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Abstract We evaluate MCMC sampling schemes for a variety of link functions1

in generalized linear models with Dirichlet process random effects. First, we find2

that there is a large amount of variability in the performance of MCMC algorithms,3

with the slice sampler typically being less desirable than either a Kolmogorov–Smir-4

nov mixture representation or a Metropolis–Hastings algorithm. Second, in fitting the5

Dirichlet process, dealing with the precision parameter has troubled model specifi-6

cations in the past. Here we find that incorporating this parameter into the MCMC7

sampling scheme is not only computationally feasible, but also results in a more8

robust set of estimates, in that they are marginalized-over rather than conditioned-9

upon. Applications are provided with social science problems in areas where the data10

can be difficult to model, and we find that the nonparametric nature of the Dirichlet11
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process priors for the random effects leads to improved analyses with more reasonable12

inferences.13

Keywords Linear mixed models · Generalized linear mixed models · Hierarchical14

models · Gibbs sampling · Metropolis–Hastings algorithm · Slice sampling15

1 Introduction16

Generalized linear models (GLMs) have enjoyed considerable attention over the years,17

providing a flexible framework for modeling discrete responses using a variety of error18

structures. If we have observations that are discrete or categorical, y = (y1, . . . , yn),19

such data can often be assumed to be independent and from a distribution in the expo-20

nential family. The classic book by McCullagh and Nelder (1989) describes these mod-21

els in detail; see also the more recent developments in Dey et al. (2000) or Fahrmeir22

and Tutz (2001).23

A generalized linear mixed model (GLMM) is an extension of a GLM that allows24

random effects, and can give us flexibility in developing a more suitable model when25

the observations are correlated, or where there may be other underlying phenom-26

ena that contribute to the resulting variability. Thus, the GLMM can be specified27

to accommodate outcome variables conditional on mixtures of possibly correlated28

random and fixed effects (Breslow and Clayton 1993; Buonaccorsi 1996; Wang et al.29

1998; Wolfinger and O’Connell 1993). Details of such models, covering both statis-30

tical inferences and computational methods, can be found in the texts by McCulloch31

and Searle (2001) and Jiang (2007).32

1.1 Sampling schemes for GLMMs33

There have been Markov chain Monte Carlo (MCMC) methods developed for the anal-34

ysis of the GLMMs with random effects modeled with a normal distribution. Although35

the posteriors of parameters and the random effects are typically numerically intracta-36

ble, especially when the dimension of the random effects is greater than one, there has37

been much progress in the development of sampling schemes. For example, Damien38

et al. (1999) proposed a Gibbs sampler using auxiliary variables for sampling non-39

conjugate and hierarchical models. Their methods are slice sampling methods derived40

from the full conditional posterior distribution. They mention that the assessment of41

convergence remains a major problem with the algorithm. However, Neal (2003) pro-42

vided convergence properties of the posterior for slice sampling. Another sampling43

scheme was used by Chib et al. (1998) and Chib and Winkelmann (2001), who pro-44

vided Metropolis–Hastings (M–H) algorithms for various kinds of GLMMs. They45

proposed a multivariate-t distribution as a candidate density in an M–H implementa-46

tion, taking the mean equal to the posterior mode, and variance equal to the inverse of47

the Hessian evaluated at the posterior mode.48

To be precise about language, we discuss three types of MCMC algorithms in this49

work. When we refer to the slice sampler we mean a Gibbs sampler on an enlarged50

state space (augmented by auxiliary variables). When we refer to a Gibbs sampler,51
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it is a sampler based on producing automatically accepted candidate values from52

full conditional distributions that is not the special case of the slice sampler. When53

Metropolis–Hastings algorithms are discussed, these are not the special cases of Gibbs54

or slice sampling, but instead the more general process of producing candidate values55

from a separate distribution and deciding to accept them or not using the conventional56

Metropolis step.57

1.2 Sampling schemes for GLMDMs58

Another variation of a GLMM was used by Dorazio et al. (2007) and Gill and Casella59

(2009), where the random effects are modeled with a Dirichlet process, resulting60

in a Generalized Linear Mixed Dirichlet Process Model (GLMDM). Dorazio et al.61

(2007) used a GLMDM with a log link for spatial heterogeneity in animal abundance.62

They proposed an empirical Bayes approach with the Dirichlet process, instead of the63

regular assumption of normally distributed random effects, because they argued that64

for some species the sources of heterogeneity in abundance is poorly understood or65

unobservable. They noted that the Dirichlet process prior is robust to errors in model66

specification and allows spatial heterogeneity in abundance to be specified in a data-67

adaptive way. Gill and Casella (2009) suggested a GLMDM with an ordered probit68

link to model political science data, specifically modeling the stress, from public ser-69

vice, of Senate-confirmed political appointees as a reason for their short tenure. For70

the analysis, a semi-parametric Bayesian approach was adopted, using the Dirichlet71

process for the random effect.72

Dirichlet process mixture models were introduced by Ferguson (1973) and Antoniak73

(1974), with further important developments in Blackwell and MacQueen (1973),74

Korwar and Hollander (1973), and Sethuraman (1994). For estimation, Lo (1984)75

derived the analytic form of a Bayesian density estimator, and Liu (1996) derived76

an identity for the profile likelihood estimator of the Dirichlet precision parameter.77

Kyung et al. (2010) looked at the properties of this MLE and found that the likelihood78

function can be ill-behaved. They noted that incorporating a gamma prior, and using79

posterior mode estimation, results in a more stable solution. McAuliffe et al. (2006)80

used a similar strategy, using a posterior mean for the estimation of the Dirichlet81

process precision parameter (the term m, which we describe in Sect. 2).82

Models with Dirichlet process priors are treated as hierarchical models in a Bayesian83

framework, and the implementation of these models through Bayesian computation84

and efficient algorithms has had much attention. Escobar and West (1995) provided85

a Gibbs sampling algorithm for the estimation of posterior distribution for all model86

parameters, MacEachern and Müller (1998) presented a Gibbs sampler with non-con-87

jugate priors by using auxiliary parameters, and Neal (2000) provided an extended and88

more efficient Gibbs sampler to handle general Dirichlet process mixture models. Teh89

et al. (2006) also extended the auxiliary variable method of Escobar and West (1995)90

for posterior sampling of the precision parameter with a gamma prior. They developed91

hierarchical Dirichlet processes, with a Dirichlet prior for the base measure.92

Kyung et al. (2010) developed algorithms for estimation of the precision parame-93

ter and new MCMC algorithms for a linear mixed Dirichlet process random effects94
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models that had not previously existed. In addition, they showed how to extend the95

developed framework to a generalized Dirichlet process mixed model with a probit96

link function. They derived, for the first time, a simultaneous Gibbs sampler for all97

of the model parameters and the subclusters of the Dirichlet process, and used a new98

parameterization of the hierarchical model to derive a Gibbs sampler that more fully99

exploits the structure of the model and mixes very well. Finally they were also able100

to establish a proof that the proposed sampler is an improvement, in terms of operator101

norm and efficiency, over other commonly used algorithms.102

1.3 Summary103

In this paper we look at MCMC sampling schemes for generalized Dirichlet process104

mixture models, concentrating on logistic and log linear models. For these models, we105

examine a Gibbs sampling method using auxiliary parameters, based on Damien et al.106

(1999), and a Metropolis–Hastings sampler where the candidate generating distribu-107

tion is a Gaussian density from log-transformed count data from a log-linear model108

(thus producing a form on the correct support). We incorporate the Dirichlet process109

precision parameter, m, into the Gibbs sampler, through the use of a gamma candidate110

distribution using a Laplace approximation for the calculation of the mean and vari-111

ance of m, and use that in the gamma candidate. In the examples analyzed here, we112

find that the alternative slice sampler typically has higher autocorrelation in logistic113

regression and loglinear models than the proposed M–H algorithm.114

Using the GLMDM with a general link function, Sect. 2 describes the generalized115

