple, de�ne the scale� to be aK � K diagonal matrix, and degrees of
freedom to be� = K + 1 (the number of group-level explanatory variables plus 1).
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Modeling the Variance-Covariance Matrix

I If � � W (�; � ), then� � 1 � IW (�; � ).

I Setting the degrees-of-freedom parameter toK + 1 has the e�ect of setting a uniform distribution
on the individual correlation parameters in[� 1; 1].

I However, this also constrains the� 2 parameters, which should be informed by the data alone.

I A solution to this problem is to specify a new vector of chosenscale parameters:

� B = � Q�;

whereQ � IW (� ; K + 1).

I Now the diagonal values are unconstrained (except for beingpositive) unscaled covariance values
multiplied by the scaling factors:

� 2
k = � kk = � 2

kQkk; for k = 1; : : : ; K:

I And the o�-diagonal values are:

� kl = � k� lQkl ; for k = 1; : : : ; K l = 1; : : : ; L:
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Modeling the Variance-Covariance Matrix

I Expressing this in terms of the standard deviations:

� k = k� kk
p

Qkk

and correlations:
� kl = � kl=(� k� l)

I Note that the parameters in� andQ are tied together.

I Now we have an intuitive way to express relationships withinthe hierarchy between explanatory
variables.
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Multilevel Modeling As an Alternative to Selecting Regression Predictors

I Witte et al. (1994, and p.294 of G&H), give a logistic model from a case-control study of 362
people where the outcome variable is cancer incidence or not, using consumption information on
87 foods and 5 background variables.

I Challenge: regressing cancer(0; 1) on 362� 87matrix X , and a362� (1 + 5) matrix X 0.

I Fortunately we also have the87 foods broken down in to levels of35 nutrients expressed in the
87� 35matrix Z.

I A multilevel model that increases the degrees of freedom by reducing food parameters from87to
35:

p(yi = 1) = logit � 1(X 0
i �

0 + X i � j [i ]); i = 1; : : : ; 362

� j = N (Z j 
 ; � 2
� ); j = 1; : : : ; 87:

I SoZ gives predictive e�ects for foods controlling for nutrients, where:

. � 2
� ! 0 means that all food variation explained by nutrients.

. � 2
� ! 1 means that the food-nutrient relationship is so varied thatit does not help at all.
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Survival Models

I The survival function gives the probability of surviving past timet:

S(t) = p(T � t); t � 0

whereT is the random variable for life length, andt is a �xed point of interest.

I In basic models,S(t) is assumed to be smooth and uniformly di�erentiable at all points.

I Notation for the time of interest is eithert or t0.

I Places to get free high-quality introductions to survival models:
http://www.amstat.org/chapters/northeasternillinois /pastevents/presentations/

summer05Ibrahim J.pdf
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/Cour seBios312/survivalintro.pdf
https://perswww.kuleuven.be/~u0018341/documents/sur vival.pdf
http://anson.ucdavis.edu/ hiwang/teaching/10fall/R tutorial%201.pdf
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Density Function

I The density function is related to the sur-
vival by:

f (t) = �
@
@t

S(t); t � 0:

I For a very smalls value and arbitraryt0:

p(t0 � T < t 0 + s) � sf (t0);

which is illustrated by the �gure at right
as an approximation since this is not a
rectangle.

I More exactly:

f (t) = lim
s! 0

p(t � T < t + s)
s

; t � 0;

which is an unconditional statement.
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Hazard Function

I The hazard function is also called thein-
stantaneous hazard rate, the instanta-
neous death rate, the intensity rate, and
the force of mortality.

I This is the instantaneous probability of
the event at exactlyt, given no event be-
fore then.

I Consider thes getting very small, then:

h(t0) = lim
s! 0

p(t0 � T < t 0 + sjT � t0)
s

;

(for t0 � 0) which is a conditional state-
ment.
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The Cumulative Hazard Function

I The cumulative hazard function is just the integral of the hazard function (like a CDF):

F (t) = H (t) =
Z t

0
h(x)dx; t � 0:

I Herex is just an integration variable (it goes away).

