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Abstract: The purpose of this article is to point out that the standard statistical inference
procedure in public administration is defective and should be replaced. The standard
classicist approach to producing and reporting empirical findings is not appropriate for
the type of data we use and does not report results in a useful manner for researchers
and practitioners. The Bayesian inferential process is better suited for structuring sci-
entific research into administrative questions due to overt assumptions, flexible para-
metric forms, systematic inclusion of prior knowledge, and rigorous sensitivity
analysis. We begin with a theoretical discussion of inference procedures and Bayesian
methods, then provide an empirical example from a recently published, well-known
public administration work on education public policy.

STATISTICAL INFERENCE PUBLIC ADMINISTRATION:

A REPORT CARD

Methodology in public administration stands at a crossroads. The choice is
to continue to employ a dated and inappropriate device for determining the
reliability of statistical findings or to reevaluate and seek better suited infer-
ential tools. In this article we will demonstrate that the dominant Null
Hypothesis Significance Test (NHST) is broken and cannot be repaired, and
then we will argue that the appropriate direction for our field is down the
Bayesian road.
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It is not a secret that empirical research in public administration has
lagged behind related fields.'" The mean methodological sophistication in
public administration journals is far below those of sociology, political
science, anthropology, and economics. However, this does not have to be.
We do not prescribe here to Heinz Eulau's assessment of public admin-
istration research as "an intellectual wasteland."f^' In fact, we believe
quite the opposite: public administration research provides more practical
and germane prescriptive findings than all of these other listed fields.
What we need, however, is freedom from the flawed but pervasive infer-
ential procedure for making statistical inference in public administration
research.

Borrowing Our Neighbor's Tools

Public administration relies heavily on other related disciplines for its meth-
odological tools, despite the specific research challenges in our field. This
has several ramifications. These other disciplines, primarily political science
and sociology, are driven by fundamentally different questions. In particu-
lar, there is much less interest in analyzing survey research in public admin-
istration. This is important methodologically because the data sets analyzed
more commonly in public administration are complete population data
rather than samples. It has been shown that treating population data like
sample data with regards to social science analysis leads to a number of neg-
ative pathologies.''''

Data generated as a population rather than from a repeatable known
probability process can be described as non-stochastic.''" This is inherently
problematic because traditional statistical methods are predicated on the
assumption that the data are created by a repeatable mechanism. In a standard
frequentist model, a sample for statistical purposes must be a single mani-
festation from many possible outcomes drawn from an unchanging probability
distribution.'^! In practice, this is accomplished through random or probability
sampling. An inference about a particular parameter is dependent upon this
process and the resulting sampling distribution generated by a mechanism for
drawing the sample that can be repeated multiple times. Where the dataset is
the complete population, standard sample-derived inferences are not simply
difficult, they are inapplicable as they are founded on inherently untrue popu-
lation assumptions.'^'

On the other side of the spectrum, economics offers public administration
even less, methodologically. There has lately been an increasing emphasis on
theory in economics at the expense of applied empirical work. The result of
this movement is that models in that field rely increasingly on strong
distributional assumptions and abstract theoretical specifications. Conse-
quently, issues of measurement error, robustness, specification sensitivity, and
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graphical analysis are downplayed.'^' These are issues of particular importance
in public administration research where scholars often seek to make prescrip-
tive findings.

Public administration is arguably unique (omitting economics) among
associated disciplines in having this strong prescriptive orientation. This
results in a problem associated with wholesale importation of social sci-
ence methodology. While political scientists generally are very happy to
further the understanding of previous elections or governments, and soci-
ologists may be quite pleased in explaining past social movements and
behaviors, public administration often seeks to inform practitioners and
interested scholars about how managerial decisions should be made.
Methodologically, we know that there is greater stochastic uncertainty
involved in making predictions rather than simply fitting data, thus mak-
ing empirical research in public administration more challenging than
expected.

In addition, public administration research often suffers from issues
related to coUinearity, since scholars regularly obtain datasets with a
large number of variables that can be causally related. In the case of
education research, teacher salary, class size or even poverty level in the
district can reflect similar or related information.'^' This can create diffi-
culties in a linear model, as collinear explanatory variables carry little
independent information, and the least squares estimator does not then
provide a means to distinguish information concerning one coefficient
from another.'''