Dirichlet process mixture model. In Sect. 3 we estimate model parameters using a116

variety of algorithms, and Sect. 4 describes the estimation of the Dirichlet parame-117

ters. Section 5 looks at the performance of these algorithms in a variety of simulations,118

while Sect. 6 analyzes two social science data sets, further illustrating the advantage of119

the Dirichlet process random effects model. Section 7 summarizes these contributions120

and adds some perspective, and there is an Appendix with some technical details.121

2 A generalized linear mixed Dirichlet process model122

Let Xi be covariates associated with the i th observation, β be the coefficient vector,123

and ψi be a random effect accounting for subject-specific deviation from the underly-124

ing model. Assume that the Yi |ψ are conditionally independent, each with a density125

from the exponential family, where ψ = (ψ1, . . . , ψn). Then, based on the notation126

of McCulloch and Searle (2001), the GLMDM can be expressed as follows. Start with127

the generalized linear model,128

Yi |γ ind∼ fYi |γ (yi |γ ), i = 1, . . . , n129

fYi |γ (yi |γ ) = exp
[
{yiγi − b(γi )} /ξ2 − c(yi , ξ)

]
. (1)130

where yi is discrete valued. Here, we know that E[Yi |γ ] = μi = ∂b(γi )/∂γi . Using131

a link function g(·), we can express the transformed mean of Yi ,E[Yi |γ ], as a linear132

function, and we add a random effect to create the mixed model:133
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g(μi ) = Xiβ + ψi . (2)134

Here, for the Dirichlet process mixture models, we assume that135

ψi ∼ G
G ∼ DP(mG0),

(3)136

where DP is the Dirichlet process with base measure G0 and precision parameter m.137

Blackwell and MacQueen (1973) proved that for ψ1, . . . , ψn iid from G ∼ DP , the138

joint distribution of ψ is a product of successive conditional distributions of the form:139

ψi |ψ1, . . . , ψi−1,m ∼ m

i − 1 + m
g0(ψi )+ 1

i − 1 + m

i−1∑
l=1

δ(ψl = ψi ) (4)140

where δ() denotes the Dirac delta function and g0() is the density function of the base141

measure.142

We define a partition C to be a clustering of the sample of size n into k groups,143

k = 1, . . . , n, and we call these subclusters since the grouping is done nonpara-144

metrically rather than on substantive criteria. That is, the partition assigns different145

distributional parameters across groups and the same parameters within groups; cases146

are iid only if they are assigned to the same subcluster.147

Applying Lo (1984) Lemma 2 and Liu (1996) Theorem 1 to (4), we can calculate148

the likelihood function, which by definition is integrated over the random effects, as149

L(β | y) = �(m)

�(m + n)

n∑
k=1

mk
∑

C :|C|=k

k∏
j=1

�(n j )

∫
f (y( j) |β, ψ j )dG0(ψ j ),150

where C defines the partition of subclusters of size n j , |C | indicates occupied subclus-151

ters, y( j) is the vector of yi s that are in subcluster j , and ψ j is the common parameter152

for that subcluster. There are Sn,k different partitions C , the Stirling Number of the153

Second Kind (Abramowitz and Stegun 1972, 824–825).154

Here, we consider an n × k matrix A defined by155

A =

⎛
⎜⎜⎜⎝

a1
a2
...

an

⎞
⎟⎟⎟⎠156

where each ai is a 1×k vector of all zeros except for a 1 in the position indicating which157

group the observation is from. Thus, A represents a partition of the sample of size n158

into k groups, with the column sums giving the subcluster sizes. Note that both the159

dimension k, and the placement of the 1s, are random, representing the subclustering160

process.161
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If the partition C has subclusters {S1, . . . , Sk}, then if i ∈ S j , ψi = η j and the162

random effect can be rewritten as163

ψ = Aη, (5)164

where η = (η1, . . . , ηk) and η j
i id∼ G0 for j = 1, . . . , k. This is the same represen-165

tation of the Dirichlet process that was used in Kyung et al. (2010), building on the166

representation in McCullagh and Yang (2006).167

In this paper, we consider models for the binary responses with probit and logit link168

function, and for count data with a log link function. First, for the binary responses,169

Yi ∼ Bernoulli(pi ), i = 1, . . . , n170

where yi is 1 or 0, and pi = E(Yi) is the probability of a success for the i th observa-171

tion. Using a general link function (2) leads to a sampling distribution for the observed172

outcome variable y:173

f (y|A) =
∫ n∏

i=1

[
g−1(Xiβ + (Aη)i )

]yi
[
1 − g−1(Xiβ + (Aη)i )

]1−yi
dG0(η),174

which typically can only be evaluated numerically. Examples of general link functions175

for binary outcomes are176

pi = g−1
1 (Xiβ + (Aη)i ) = 	(Xiβ + (Aη)i ) Probit177

pi = g−1
2 (Xiβ + (Aη)i ) = (1 + exp(−Xiβ − (Aη)i ))−1 Logistic178

pi = g−1
3 (Xiβ + (Aη)i ) = 1 − exp (− exp(Xiβ + (Aη)i )) Cloglog179

where 	() is the cumulative distribution function of a standard normal distribution.180

For counting process data,181

Yi ∼ Poisson(λi ), i = 1, . . . , n182

where yi is 0, 1, . . . , λi = E(Yi) is the expected number of events for the i th obser-183

vation. Here, using a log link function184

log(λi ) = Xiβ + (Aη)i ,185

the sampling distribution of y is186

f (y|A) =
n∏

i=1

1

yi !
∫ n∏

i=1

exp {− exp(Xiβ + (Aη)i )}
[
exp(Xiβ + (Aη)i )

]yi G0(η) dη.187

For the base measure of the Dirichlet process, we assume a normal distribution with188

mean 0 and variance τ 2, N (0, τ 2). In our experience, the model is not sensitive to this189

distributional assumption and others, such as the student’s-t , could be used.190
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3 Sampling schemes for the model parameters191

An overview of the general sampling scheme is as follows. We have three groups of192

parameters:193

(i) m, the precision parameter of the Dirichlet process,194

(ii) A, the indicator matrix of the partition defining the subclusters, and195

(iii) (η,β, τ 2), the model parameters.196

We iterate between these three groups until convergence:197

1. Conditional on m and A, generate (η,β, τ 2)|A,m;198

2. Conditional on (η,β, τ 2) and m, generate A, a new partition matrix.199

3. Conditional on (η,β, τ 2) and A, generate m, the new precision parameter.200

For the model parameters we add the priors201

β|σ 2 ∼ N (0, d∗σ 2 I )202

τ 2 ∼ Inverted Gamma(a, b), (6)203

where d∗ > 1 and (a, b) are fixed such that the inverse gamma is diffuse (a = 1, b204

very small). Thus the partitioning in the algorithm assigns different normal parame-205

ters across groups and the same normal parameters within groups. For the Dirichlet206

process we need the previously stated priors207

η = (η1, . . . , ηk) and η j
i id∼ G0 for j = 1, . . . , k. (7)208

We can either fix σ 2 or put a prior on it and estimate it in the hierarchical model with209

priors; here we will fix a value for σ 2.210

In the following sections we consider a number of sampling schemes for the esti-211

mation of the model parameters of a GLMDM. We will then turn to generation of the212

subclusters and the precision parameter.213

3.1 Probit models214

Albert and Chib (1993) showed how truncated normal sampling could be used to215

implement the Gibbs sampler for a probit model for binary responses. They use a216

latent variable Vi such that217

Vi = Xiβ + ψi + εi , εi ∼ N (0, σ 2), (8)218

and219

yi = 1 if Vi > 0 and yi = 0 if Vi ≤ 0220

for i = 1, . . . , n. It can be shown that Yi are independent Bernoulli random variables221

with the probability of success, pi = 	((Xiβ−ψi )/σ ), and without loss of generality,222

we fix σ = 1.223
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Details of implementing the Dirichlet process random effect probit model are given224

in Kyung et al. (2010) and will not be repeated here. We will use this model for com-225

parison, but our main interest is in logistic and loglinear models.226

3.2 Logistic models227

We look at two samplers for the logistic model. The first is based on the slice sampler228

of Damien et al. (1999), while the second exploits a mixture representation of the229

logistic distribution; see Andrews and Mallows (1974) or West (1987).230

3.2.1 Slice sampling231

The idea behind the slice sampler is the following. Suppose that the density f (θ) ∝232