I This form successively accumulates risk as time continues.

I The cumulative hazard function is easier to manipulate in statistical models than the hazard
function, which is a property we will exploit.
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Proportional Hazards

I If h0(t) andh1(t) are hazard functions from two separate distributions, theyareproportional if:

h1(t) = �h 0(t); 8t � 0

where the scalar� > 0.

I This property caries over to the corresponding cumulative hazard functions:

H1(t) = �H 0(t); 8t � 0

I Note that that � is constant and therefore does not depend ont (eg. women have a survival
advantage at all ages).



JEFF GILL: Multilevel/Hierarchical Models [62]

More on Proportional Hazards

I The proportional hazards assumption is important for Cox models.

I One way to check is a log-log plot: time versus hazard, also called aWeibull plot:

I For example with� = 2 then the vertical distance islog(2) = 0:693:
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A Note On Proportional Hazards

I To increase our intuition, consider the simple functions:

h0(t) = t2; h1(t) = 2h0(t) = 2t2; t � 0:

I Let's plot these on the regular and log scale:

par(oma=c(1,1,1,1),mar=c(2,2,2,1),mfrow=c(1,2),col. axis="white",
col.lab="white",col.sub="white",col="white", bg="sla tegray")

dur <- seq(0,10,length=300)
plot(dur,dur^2,type="l",lwd=2,col="wheat", main="Reg ular Metric")
lines(dur,2*dur^2,lwd=2,col="bisque")
plot(log(dur),log(dur^2),type="l",lwd=2,col="wheat" , main="Log Metric")
lines(log(dur),log(2*dur^2),lwd=2,col="bisque")
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A Note On Proportional Hazards
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General Proportional Hazards Model

I This provides the speci�cation:

h(t; x) = h0(t)
kY

`=1

exp(x1� 1 + x1� 2 + � � � + xk� 1� k� 1 + xk� k) = h0(t) exp(x� ):

(notice the lack of an intercept).

I We want to allowx to take on any values, not just binary indicators, as in standard regression.

I For i = 1; : : : ; n cases in the data, de�ne thei th data element as(t i0; t i ; di ; x i ), where:

. t i0 is a left truncation time: ifyi0 = 0; 8i , then drop this

. t i is end time

. di is event indicator:1 if TRUE, 0 if FALSE (end of study or right-censoring).

. x i is a vector of explanatory variables.

I The survival object is then(t i0; t i ; di ).

I So now we need to estimateh0(t) and� .
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Estimation of the Continuous Baseline Cumulative Hazard

I First consider the interval to be summed:j : t j < t , which is all of the time periods that come
beforej ,

I De�ne Rj to be the number at risk at time periodj .

I We say that̀ 2 Rj if the `th case (out of then possible) is in the risk group at timej .

I �̂ is the estimated coe�cient vector from MLE.

I x i is thei th cases vector of explanatory variables, continuous or discrete.

I The standard estimate is:

Ĥ0(t) =
X

j :t j <t

di
P

`2Rj
exp(x i �̂ )
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Continuous Time, Factor Covariate Interpretation

I For individuali at time t with explanatory variable vectorx i the hazard function is:

ĥ(t; x i ) = ĥ0(t) exp(x i � )

which shows the porportionality of the regression information relative to the baseline:

ĥ(t; x i )

ĥ0(t)
= exp(x i � )

(relative risk to the baseline), and also

log

 
ĥ(t; x i )

ĥ0(t)

!

= x i �

(log relative risk to the baseline).

I ĥ(t; x i ) allows calculation of the survival function for thei th case:

Ŝ(t; x i ) = exp(� ĥ(t; x i )):
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Continuous Time, Continuous Coe�cient Interpretation

I Assume for the moment a single explanatory variable just forsimplicity:

h(t; x) = h0(t) exp(x� )

I Consider the e�ect of adding1 to this explanatory variable the way we often discuss with linear
models:

h(t; x + 1)
h(t; x)

=
h(t) exp(� (x + 1))

h(t) exp(�x )
=

exp(� (x + 1))
exp(�x )

=
exp(�x ) exp(� )

exp(�x )
= exp(� ):

I So incrementingx by one increases the relative risk (hazard ratio) byexp(� ), which easy to
interprete.