Finally, it is important to note that a huge proportion of published
research in public administration is case-study oriented. There is nothing
wrong with this approach, and it has furthered our knowledge on a number of
fronts. However, this focus has impeded the field's pursuit of underlying
causal phenomena, which is often pursued with formal or statistical analysis.
Further, the dominant inferential methods provide no systematic means to
incorporate into new work knowledge gained from such case-study research.
Clearly, public administration would benefit form a balanced approach to
research design and theory testing.

The Completely Bankrupt Process of Null Hypothesis
Significance Testing

The dominant approach to hypothesis testing in public administration (and
most social sciences) does not work. We are not saying it is not optimal, it
could be improved, some things about it need to be fixed, or that many
researchers just do not apply it appropriately. Instead, we will now show that
it is wrong and it needs to be replaced.
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The ubiquitous NHST (Null Hypothesis Significance Testing) is an unin-
tentional synthesis of the Fisher test of significance and the Ney man-Pearson
hypothesis test. The procedure works as follows:

1. Two hypotheses are posited: a null or restricted hypothesis (HQ), which
competes with an alternative or research hypothesis (//,), each describing
complementary notions about some social or administrative phenomenon.

2. The hypotheses are operationalized through statements about some parameter,
fi Often (say, in regression models) these are statements such as:

/ /o: /?=O //, : / ? ^0 . (1.1)

3. A test statistic (T), some function of y^and the data, is calculated and com-
pared with its known distribution under the assumption that HQ is true.

4. The test procedure assigns one of two decisions, Dg or £>,, to all possible
values in the sample space of T, which correspond to supporting either HQ
or // | , respectively.

5. The p-value is equal to the area in the tail (or tails) of the assumed distribu-
tion under HQ which start at the point designated by the placement of T and
continuing away from the expected value to infinity.

6. If a predetermined or level has been specified, then HQ is rejected for p-values
less than a, otherwise the p-value itself is reported as evidence for H^.

This process is a synthesis of two important but incompatible procedures
in modern statistics. Fisher produces significance levels from the data
whereas Neyman and Pearson posit a test-oriented decision process that con-
firms or rejects hypotheses at a priori specified levels. However, the NHST
tries to blend these two disparate approaches, leading to improper conclusions
about the data. In Fisher hypothesis testing, no explicit complementary
hypothesis to HQ is identified. For him, the p-value that results from the model
and the data is evaluated alone as the strength of the evidence for the research
hypothesis. There is no fixed deciding line. There is also no notion of the
power of the test in Fisher's procedure: the probability of correctly rejecting
HQ is very important in the Neyman-Pearson procedure. In addition, there is
no overt decision in favor of HQ in the NHST (instructors in introductory
social science statistics courses always admonish students never to accept the
null. Conversely, Neyman-Pearson tests identify two co-equal complementary
hypotheses: 0^ and Qg where rejection of one implies immediate acceptance
of the other and this rejection is based on a predetermined a level. Therefore,
one of two decisions must always be accepted.

The current paradigm in the social sciences blends these two approaches
by pretending to select a a priori, but actually uses ranges of p-values to evaluate
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strength of evidence. This allows researchers to include the alternate hypothe-
sis without having to search for more powerful tests (often a difficult task).
The test also adopts the Neyman-Pearson convention of two explicitly stated
rival hypotheses, but one is always labeled as the null hypothesis, as in the
Fisher test. Sometimes the null hypothesis is presented only as a null relation-
ship: P-O (i.e., no effect), but Fisher really intended the null hypothesis sim-
ply as something to be nullified. Confiictingly, the synthesized test partially
uses the Neyman-Pearson decision process, except that failing to reject the
null hypothesis is incorrectly treated as a quasi-decision—modest support for
the null hypothesis assertion. This later assertion is incorrect in this context
since the probability is predicated on the null being true, and because only one
sample is involved, there is no long-run probability achieved.