L(θ)π(θ), where L(θ) is the likelihood and π(θ) is the prior, and it is not possible to233

sample directly from f (θ). Using a latent variable U , define the joint density of θ and234

U by235

f (θ, u) ∝ I {u < L(θ)}π(θ).236

Then, U |θ is uniform U {0, L(θ)}, and θ |U = u is π restricted to the set Au =237

{θ : L(θ) > u}.238

The likelihood function of binary responses with logit link function can be written239

as240

Lk(β, τ
2, η|A, y) =

n∏
i=1

[
1

1+ exp(−Xiβ−(Aη)i )
]yi

[
1

1+ exp(Xiβ+(Aη)i )
]1−yi

241

×
k∏

j=1

(
1

2πτ 2

)1/2

exp

(
− 1

2τ 2 η
2
j

)
, (9)242

and if we introduce latent variables U = (U1, . . . ,Un) and V = (V1, . . . , Vn), we243

have the likelihood of the model parameters and the latent variables to be244

Lk(β, τ
2, η,U,V|A, y)245

=
n∏

i=1

I

[
ui <

{
1

1 + exp(−Xiβ − (Aη)i )

}yi

, vi <

{
1

1 + exp(Xiβ + (Aη)i )

}1−yi
]

246

×
k∏

j=1

(
1

2πτ2

)1/2
exp

(
− 1

2τ2 η
2
j

)
(10)247

Thus, with priors that are given above, the joint posterior distribution of248

(β, τ 2, η,U,V) can be expressed as249
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πk(β, τ
2, η,U,V|A, y) ∝ Lk(β, τ

2, η,U,V|A, y)250

×
(

1

τ 2

)a+1

exp

(
− b

τ 2

)
exp

(
− |β|2

2d∗σ 2

)
. (11)251

Then for fixed m and A, we can implement a Gibbs sampler using the full condi-252

tionals. Details are discussed in Appendix A.1.253

3.2.2 A mixture representation254

Next we consider a Gibbs sampler using truncated normal variables in a manner that is255

similar to the Gibbs sampler of the probit models, which arise from a mixture represen-256

tation of the logistic distribution. Andrews and Mallows (1974) discussed necessary257

and sufficient conditions under which a random variable Y may be generated as the258

ratio Z/V where Z and V are independent and Z has a standard normal distribu-259

tion, and establish that when V/2 has the asymptotic distribution of the Kolmogorov260

distance statistic, Y is logistic. West (1987) generalized this result to the exponential261

power family of distributions, showing these distributional forms to be a subset of the262

class of scale mixtures of normals. The corresponding mixing distribution is explicitly263

obtained, identifying a close relationship between the exponential power family and264

a further class of normal scale mixtures, the stable distributions.265

Based on Andrews and Mallows (1974), and West (1987), the logistic distribution266

is a scale mixture of a normal distribution with a Kolmogorov–Smirnov distribution.267

From Devroye (1986), the Kolmogorov–Smirnov (K–S) density function is given by268

fX (x) = 8
∞∑
α=1

(−1)α+1α2xe−2α2x2
x ≥ 0, (12)269

and we define the joint distribution270

fY,X (y, x) = (2π)−
1
2 exp

{
−1

2

( y

2x

)2
}

fX (x)
1

2x
. (13)271

From the identities in Andrews and Mallows (1974) (see also Theorem 10.2.1 in272

Balakrishnan 1992), the marginal distribution of Y is then given by273

fY (y) =
∞∫

0

fY,X (y, x)dx =
∞∑
α=1

(−1)α+1α exp (−α|y|) = e−y

(
1 + e−y

)2 , (14)274

the density function of logistic distribution with mean 0 and variance π2

3 . Therefore,275

Y ∼ �
(

0, π
2

3

)
, where �() is the logistic distribution.276
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Now, using the likelihood function of binary responses with logit link function (9),277

consider the latent variable Wi such that278

Wi = Xiβ + ψi + ηi , ηi ∼ �

(
0,
π2

3
σ 2
)
, (15)279

with yi = 1 if Wi > 0 and yi = 0 if Wi ≤ 0, for i = 1, . . . , n. It can be shown that280

Yi are independent Bernoulli random variables with pi = [1+exp(−Xiβ−(Aη)i )]−1,281

the probability of success, and without loss of generality we fix σ = 1.282

For given A, the likelihood function of model parameters and the latent variable is283

given by284

Lk(β, τ
2, η,U|A, y, σ 2) =

n∏
i=1

{I (Ui > 0)I (yi = 1)+ I (Ui ≤ 0)I (yi = 0)}285

×
∞∫

0

(
1

2πσ 2(2ξ)2

)n/2

e
− 1

2σ2(2ξ)2
|U−Xβ−Aη|2

286

× 8
∞∑
α=1

(−1)α+1α2ξe−2α2ξ2
dξ

(
1

2πτ 2

)k/2

e
− 1

2τ2 |η|2
,287

where U = (U1, . . . ,Un), and Ui is the truncated normal variable which is described288

in (8).289

Let m and A be considered fixed for the moment. Thus, with priors given in (6) and290

(7), the joint posterior distribution of (β, τ 2, η,U) given the outcome y is291

π L
k ∝ Lk(β, τ

2, η,U|A, y, σ 2)e
− 1

2d∗σ2 |β|2
(

1

τ 2

)a+1

e
− b
τ2 .292

This representation avoids the problem of generating samples from the truncated logis-293

tic distribution, which is not easy to implement. As we now have the logistic distri-294

bution expressed as a normal mixture with the K–S distribution, we now only need295

to generate samples from the truncated normal distribution and the K–S distribution,296

and we can get a Gibbs sampler for the model parameters. The details are left to297

Appendix A.1.2.298

3.3 Log linear models299

Similar to Sect. 3.2, we look at two samplers for the loglinear model. The first is300

again based on the slice sampler of Damien et al. (1999), while the second is an M–H301

algorithm based on using a Gaussian density from log-transformed data as a candidate.302

3.3.1 Slice sampling303

The likelihood function of the counting process data with log link function can be304

written as305
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Lk(β, τ
2, η|A, y) =

n∏
i=1

1

yi !e− exp(Xiβ+(Aη)i ) [exp(Xiβ + (Aη)i )
]yi

306

×
k∏

j=1

(
1

2πτ 2

)1/2

exp

(
− 1

2τ 2 η
2
j

)
, (16)307

and the joint posterior distribution of (β, τ 2, η) can be obtained by appending the308

priors for τ 2 and β. As in Sect. 3.2.1 we introduce latent variables U = (U1, . . . ,Un)309

and V = (V1, . . . , Vn), yielding a likelihood of the model parameters and the latent310

variables, Lk(β, τ
2, η,U,V|A, y), similar to (10). Setting up the Gibbs sampler is311

now straightforward, with details in Appendix A.2.1.312

3.3.2 Metropolis–Hastings313

The primary challenge in setting up an efficient Metropolis–Hastings algorithm is314

specifying practical candidate generating functions for each of the unknown param-315

eters in the sampler. This involves both stipulating a distributional form close to the316

target and variances that provide a reasonable acceptance rate. Starting with the likeli-317

hood and priors described at (16), for the candidate distribution ofβ and η, we consider318

the model:319

log(Yi ) = Xiβ + (Aη)i + εi320

εi ∼ N (0, σ 2).321

which is a linear mixed Dirichlet process model (LMDPM). Sampling these model322

parameters is straightforward, and this enables us to have high-quality candidate values323

for the accept/reject stage of the Metropolis–Hastings algorithm for the log linear setup324

here. Using a similar model with the same parameter support but different link function325

as a way to generate M–H candidate values is a standard trick in the MCMC literature326