I This is whyR(and other packages) routinely provide the exponent of the coe�cient as well in the
output.
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Proportional Hazards In Discrete Time

I Proportional hazards in discrete time is a set of conditional probabilities, which are by de�nition
bounded by[0 : 1].

I So ratios can give awkard numbers that exceed one.

I Fix: assume continuous time that is segmented into a set ofk period by the mechanism of
measurement:0 = t0 < t 1 < t 2 < � � � < t k = 1 :

I Then for the random variableT we have:

p(t i � T < t i jT � t i � 1; x) =
S(t i � 1jx) � S(t i jx)

S(t i � 1jx)

Since survival functions work \backwards" relative to cumulative hazard functions:
S(t) = p(T � t) = 1 � H (t), and continuing. . .

� � � = 1 �
S(t i jx)

S(t i � 1jx)
= 1 �

�
S0(t i )

S0(t j � 1)

� exp(x� )

= 1 � (1 � hi )exp(x� )

where:
hi = p(t i � 1 � T < t i jT � t i � 1; x)

to give the de�nition of proportional hazards in discrete time.
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Example with Kidney Data

Recurrence times to infection at point of insertion of the catheter for kidney patients using portable
dialysis.

> library(survival)
> data(kidney)
> head(kidney,10)

id time status age sex disease frail
1 1 8 1 28 1 Other 2.3
2 1 16 1 28 1 Other 2.3
3 2 23 1 48 2 GN 1.9
4 2 13 0 48 2 GN 1.9
5 3 22 1 32 1 Other 1.2
6 3 28 1 32 1 Other 1.2
7 4 447 1 31 2 Other 0.5
8 4 318 1 32 2 Other 0.5
9 5 30 1 10 1 Other 1.5
10 5 12 1 10 1 Other 1.5
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Example with Kidney Data

I CA McGilchrist, CW Aisbett (1991), Regression with frailtyin survival analysis. Biometrics 47,
461{66.

I patient: id

I time: time

I status: event status

I age: in years

I sex: 1=male, 2=female

I disease: disease type (0=GN, 1=AN, 2=PKD, 3=Other)

I frail: frailty estimate from original paper

I Looking at dimensions:

dim(kidney)
[1] 76 7
length(unique(kidney$id))
[1] 38
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Check Proportional Hazards Assumption

library(eha)
postscript("Class.Multilevel/Images/kidney.ph.ps")
par(mfrow=c(1,1),mar=c(3,3,3,3),col.axis="white",

col.lab="white", col.sub="white",col="white",bg="sla tegray",lwd=2)
with(kidney, plot(Surv(rep(0,nrow(kidney)),time,stat us),strat=sex))
dev.off()
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Cox Proportional Hazards inR

kidney1.out <- coxph(Surv(time,status) ~ sex + age, data=k idney)
summary(kidney1.out)

coef exp(coef) se(coef) z Pr(>|z|)
sex -0.82931 0.43635 0.29895 -2.77 0.0055
age 0.00203 1.00203 0.00925 0.22 0.8261

exp(coef) exp(-coef) lower .95 upper .95
sex 0.436 2.292 0.243 0.784
age 1.002 0.998 0.984 1.020

Concordance= 0.662 (se = 0.046 )
Rsquare= 0.089 (max possible= 0.993 )
Likelihood ratio test= 7.12 on 2 df, p=0.0285
Wald test = 8.02 on 2 df, p=0.0181
Score (logrank) test = 8.45 on 2 df, p=0.0147

Note: Concordance is p(agreement) for any two randomly chosen observations, where in this case agreement means that theobservation with

the shorter survival time of the two also has the larger risk. For continuous covariates concordance is equivalent to Kendall's tau, which is