There are several misconceptions that result from using the null hypo-
thesis significance test. First, many incorrectly believe that the smaller the
p-value, the greater the probability that the null hypothesis is false: that the
NHST produces P(HQ\D), the probability of HQ being true given the observed
data D, but the NHST first posits HQ as true then asks what is the probability
of observing these or more extreme data. Second, it is common to confuse the
decision process with the strength of evidence: the NHST interpretation of
hypothesis testing does not distinguish between inference and decision
making, since it "does not allow for the costs of possible wrong actions to be
taken into account in any precise way."''"^ Third, the infinite number of alter-
natives to the null are not considered in any one test, thus not being ruled out
as possible explainers of phenomenon. So, failure to find evidence for the one
research hypothesis does not rule out any others, and therefore does not
support the null. Fourth, the core underlying logic is flawed. The basic strat-
egy is to make an assumption, observe some real-world event, and then check
the consistency of the assumption given this observation. But the order of con-
ditionality is exactly the reverse, and we know from Bayes Law that these
cannot be equal.

Thus, the null hypothesis simply does not provide what researchers and
consumers of research in public administration want it to provide. We would
like to make probabilistic prescriptions about various phenomena and possible
courses of action that administrators might take. What is needed is a more intui-
tive way to interpret data and models. In the next section we introduce the Baye-
sian statistical paradigm and argue that this is the best vehicle for these purposes.

THE BAYESIAN WAY

The Bayesian process of data analysis allows researchers to incorporate
systematically previous knowledge into a statistical model and to make prob-
ability statements concerning the outcome. More directly, Bayesian methodo-
logy is characterized by three primary attributes: a willingness to assign prior
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distributions to unknown parameters, the use of Bayes rule to obtain a posterior
distribution for unknown parameters and missing data conditioned on observ-
able data, and the description of inferences in probabilistic terms. The core
philosophical foundation of Bayesian inference is the consideration of both
observables and parameters as random quantities. A primary advantage of this
approach is that there is no restriction to building complex models with multiple
levels and many unknown parameters. Because model assumptions are much
more conspicuous in the Bayesian setup, readers can more accurately assess
model quality and specifications.

Bayesian inference differs from standard methods in that it is based on
fundamentally different assumptions about collected data and unknown
parameters.'' ^ In the Bayesian view, quantities are divided into two groups:
observed and unobserved. Observed quantities consist of the data and known
constants. Unobserved quantities consist of parameters of interest to be esti-
mated, missing data, and parameters of lesser interest that simply need to be
accounted for ("nuisance parameters").

In this construct, all observed quantities are fixed and are conditioned on,
and all unobserved quantities are assumed to possess distributional qualities
and therefore are treated as random variables. Thus, parameters are now no
longer treated as fixed unmoving (like a classicist would assume, using the
NHST) in the total population, and all statements are made in probabilistic
terms.

Overview of Bayesian Inference

The Bayesian inference process starts with assigning prior distributions for
the unknown parameters. These unknown parameters are operationalized with
observed explanatory variables in a simple model. Prior distributions range
from very informative descriptions based on previous research in the field to
deliberately vague and uncertain forms that reflect high levels of uncertainty
or previous ignorance. It is important to note that this prior distribution is not
an inconvenience imposed by the treatment of unknown quantities. It is the
means by which existing knowledge is systematically included in the model.
Importantly, this prior information can include qualitative, narrative, statistical,
and intuitive knowledge.

The second step in the process requires the specification of a likelihood
function in the conventional manner by assigning a parametric form and plug-
ging in the observed data. This is done in exactly the conventional likelihoodist
fashion, f'̂ ' The researcher can choose the most appropriate parametric form,
including a simple linear model as we do below.

The third step is to produce a posterior distribution by multiplying the
prior distribution by the likelihood function. In this manner, the likelihood
function uses the data to update the specified prior knowledge conditionally.
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We can summarize probabilistic information about an unknown parameter
according to:

Posterior Probability «= Prior Probability x Likelihood Function.