(Robert and Casella 2004). Details about this process are provided in Appendix A.2.2.327

3.3.3 Comparing slice sampling to Metropolis–Hastings328

In a special case it is possible to directly compare slice sampling and independent329

Metropolis–Hastings. If we have a Metropolis–Hastings algorithm with target density330

π and candidate h, we can compare it to the slice sampler331

U |X = x ∼ Uniform{u : 0 < u < π(x)/h(x)},332

X |U = u ∼ h(x){x : 0 < u < π(x)/h(x)}.333

In this setup Mira and Tierney (2002) show that the slice sampler dominates the334

Metropolis–Hastings algorithm in the efficiency ordering, meaning that all asymp-335

totic variances are smaller, as well as first-order covariances.336
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At first look this result seems to be in opposition with what we will see in Sect. 5;337

we find that Metropolis–Hastings outperforms slice sampling with respect to auto-338

correlations. The resolution of this discrepancy is simple; the Mira-Tierney result339

applies when slice sampling and Metropolis–Hastings have the relationship described340

above—the candidate densities must be the same. In practice, and in the examples that341

we will see, the candidates are chosen in each case based on ease of computation, and342

in the case of the Metropolis–Hastings algorithm, to try to mimic the target. Under343

the demanding circumstances required of our Metropolis–Hastings algorithm for the344

real-world data and varied link functions used, it would be a very difficult task to345

produce candidate generating distributions that might match a slice sampler.346

As an illustration of where we can actually match candidate generating distribu-347

tions, consider the parameterization of Mira and Tierney (2002), where348

π(x) = e−x and h(x) = qe−qx , 0 < q < 1. (17)349

Fig. 1 Autocorrelations for both the slice sampler (dashed) and the Metropolis–Hastings algorithm (solid),
for different values of q, for the model in (17). Note that the panels have different scales on the y-axis
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If both slice and Metropolis–Hastings use the same value of q, then the slice sam-350

pler dominates. But if the samplers use different values of q, it can be the case that351

Metropolis–Hastings dominates the slice sampler. This is illustrated in Fig. 1, where352

we show the autocorrelations for both the slice sampler and the Metropolis–Hastings353

algorithm, for different values of q. Compare Metropolis–Hastings with large values354

of q, where the candidate gets closer to the target, with a slice sampler having a smaller355

value of q (Note that the different plots have different scales). We see that in these356

cases the Metropolis–Hastings algorithm can dominate the slice sampler.357

4 Sampling schemes for the Dirichlet process parameters358

4.1 Generating the partitions359

We use a Metropolis–Hastings algorithm with a candidate taken from a multinomial/360

Dirichlet. This produces a Gibbs sampler that converges faster than the popular “stick-361

breaking” algorithm of Ishwaran and James (2001). See Kyung et al. (2010) for details362

on comparing stick-breaking versus “restaurant” algorithms.363

For t = 1, . . . T , at iteration t364

1. Starting from (θ (t),A(t)),365

θ (t+1) ∼ π(θ | A(t), y),366

where θ = (β, τ 2, η) and the updating methods are discussed above.367

2. If q = (q1, . . . , qn) ∼ Dirichlet(r1, . . . , rn), then for any k and k + 1 ≤ n368

q(t+1) =
(

q(t+1)
1 , . . . q(t+1)

n

)
∼ Dirichlet

(
n(t)1 + r1, . . . , n(t)k + rk, rk+1, . . . , rn

)
369

(18)370

3. Given θ (t+1),371

A(t+1) ∼ P(A) f (y|θ (t+1),A)
(

n
n1 · · · nk

) k∏
j=1

[
q(t+1)

j

]n j
(19)372

where A is n × k with column sums n j > 0, n1 + · · · + nk = n.373

Based on the value of the q(t+1)
j in (18) we generate a candidate A that is an n × n374

matrix where each row is a multinomial, and the effective dimension of the matrix,375

the size of the partition, k, are the non-zero column sums. Deleting the columns with376

column sum zero is a marginalization of the multinomial distribution. The probability377

of the candidate is given by378
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P
(

A(t+1)
)

=
�
(∑n

j=1 r j

)

∏k(t+1)−1
j=1 �(r j )�

(∑n
j=k(t+1) r j

)379

×
∏k(t+1)−1

j=1 �
(

n(t+1)
j + r j

)
�
(

n(t+1)
k(t+1) +∑n

j=k(t+1) r j

)

�
(

n +∑n
j=1 r j

)380

and a Metropolis–Hastings step is then done.381

4.2 Gibbs sampling the precision parameter382

To estimate the precision parameter of the Dirichlet process, m, we start with the383

profile likelihood,384

L(m | θ ,A, y) = �(m)

�(m + n)
mk

k∏
j=1

�(n j ) f (y|θ ,A). (20)385

Rather than estimating m, a better strategy is to include m directly in the Gibbs sam-386

pler, as the maximum likelihood estimate from (20) can be very unstable (Kyung et al.387

2010). Using the prior g(m) we get the posterior density388

π(m | θ ,A, y) =
�(m)
�(m+n)g(m)m

k

∫∞
0

�(m)
�(m+n)g(m)m

kdm
, (21)389

where
∫
π(m | θ ,A, y) dm < ∞ must be finite for this to be proper. Note also how390

far removed m is from the data, as the posterior only depends on the number of391

groups k. We consider a gamma distribution as a prior, g(m) = ma−1e−m/b/�(a)ba ,392

and generate m using an M–H algorithm with another gamma density as a candidate.393

We choose the gamma candidate by using a approximate mean and variance of394

π(m) to set the parameters of the candidate. To get the approximate mean and vari-395

ance, we will use the Laplace approximation of Tierney and Kadane (1986). Applying396

their results and using the log-likelihood, �() in place of the likelihood, L(), we have:397

∫
mν �(m)

�(m+n)g(m)m
kdm

∫
�(m)
�(m+n)g(m)m

kdm
≈
√
�′′(m̂)
�′′ν(m̂ν)

exp
{
n
[
�ν(m̂ν)− �(m̂)

]}
, (22)398

where399

� = log
ma−1e−m/b

�(a)ba
+ 1

n

{
log

�(m)

�(m + n)
+ k log m

}
400

�ν = �+ ν log m401
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�′ = ∂

∂m
� = 1

bm

[
b

(
k

n
+ a − 1

)
− m − bm

n

n∑
i=1

1

m + i − 1

]
402

�′′(m̂) = ∂2

∂m2 �

∣∣∣∣
m=m̂

= 1

m̂

[
− 1

m̂

(
k

n
+ a − 1

)
+ m̂

n

n∑
i=1

1(
m̂ + i − 1

)2

]
403

�ν
′ = �′ + ν

m
, �ν

′′(m̂ν) = ∂2

∂m2 �ν

∣∣∣∣
m=m̂ν

= �′′(m̂ν)− ν

m̂2
ν

404

where we get a simplification because the second derivative is evaluated at the zero of405

the first derivative. We use these approximations as the first and second moments of406

the candidate gamma distribution. Note that if m̂ ≈ m̂ν , then a crude approximation,407

which should be enough for Metropolis–Hastings, is Emν ≈ (m̂)ν .408

5 Simulation study409

We evaluate our sampler through a number of simulation studies. We need to generate410

outcomes from Bernoulli or Poisson distributions with random effects that follow the411

Dirichlet process. To do this we fix K , the true number of clusters (which is unknown412

in actual circumstances), then we set the parameter m according to the relation413