(# concordant pairs - # discordant pairs) =0:5n(n � 1), and for logistic regression is equivalent to the area underthe ROC curve
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Frailty Model

install.packages("coxme")
library(coxme)
data(kidney)
kidney2.out <- coxme(Surv(time,status) ~ sex + age + (1|id) , data=kidney)
print(kidney2.out)

Cox mixed-effects model fit by maximum likelihood
Data: kidney
events, n = 58, 76
Iterations= 6 34

NULL Integrated Fitted
Log-likelihood -187.9 -181.9 -166.17

Notes: Three models �t with log-likelihood values. . . NULL model with no covariates, Integrated with
zero variance random e�ects, and Fitted with non-zero variance random e�ects. Numbers afterevents
andIterations apply to Integrated log-likelihood and Fitted (Penalized)log-likelihood.
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Frailty Model

Chisq df p AIC BIC
Integrated loglik 12.00 3.00 0.00739530 6.00 -0.18
Penalized loglik 43.48 14.75 0.00011458 13.97 -16.43

Model: Surv(time, status) ~ sex + age + (1 | id)
Fixed coefficients

coef exp(coef) se(coef) z p
sex -1.3549853 0.25795 0.41713 -3.25 0.0012
age 0.0042892 1.00430 0.01171 0.37 0.7100

Random effects
Group Variable Std Dev Variance
id Intercept 0.67545 0.45623
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Frailty Model

fixef(kidney2.out)
sex age

-1.3549852701 0.0042892004
ranef(kidney2.out)
0.514285501 0.312981298 0.184422411 -0.489289904 0.254271656 0.063924646

7 8 9 10 11 12
0.677538398 -0.367396556 -0.039733287 -0.421879955 -0.0 97571798 0.052933687

13 14 15 16 17 18
0.332254323 -0.410603097 -0.575683144 0.167737805 -0.138329832 -0.131842520

19 20 21 22 23 24
-0.393831993 0.103431022 -1.547860215 -0.386972008 0.443174433 0.074684951

25 26 27 28 29 30
0.064824787 -0.327930094 0.095907561 0.465382028 0.405734032 0.309895414

31 32 33 34 35 36
0.417557869 0.211492863 0.204591001 -0.113169928 0.444184326 -0.203473269

37 38
0.143432010 -0.299074418
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Two Non-nested hierarchies

kidney3.out <- coxme(Surv(time,status) ~ sex + age + (1|id) + (1|disease),
data=kidney)

print(kidney3.out)

Cox mixed-effects model fit by maximum likelihood
Data: kidney
events, n = 58, 76
Iterations= 10 54

NULL Integrated Fitted
Log-likelihood -187.9 -181.9 -166.14
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Two Non-nested hierarchies

Chisq df p AIC BIC
Integrated loglik 12.00 4.00 0.01738300 4.00 -4.25
Penalized loglik 43.52 14.77 0.00011408 13.97 -16.47

Model: Surv(time, status) ~ sex + age + (1 | id) + (1 | disease)
Fixed coefficients

coef exp(coef) se(coef) z p
sex -1.3559216 0.25771 0.417331 -3.25 0.0012
age 0.0042822 1.00429 0.011722 0.37 0.7100

Random effects
Group Variable Std Dev Variance
id Intercept 0.67606440 0.45706308
disease Intercept 0.01998455 0.00039938
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Application: Government/Cabinet Survival

I Working paper by Homola and Gill.

I Important question in Comparative Politics: what are the factors that lead to government termi-
nations?

I Extensive literature (Budge and Keman 1990; Diermeier and Stevenson 1999, 2000; Huber and
Martinez-Gallardo 2008; King et al. 1990; Warwick 1994)

I Great example of multilevel data (with di�erent levels of aggregation) in Poli Sci
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Details on the Data

I http://faculty.missouri.edu/williamslaro/govtdata.h tml with Party Government data
set.