K =
n∑

i=1

m

m + i − 1
, (23)414

where we note that even if m̂ is quite variable, there is less variability in K̂ = ∑n
i=1415

m̂
m̂+i−1 . When we integrate over the Dirichlet process (as done algorithmically accord-416

ing to Blackwell and McQueen 1973), the right-hand-side of (23) is the expected num-417

ber of clusters, given the prior distribution on m. Neal (2000, p. 252) shows this as418

the probability in the limit, of a unique table seating, conditional on the previous table419

seatings, which makes intuitive sense since this expectation depends on individuals420

sitting at unique tables to start a new (sub)cluster in the algorithm.421

5.1 Logistic models422

Using the GLMDM with the logistic link function of Sect. 3.2, we set the param-423

eters: n = 100, K = 40, τ 2 = 1, and β = (1, 2, 3). Our Dirichlet process for424

the random effect has precision parameter m and base distribution G0 = N (0, τ 2).425

Setting K = 40, yields m = 24.21. We then generated X1 and X2 independently426

from N (0, 1), and used the fixed design matrix to generate the binary outcome Y .427

Then the Gibbs sampler was iterated 200 times to get values of m, A,β, τ 2, η. This428

procedure was repeated 1,000 times saving the last 500 draws as simulations from the429

posterior.430

We compare the slice sampler (Slice) to the Gibbs sampler with the K–S distri-431

bution normal scale mixture (K–S Mixture) with the prior distribution of β from432
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Table 1 Estimation of the coefficients of the GLMDM with logistic link function and the estimate of K ,
with true values K = 40 and β = (1, 2, 3)

Estimation method β0 β1 β2 K

Slice 2.2796 (0.4628) 3.2709 (0.5558) 4.7529 (0.7208) 43.0423 (4.2670)
K–S mixture 0.4900 (0.2024) 1.0494 (0.2468) 1.7787 (0.2491) 43.4646 (4.0844)

Standard errors are in parentheses

β|σ 2 ∼ N
(
μ1, d∗σ 2 I

)
and μ ∼ π(μ) ∝ c, a flat prior for μ. For the estimation433

of K , we use the posterior mean of m, m̂ and calculate K̂ by using Eq. (23). The start-434

ing points of β come from the maximum likelihood (ML) estimates using iteratively435

reweighted least squares. All summaries in the tables are posterior means and standard436

deviations calculated from the empirical draws of the chain in its apparent converged437

(stationary) distribution.438

The numerical summary of this process is given in Table 1. The estimates of K439

were 43.0423 with standard error 4.2670 from Slice and 43.4646 with standard error440

4.0844 from K–S Mixture. Obviously these turned out to be good estimates of the441

true K = 40. The estimate of β with K–S Mixture is closer to the true value than442

those with Slice, with smaller standard deviation. To evaluate the convergence of β,443

we consider the autocorrelation function (ACF) plots that are given in Fig. 2. The444

Gibbs sampler of β from Slice exhibits strong autocorrelation, implying poor mixing.445

5.2 Log linear models446

We now look at the GLMDM with the log link function of Sect. 3.3. The setting for the447

data generation is the same as the procedure that we discussed in the previous section448

except that we take β = (3, 0.5, 1). With K = 40, the solution of m from Eq. (23)449

is 24.21. As before, we generated X1 and X2 independently from N (0, 1), and used450

the fixed design matrix to generate count data Y . The Gibbs sampler was iterated 200451

times to produce draws of m, A,β, τ 2, η. This procedure was repeated 1,000 times,452

saving the last 500 values as draws from the posterior.453

In this section, we compare the Gibbs sampler with the auxiliary variables (Slice)454

and the M–H sampler with a candidate density from the log-linear model (M–H Sam-455

pler). We use the posterior mean of m, m̂, and calculate K̂ by using (23) for the456

estimation of K . The starting points of β are set to the maximum likelihood (ML) esti-457

mates by using iterative reweighted least squares. The numerical summary is given458

in Table 2 and the ACF plots of β are given in Fig. 3. The resulting estimates for K459

are 43.5188(4.1398) from Slice and 43.516(4.1274) from the M–H Sampler, which460

are fairly close to the true K = 40. The estimated βs from the M–H Sampler, while461

not right on target, are much better than that of the slice sampler which, by standard462

diagnostics, has not yet converged. Once again, the consecutive draws of β of Slice463

from the Gibbs sampler are strongly autocorrelated. The convergence of β of Slice464

and M–H Sampler can be assessed by viewing the ACF plots in Fig. 3. The M–H465
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Fig. 2 ACF Plots of β for the GLMDM with logistic link. The top panel are the plots for (β0, β1, β2) from
the slice sampler, and the bottom panel are the plots for (β0, β1, β2) from the K–S/normal mixture sampler

chain with candidate densities from log-linear models mixes better, giving additional466

confidence about convergence.467

5.3 Probit models468

For completeness, we also generated data, similar to that described in Sect. 3.2, for a469

probit link. In Fig. 4 we only show the ACF plot from a latent variable Gibbs sampler470
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Table 2 Estimation of the coefficients of the GLMDM with log link function and the estimate of K , with
true values K = 40 and β = (3, 0.5, 1)

Estimation method β0 β1 β2 K

Slice 2.7984 (0.0099) 0.0907 (0.0196) 0.8350 (0.0184) 43.5188 (4.1398)
M–H Sampler 2.3107 (0.1407) 0.8493 (1.1309) 0.9492 (1.0637) 43.5161 (4.1274)

Standard errors are in parentheses

as described in Sect. 3.1. where we see that the autocorrelations are not as good as the471

M–H algorithm, but better than those of the slice sampler.472

6 Data analysis473

In this section we provide two real data examples that highlight the workings of474

generalized linear Dirichlet process random effects models, using both logit and probit475

link functions. Both examples are drawn from important questions in social science476

research: voting behavior and terrorism studies. The voting behavior study, of social477

attitudes in Scotland, is fit using a logit link, while the terrorism data is fit with a probit478

link.479

6.1 Social attitudes in Scotland480

The data for this example come from the Scottish Social Attitudes Survey, 2006 (UK481

Data Archive Study Number 5840). This study is based on face-to-face interviews482

conducted using computer assisted personal interviewing and a paper-based self-com-483

pletion questionnaire, providing 1,594 data points and 669 covariates. However, to484

highlight the challenge in identifying consistent attitudes with small data sizes we485

restrict the sample analyzed to females 18–25 years-old, giving 44 cases. This is a486

politically interesting group in terms of their interaction with the government, particu-487

larly with regard to healthcare and Scotland’s voice in UK public affairs. The general488

focus was on attitudes towards government at the UK and national level, feelings about489

racial groups including discrimination, views on youth and youth crime, as well as490

exploring the Scottish sense of national identity.491

Respondents were asked whether they favored full independence for Scotland with492

or without membership in the European Union versus remaining in the UK under493

varying circumstances. This was used as a dichotomous outcome variable to explore494

the factors that contribute to advocating secession for Scotland. The explanatory vari-495

ables used are: househldmeasuring the number of people living in the respondent’s496

household, relgsums indicating identification with the Church of Scotland ver-497

sus another or no religion, ptyallgs measuring party allegiance with the ordering498

of parties given from more conservative to more liberal, idlosem a dichotomous499

variable equal to one if the respondent agreed with the statement that increased num-500

bers of Muslims in Scotland would erode the national identity, marrmus another501
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Fig. 3 ACF Plots of β for the GLMDM with log link. The top panel are the plots for (β0, β1, β2) from
the slice sampler, and the bottom panel are the plots for (β0, β1, β2) from the M–H sampler

dichotomous variable equal to one if the respondent would be unhappy or very502

unhappy if a family member married a Muslim,ukintnat for agreement that the UK503

government works in Scotland’s long-term interests, natinnat for agreement that504

the Scottish Executive works in Scotland’s long-term interests, voiceuk3 indicating505

that the respondent believes that the Scottish Parliament gives Scotland a greater voice506

in the UK, nhssat indicating satisfaction (1) or dissatisfaction (0) with the National507
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Fig. 4 ACF Plots for (β0, β1, β2) for the GLMDM with probit link, using the simulated data of Sect. 5.1

Health Service, hincdif2, a seven-point Likert scale showing the degree to which508

the respondent is living comfortably on current income or not (better in the positive509

direction), unionsa indicating union membership at work, whrbrn a dichotomous510

variable indicating birth in Scotland or not, and hedqual2 the respondent’s educa-511

tion level. We retain the variable names from the original study for ease of replication512

by others. All coding decisions (along with code for the models and simulations) are513

documented on the webpage http://www.jgill.wustl.edu/replication.html.514

We ran the Markov chain for 10,000 iterations saving the last 5,000 for analy-515

sis. All indications point towards convergence using empirical diagnostics (Geweke,516

Heidelberger & Welsh, graphics, etc.). The results in Table 3 are interesting in a517

surprising way. Notice that there are very similar results for the standard Bayesian518

logit model with flat priors (estimated in JAGS, see http://www-fis.iarc.fr/~martyn/519

software/jags/) and the GLMDM logit model, save for one coefficient (discussed520

below). This indicates that the nonparametric component does not affect all of the521

marginal posterior distributions and the recovered information is confined to specific522

aspects of the data. Figure 5 graphically displays the credible intervals, and makes it523

easier to see the agreement of the analyses in this case.524

Several of the coefficients point towards interesting findings from these results.525

There is reliable evidence from the Dirichlet process results that women under 25526

believe that increased numbers of Muslims in Scotland would erode the Scottish527

national identity. This is surprising since anecdotally and journalistically one would528

expect this group to be among the most welcoming in the country. There is modest529

evidence (the two models differ slightly here) that this group is dissatisfied by the530

service provided by the National Health Service. In addition, these young Scottish531
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Table 3 Logit models for attitudes of females 18–25 years in Scotland

Coefficient Standard logit GLMDM logit

COEF SE 95% CI COEF SE 95% CI

Intercept 0.563 1.358 −2.133 3.274 0.351 1.396 −2.321 3.075

househld 0.281 0.303 −0.293 0.912 0.239 0.299 −0.342 0.830

relgsums −2.006 1.604 −5.352 0.899 −1.840 1.614 −5.175 1.114

ptyallgs −0.066 0.089 −0.239 0.114 −0.035 0.091 −0.207 0.150

idlosem 2.381 1.432 −0.101 5.498 2.663 1.343 0.219 5.487

marrmus 1.281 1.469 −1.552 4.164 1.089 1.528 −1.818 4.151

ukintnat 0.403 0.616 −0.799 1.638 0.347 0.582 −0.752 1.553

natinnat −0.194 0.487 −1.179 0.739 −0.304 0.446 −1.174 0.575

voiceuk3 −0.708 0.433 −1.597 0.095 −0.637 0.443 −1.573 0.159

nhssat −1.677 0.841 −3.347 −0.056 −1.405 0.812 −3.018 0.152

hincdif2 −1.219 0.446 −2.175 −0.415 −1.205 0.448 −2.114 −0.387

unionsa 0.521 0.723 −0.867 1.970 0.247 0.718 −1.117 1.692

whrbrn 1.494 0.944 −0.398 3.336 1.229 0.861 −0.461 2.924

hedqual2 −0.082 0.233 −0.532 0.374 −0.036 0.235 −0.493 0.434

−6 −4 −2 0 2 4 6

95% Intervals for Coefficients
Dirichlet=Solid, Normal=Dotted

hedqual2

whrbrn

unionsa

hincdif2

nhssat

voiceuk3

natinnat

ukintnat

marrmus

idlosem

ptyallgs

relgsums

househld

Intercept

Fig. 5 Lengths and placement of credible intervals for the coefficients of the logit model fit for the Scottish
Social Attitudes Survey on Females 18–25 years using Dirichlet process random effects (black) and normal
random effects (dotted lines)
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Table 4 Probit models for terrorism incidents

Coefficient Standard probit GLMDM probit

COEF SE 95% CI COEF SE 95% CI

Intercept 0.249 0.337 −0.412 0.911 0.123 0.187 −0.244 0.490

DEM 0.109 0.035 0.041 0.177 0.058 0.019 0.020 0.095

FED 0.649 0.469 −0.270 1.567 0.253 0.254 −0.245 0.750

SYS −0.817 0.252 −1.312 −0.323 −0.418 0.136 −0.685 −0.151

AUT 1.619 0.871 −0.088 3.327 0.444 0.369 −0.279 1.167

women have a negative effect of increasing income on support for secession. It is also532

interesting here that the prior information provided by the GLMDM model is over-533

whelmed by the data as evidenced by the similarity between the two models. In line534

with Kyung (2010), most of the credible intervals of the GLMDM model are slightly535

shorter.536

6.2 Terrorism targeting537

In this example we look at terrorist activity in 22 Asian democracies over 8 years538

(1990–1997) with data subsetted from Koch and Cranmer (2007). Data problems539

(a persistent issue in the empirical study of terrorism) reduce the number of cases to540

162 and make fitting any standard model difficult due to the generally poor level of541

measurement. The outcome of interest is dichotomous, indicating whether or not there542

was at least one violent terrorist act in a country/year pair. In order to control for the543

level of democracy (DEM) in these countries we use the Polity IV 21-point democ-544

racy scale ranging from −10 indicating a hereditary monarchy to +10 indicating a545

fully consolidated democracy (Gurr et al. 2003). The variable FED is assigned zero546

if sub-national governments do not have substantial taxing, spending, and regulatory547

authority, and one otherwise. We look at three rough classes of government structure548

with the variable SYS coded as: (0) for direct presidential elections, (1) for strong549

president elected by assembly, and (2) dominant parliamentary government. Finally,550

AUT is a dichotomous variable indicating whether or not there are autonomous regions551

not directly controlled by central government. The key substantive question evaluated552

here is whether specific structures of government and sub-governments lead to more553

or less terrorism.554

We ran the Markov chain for 50,000 iterations disposing of the first half. There is555

no evidence of non-convergence in these runs using standard diagnostic tools. Table 4556

again provides results from two approaches: a standard Bayesian probit model with557

flat priors, and a Dirichlet process random effects model. Notice first that while there558

are no changes in sign or statistical reliability for the estimated coefficients, the mag-559

nitudes of the effects are uniformly smaller with the enhanced model: four of the560

estimates are roughly twice as large and the last one is about three times as large in561

the standard model. This is clearly seen in Fig. 6, which is a graphical display of562
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3210−1

95% Intervals for Coefficients
Dirichlet=Black, Normal=Grey

AUT

SYS

FED

DEM

Intercept

Fig. 6 Lengths and placement of credible intervals for the coefficients of the probit model fit for the terrorist
activity data using Dirichlet process random effects (black) and normal random effects (grey)

Table 4. We feel that this indicates that there is extra variability in the data detected563

by the Dirichlet process random effect that tends to dampen the size of the effect of564

these explanatory variables on explaining incidences of terrorist attacks. Specifically,565

running the standard probit model would find an exaggerated relationship between566

these explanatory variables and the outcome.567

The results are also interesting substantively. The more democratic a country is,568

the more terrorist attacks they can expect. This is consistent with the literature in569

that autocratic nations tend to have more security resources per capita and fewer civil570

rights to worry about. Secondly, the more the legislature holds central power, the571

fewer expected terrorist attacks. This also makes sense, given what is known; dispa-572

rate groups in society tend to have a greater voice in government when the legislature573

dominates the executive. Two results are puzzling and are therefore worth further574

investigation. Strong sub-governments and the presence of autonomous regions both575

lead to more expected terrorism. This may result from strong separatist movements576

and typical governmental responses, an observed endogenous and cycling effect that577

often leads to prolonged struggles and intractable relations. We further investigate the578

use of Dirichlet process priors for understanding latent information in terrorism data579

in Kyung et al. (2011) with the goal of sorting out such effects.580

7 Discussion581

In this paper we demonstrate how to set up and run sampling schemes for the582

generalized linear mixed Dirichlet process model with a variety of link functions.583