I Initially collected and published by Woldendorp, Keman andBudge (2000)

I Recently updated by Katsunori Seki and Laron K. Williams (2014, \Updating the Party Govern-
ment Data Set", Electoral Studies)

I Comprehensive information on government compositions, partisanship, institutional features

I 471 European cabinets in 30 countries since 1970
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Outcome Variable

I duration : di�erence between investiture dates for two governments

I rft sw2014: Reason for Termination (RfT)

I We coded the following reasons as \failures" (n = 168):

I Dissension within government

I Lack of parliamentary support

I Intervention by Head of State

I We coded the following reasons as right-censored (n = 303):

I Elections

I Voluntary resignation of the Prime Minister

I Resignation of the Prime Minister due to health reasons

I Broadening the coalition
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Covariates

I gpshare: seat share of government parties

I gparties : number of government parties

I sparties : number of supporting parties

I majority : 1=majority government

I caretaker : 1=caretaker government (baseline: minority)

I inflation : World Bank data

I gdpgrowth: World Bank data

I unemployment: World Bank data
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Frailties and Multilevel Data

I Frailty 1: Ideological complexion of government (\right-wing", \right-center", \balanced", \left-
center", \left-wing")

I Frailty 2: Country (30 countries included)

I Frailty 2.1: Region, nesting countries (Western Europe, Eastern Europe, Scandinavia/Nordic,
Mediterranean)

I Covariate at country-level:investiture (1=state requires investiture vote)
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Estimation Details

I Model implemented inJAGS, called viarunjags .

I Three parallel chains, overdispersed starting values.

I VagueN (0; 1002) priors for� , 
 .

I VagueGa(1; 1002) prior for � .

I Monitor convergence graphically, then 10k iterations, then superdiag.

I Grambsch and Therneau's global test, Harrell's rho test (PHassumption).
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Results

Outcome variable: Government failure

(1) (2) (3) (4) (5) (6)

Seat Share 0.013 0.018 0.016 0.021 0.024 0.022
(0.009) (0.010) (0.010) (0.009) (0.011) (0.011)

# Government Parties 0.387 0.392 0.391 0.335 0.325 0.354
(0.052) (0.050) (0.051) (0.069) (0.072) (0.064)

# Supporting Parties -0.023 -0.034 -0.029 -0.100 -0.109 -0.086
(0.193) (0.194) (0.191) (0.205) (0.201) (0.198)

Majority -0.798 -0.816 -0.807 -0.896 -0.958 -0.913
(0.234) (0.242) (0.240) (0.243) (0.253) (0.273)

Caretaker 0.819 0.932 0.893 0.910 0.851 0.817
(0.593) (0.597) (0.607) (0.614) (0.613) (0.602)

In
ation 0.001 0.001 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

GDP Growth -0.056 -0.056 -0.058 -0.057 -0.057 -0.058
(0.025) (0.024) (0.024) (0.025) (0.025) (0.025)

Unemployment 0.031 0.018 0.019 0.020 0.022 0.021
(0.013) (0.014) (0.015) (0.016) (0.017) (0.016)

Investiture 0.383 0.391 0.329 0.360
(Government-Level) (0.184) (0.181) (0.237) (0.251)
Investiture 0.476
(Country-Level) (0.316)

Summed Deviance 2245.220 2241.420 2238.565 2225.305 2218.740 2220.975
Ideol. complexion frailty X X X
Country frailty X X X
Country-region frailty X

Note: Models 1-6 report coe�cient estimates and standard deviations in parentheses usingJAGSvia the runjags package. The country-region nested
frailties nest country-speci�c frailties into four larger regions: Western Europe, Eastern Europe, Scandinavia/Nordic countries, and Mediterranean
countries. Coe�cients are highlighted in bold if their 95% credible intervals do not contain 0.
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Key Results

I Higher number of government parties" hazard rate.

I (Seat share of government parties" hazard rate).

I Majority governments, GDP growth# hazard rate.

I Investiture vote" hazard rate only w/o country-level frailties.