We focus on the mixed effects model with a Dirichlet process prior for the ran-584

dom effects instead of the normal assumption, as in standard approaches. We585
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are able to estimate model parameters as well as the Dirichlet process parame-586

ters using convenient MCMC algorithms, and to draw latent information from the587

data. Simulation studies and empirical studies demonstrate the effectiveness of this588

approach.589

The major methodological contributions here are the derivation and evaluation590

of strategies of estimation for model parameters in Sect. 3 and the inclusion of the591

precision parameter directly into the Gibbs sampler for estimation in Sect. 4.2. In592

the latter case, including the precision parameter in the Gibbs sampler means that593

we are marginalizing over the parameter rather than conditioning on it leading to594

a more robust set of estimates. Moreover, we have seen a large amount of vari-595

ability in the performance of MCMC algorithms, with the slice sampler typically596

being less optimal than either a K–S mixture representation or a Metropolis–Hastings597

algorithm.598

The relationship of credible intervals that is quite evident in Fig. 6, and less so599

in Fig. 5, that the Dirichlet intervals tend to be shorter than those based on normal600

random effects, persists in other data that we have analyzed. We have found that this601

in not a data anomaly, but has a explanation in that the Dirichlet process random602

effects model results in posterior variances that are smaller than that of the normal.603

Kyung et al. (2009) are able to prove this first in a special case of the linear model604

(when X = I), and then for almost all data vectors. The intuition follows the logic605

of multilevel (hierarchical) models whereby some variability at the individual-level606

is moved to the heterogeneous group-level thus producing a better model fit. Here,607

the group-level is represented by the nonparametric assignment to latent categories608

through the process of the Gibbs sampler.609

Finally, we observed that the additional effort needed to include a Dirichlet process610

prior for the random effects in two empirical examples with social science data, which611

tends to be more messy and interrelated than that in other fields, added significant612

value to the data analysis. We found that the GLMDM model can detect additional613

variability in the data which affects parameter estimates. In particular, in the case of614

social attitudes in Scotland the GLMDM model improved estimates over the usual615

probit analysis. For the second example, we found that the GLMDM specification616

dampened-down over enthusiastic findings from a conventional model. In both cases617

either non-Bayesian or Bayesian models with flat priors would have reported results618

that had substantively misleading findings.619

A Appendix: Generating the model parameters620

A.1 A logistic model621

A.1.1 Slice sampling622

For fixed m and A, a Gibbs sampler of (β, τ 2, η,U,V) is623

• for d = 1, . . . , p,624
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βd |β−d , τ
2, η,U,V, A, y ∼625

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N
(
0, d∗σ 2

)
if βd ∈

[{
max

(
maxXid>0

(
αid
Xid

))
,
(

maxXid≤0

(
γid
Xid

))}
,

{
min

(
minXid≤0

(
αid
Xid

))
,
(

minXid>0

(
γid
Xid

))}]

0 otherwise

626

where627

αid = − log

(
u

− 1
yi

i − 1

)
−
∑
l �=d

Xilβl − (Aη)i for i ∈ S628

γid = log

(
v

1
yi −1

i − 1

)
−
∑
l �=d

Xilβl − (Aη)i for i ∈ F.629

Here, S = {i : yi = 1} and F = {i : yi = 0}.630

• τ 2|β, η,U,V, A, y ∼ Inverted Gamma
( k

2 + a, 1
2 |η|2 + b

)
631

• for j = 1, . . . , k,632

η j |β, τ 2,U,V, A, y ∼
{

N
(
0, τ 2

)
if η j ∈ (

maxi∈S j

{
α∗

i

}
,mini∈S j

{
γ ∗

i

})
0 otherwise

,633

where634

α∗
i = − log

(
u−1

i − 1
)

− Xiβ for i ∈ S635

γ ∗
i = log

(
v−1

i − 1
)

− Xiβ for i ∈ F636

• for i = 1, . . . , n,637

πk(Ui |β, τ 2, η,V, A, y) ∝ I

[
ui <

{
1

1 + exp(−Xiβ − η j )

}yi
]

for i ∈ S638

πk(Vi |β, τ 2, η,U, A, y) ∝ I

[
vi <

{
1

1 + exp(Xiβ + η j )

}1−yi
]

for i ∈ F.639
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A.1.2 K–S mixture640

Given ξ , for fixed m and A, a Gibbs sampler of (μ,β, τ 2, η,U) is641

η|μ,β, τ 2,U, A, y, σ 2 ∼ Nk

(
1

σ 2(2ξ)2

(
1

τ 2 I + 1

σ 2(2ξ)2
A′ A

)−1

A′(U − Xβ),642

×
(

1

τ 2 I + 1

σ 2(2ξ)2
A′ A

)−1
)

643

μ|β, τ 2, η,U, A, y, σ 2 ∼ N

(
1

p
1′

pβ,
d∗

p
σ 2
)

644

β|μ, τ 2, η,U, A, y, σ 2 ∼ Np

((
1

d∗ I + 1

(2ξ)2
X ′ X

)−1

645

×
(

1

d∗μ1p + 1

(2ξ)2
X ′(U − Aη)

)
, σ 2

(
1

d∗ I + 1

(2ξ)2
X ′ X

)−1
)

646

τ 2|μ,β, η,U, A, y, σ 2 ∼ Inverted Gamma

(
k

2
+ a,

1

2
|η|2 + b

)
647

Ui |β, τ 2, η, A, yi , σ
2 ∼

{
N
(
Xiβ + (Aη)i , σ 2(2ξ)2

)
I (Ui > 0) if yi = 1

N
(
Xiβ + (Aη)i , σ 2(2ξ)2

)
I (Ui ≤ 0) if yi = 0

648

Then we update ξ from649

ξ |β, τ 2, η,U, A, y ∼
(

1

(2ξ)2

)n/2

e
− 1

2σ2(2ξ)2
|U−Xβ−Aη|2

8
∞∑
α=1

(−1)α+1α2ξe−2α2ξ2
.650

The conditional posterior density of ξ is the product of a inverted gamma with651

parameters α
2 − 1 and − 1

8σ 2 |U − Xβ − Aη|2, and the infinite sum of the sequence652

(−1)α+1α2ξe−2α2ξ2
. To generate samples from this target density, we consider the653

alternating series method that is proposed by Devroye (1986). Based on his notation,654

we take655

ch(ξ) = 8

(
1

ξ2

)n/2

e
− 1

8σ2ξ2 |U−Xβ−Aη|2
ξe−2ξ2

656

an(ξ) = (α + 1)2e−2ξ2{(α+1)2−1}.657

Here, we need to generate sample from h(ξ), and we use accept-reject sampling with658

candidate g(ξ∗) = 2e−2ξ∗
, the exponential distribution with λ = 2, where ξ∗ = ξ2.659

Then we follow Devroye’s method.660
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A.2 A log link model661

A.2.1 Slice sampling662

Starting from the likelihood L(β, τ 2, η,U,V), and the priors on (β, τ 2), we have the663

following Gibbs sampler of the model parameters.664

• The conditional posterior distribution of β:665

πK (β|τ 2, η, A, y,U,V) ∝ e
− 1

2d∗σ2 |β|2
666

×
n∏

i=1

I
[
ui < exp {yi (Xiβ + (Aη)i )} , vi > exp(Xiβ + (Aη)i )

]
.667

For d = 1, . . . , p,668

πK (βd |β−dτ
2, η,U,V, A, y) ∝ e

− 1
2d∗σ2 β

2
d

669

×
n∏

i=1

I
[
ui < exp {yi (Xiβ + (Aη)i )} , vi > exp(Xiβ + (Aη)i )

]
,670

which can be expressed as:671

πK (βd |β−dτ
2, η,U,V, A, y) ∝ e

− 1
2d∗σ2 β

2
d

672

×
n∏

i=1

I

⎡
⎣Xidβd <

1

yi
log(ui )−

∑
l �= j

Xilβl − (Aη)i , Xidβd < log(vi )673

−
∑
l �= j

Xilβl − (Aη)i

⎤
⎦ ,674

where β−d = (β1, . . . , βd−1, βd+1, . . . , βp). The full conditional posterior of βd675

for d = 1, . . . , p is676

πk(βd |β− jτ
2, η,U,V, A, y) ∝ e

− 1
2d∗σ2 β

2
dβd677

∈
[{

max

(
max
Xid>0

(
α∗

id

Xid

))
,

(
max
Xid≤0

(
γ ∗

id

Xid

))}
,678

{
min

(
min

Xid≤0

(
α∗

id

Xid

))
,

(
min

Xid>0

(
γ ∗

id

Xid

))}]
,679
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where680

α∗
id = 1

yi
log(ui )−

∑
l �=d

Xilβl − (Aη)i for i ∈ S681

γ ∗
id = log(vi )−

∑
l �=d

Xilβl − (Aη)i for i ∈ F.682

Thus, for d = 1, . . . , p,683

βd |β−d , τ
2, η,U,V, A, y ∼684 ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
N
(
0, d∗σ 2

)
if βd ∈

[{
max

(
maxXid>0

(
α∗

id
Xid

))
,
(

maxXid≤0

(
γ ∗

id
Xid

))}
,

{
min

(
minXid≤0

(
α∗

id
Xid

))
,
(

minXid>0

(
γ ∗

id
Xid

))}]

0 otherwise.

685

• The conditional posterior distribution of τ 2:686

πk(τ
2|β, η,U,V, A, y) ∝

(
1

τ 2

)k/2+a+1

e
− 1
τ2

(
1
2 |η|2+b

)
.687

Thus,688

τ 2|β, η,U,V, A, y ∼ Inverted Gamma

(
k

2
+ a,

1

2
|η|2 + b

)
.689

• The conditional posterior distribution of η:690

πk(η|β, τ 2,U,V, A, y) ∝
k∏

j=1

e
− 1

2τ2 η
2
j
∏
i∈S j

I
[
ui < exp

{
yi (Xiβ + η j )

}
,691

vi > exp(Xiβ + η j )
]
.692

For j = 1, . . . , k,693

πk(η j |β, τ 2,U,V, A, y) ∝ e
− 1

2τ2 η
2
j
∏
i∈Sk

I
[
ui < exp

{
yi (Xiβ + η j )

}
,694

vi > exp(Xiβ + η j )
]

695

∝ e
− 1

2τ2 η
2
j I

[
η j ∈

(
max
i∈Sk

{
γ ∗

i

}
,min

i∈Sk

{
α∗

i

})]
,696
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where697

α∗
i = 1

yi
log(ui )− Xiβ698

γ ∗
i = log(vi )− Xiβ.699

Thus, for j = 1, . . . , k,700

η j |β, τ 2,U,V, A, y ∼
{

N
(
0, τ 2

)
if η j ∈ (

maxi∈Sk

{
γ ∗

i

}
,mini∈Sk

{
α∗

i

})
0 otherwise.

701

• The conditional posterior distribution of U and V:702

πk(Ui |β, τ 2, η,V, A, y) ∝ I
[
ui < exp {yi (Xiβ + (Aη)i )}

]
703

πk(Vi |β, τ 2, η,U, A, y) ∝ e−vi I
[
vi > exp(Xiβ + (Aη)i )

]
.704

A.2.2 Metropolis–Hastings705

Let Zi ≡ log(Yi ), then Zi is a linear mixed Dirichlet model (LMDM). For this model,706

• the conditional posterior distribution of β in the LMDM:707

β|μ, τ 2, η, A,Z, σ 2 ∼ Np

((
1

d∗ I + X ′ X
)−1

708

×
(

1

d∗μ1p + X ′(Z − Aη)

)
, σ 2

(
1

d∗ I + X ′ X
)−1

)
.709

(24)710

• the conditional posterior distribution of η in the LMDM:711

η|β, μ, τ 2,Z, A, y, σ 2
712

∼ Nk

(
1

σ 2

(
1

τ 2 I + 1

σ 2 A′ A
)−1

A′(Z − Xβ),

(
1

τ 2 I + 1

σ 2 A′ A
)−1

)
. (25)713

Therefore, (24) is considered as a candidate density of β and (25) for η.714

The Metropolis–Hastings sampler of (β, μ, τ 2, η) follows.715

• The conditional posterior distribution of β in the log linear model:716

πk(β|μ, τ 2, η, A, y, σ 2) ∝ e
− 1

2d∗σ2 |β−μ1p |2
717

×
n∏

i=1

e− exp(Xiβ+(Aη)i ) [exp(Xiβ + (Aη)i )
]yi .718

123

Journal: 10260 Article No.: 0168 TYPESET DISK LE CP Disp.:2011/10/22 Pages: 32 Layout: Small-X



R
ev

is
ed

Pr
oo

f

M. Kyung et al.

Let719

π+
k (β) ≡ e

− 1
2d∗σ2 |β−μ1p |2 n∏

i=1

e− exp(Xiβ+(Aη)i ) [exp(Xiβ + (Aη)i )
]yi .720

For given β(t),721

1. Generate β∗ ∼ Np

(( 1
d∗ I + X ′ X

)−1 ( 1
d∗μ1p + X ′(Z − Aη)

)
, σ 2

( 1
d∗ I722

+X ′ X
)−1

)
.723

2. Take724

β(t+1) =
⎧
⎨
⎩
β∗ with probability min

{(
π+(β∗)
π+

k (β
(t))

q(β(t))
q(β∗)

)
, 1

}

β(t) otherwise
,725

where q(·) is a density of Np distribution in (24), and recall thatπ+(θ) = l(θ)π(θ).726

• The conditional posterior distribution of μ in the log linear model:727

πk(μ|β, τ 2, η, A, y, σ 2) ∝ exp

{
− p

2d∗σ 2

(
μ− 1

p
1′

pβ

)2
}
.728

Thus,729

μ|β, τ 2, η, A, y, σ 2 ∼ N

(
1

p
1′

pβ,
d∗

p
σ 2
)
.730

• The conditional posterior distribution of τ 2 in the log linear model:731

πk(τ
2|β, μ, η, A, y, σ 2) ∝

(
1

τ 2

)k/2+a+1

e
− 1
τ2

(
1
2 |η|2+b

)
.732

Thus,733

τ 2|β, μ, η, A, y, σ 2 ∼ Inverted Gamma

(
k

2
+ a,

1

2
|η|2 + b

)
.734

• The conditional posterior distribution of η in the log linear model:735

πk(η|β, μ, τ 2, A, y, σ 2)736

∝
K∏

k=1

e
− 1

2τ2 η
2
k
∏
i∈Sk

e− exp(Xiβ+(Aη)i ) [exp(Xiβ + (Aη)i )
]yi .737
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For j = 1, . . . , k, let738

π+
k (η j ) ≡ e

− 1
2τ2 η

2
j
∏
i∈S j

e− exp(Xiβ+(Aη)i ) [exp(Xiβ + (Aη)i )
]yi

739

= e
− 1

2τ2 η
2
j exp

⎡
⎣η j

∑
i∈S j

yi − eη j
∑
i∈S j

eXiβ

⎤
⎦ .740

For given η(t),741

1. Generate η∗ ∼ Nk

(
1
σ 2

(
1
τ 2 I+ 1

σ 2 A′ A
)−1

A′(Z − Xβ),
(

1
τ 2 I+ 1

σ 2 A′ A
)−1

)
.742

2. Take743

η(t+1) =
⎧⎨
⎩
η∗ with probability min

{(
π+

k (η
∗)

π+
k (η

(t))

q∗(η(t))
q∗(η∗)

)
, 1

}

η(t) otherwise
,744

where q∗(·) is a density of Nk distribution in (25).745
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