This is just Bayes' Law, wherein the denominator on the right-hand side has
been ignored by using proportionality. The symbol "o=" stands for "prop-
ortional to," which means that constants have been left out that make the poster-
ior sum or integrate to one as is required of standardized probability mass
functions and probability density functions. Renormalizing to a standard from
can always be done later, plus, using proportionahty is more intuitive and usu-
ally reduces the calculation burden. What this "formula," above, shows is that
the posterior distribution is a compromise between the prior distribution,
reflecting research beliefs, and the likelihood function, which is the contribu-
tion of the data at hand.^'^'

The fourth step is to evaluate the fit of the model to the data and the sensi-
tivity of the conclusions to the assumptions. This can be done systemati-
cally,'''*' or in an ad hoc fashion by trying different reasonable priors or
likelihood functions.''^^

When the researcher is happy with the fit of the model and the range of
assumptions, the results are described to readers. Unlike the Null Hypothesis
Significance Test method of deciding strength of conclusions based on the
magnitude of p-values, evidence is presented in the Bayesian inference pro-
cess by simply summarizing the posterior distribution, and therefore there is
no artificial decision based on the assumption of a true null hypothesis. Poste-
rior summary is usually done with quantiles and probability statements such
as the probability that the parameter of interest is less than/greater than some
interesting cnstant, or the probability that this parameter occupies some
region.

Note also that if the posterior distributions is now treated as a new prior
distribution, it too can be improved if new data are observed. In this way, the
Bayesian paradigm provides a means of scientifically updating knowledge
about the parameters of interest that is updated and accumulated over time."^'
One scholar's results can them be incorporated into subsequent analysis. We
now describe these steps in greater detail:

Specifying the Likelihood Function

Suppose collected data are treated as a fixed quantity and we know the
appropriate probability mass function or probability density function for
describing the data-generation process. Standard likelihood and Bayesian
methods are similar in that they both start with these two suppositions and
then develop estimates of the unknown parameters in the parametric
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model. Maximum likelihood estimation substitutes the unbounded notion
of likelihood for the bounded definition of probability by starting with
Bayes' Law:

^ 3 ) , (2.1)

where /?is the unknown parameter of interest and X is the collected data. The
key is to treat ^ ^ as an unknown function of the data independent oip{WP).
This allows us to use: L(yfflX) <>= p{X\fi). Since the data are fixed, then different
values of the likelihood function are obtained merely by inserting different
values of the unknown parameter, /9, or (more realistically) the parameter vec-
tor, ,5."^'

The likelihood function, L(^X), is similar to the desired but unavailable
inverse probability, p{X\P), in that it facilitates testing alternate values of >9to
find a most probable value: /?. Thus, interest is generally in obtaining the
maximum likelihood estimate of ft: the value of the unconstrained and
unknown parameter, P, which provides the maximum value of the likelihood
function, Lij3\X), denoted /?.

In this way, /? is the most likely to have generated the data given a spe-
cific parametric form relative to other possible values in the sample space of
J3. However, since the likelihood function is no longer bounded by zero and
one, it is now important only relative to other likelihood functions based on
differing values of fi. Note that the prior, p{/}), is essentially ignored here
rather than overtly addressed. This is equivalent to assigning a uniform prior
in a Bayesian context, an observation that has led some to consider classical
inference to be a special case of Bayesianism: "everybody is a Bayesian; some
know it."

Applying the Prior to Obtain the Posterior

The Bayesian approach addresses the inverse probability problem by making
distributional assumptions about the unconditional distribution of the para-
meter, y9, prior to observing the data, X: p{fi). The prior and likelihood are joined
with Bayes' Law:

(2.2)

to produce the posterior distribution, where J 0p(/?)L(/?IX)J^=/j(X).
Here the TTQ notation is used to distinguish the posterior distribution for /3
from the prior. The very natural and intuitive interpretation of the posterior
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distribution is that it tells us all that we know about yff given the observed data,
X, and other information summarized in the prior distribution.

The term in the denominator of the right-hand-side of the equation is
generally not important in making inferences and can be recovered later by
integration. This term is typically called the normalizing constant, the nor-
malizing factor, or the prior predictive distribution, although it is actually
just the marginal distribution of the data, and ensures that ;r(/?l X) integrates
to one.

A more compact and useful form of the equation is developed by drop-
ping this denominator and using proportional notation since p(X) does not
depend on /? and therefore provides no relative inferential information about
more likely values of fi.

meaning that the unnormalized posterior (sampling) distribution of the param-
eter of interest is proportional to the prior distribution times the likelihood
function.

The maximum likelihood estimate is equal to the Bayesian posterior
mode with the appropriate uniform prior, and they are asymptotically (as the
data size gets very large) equal given any prior: both are normally distributed
in the limit. In many cases, the choice of a prior is not especially important
since as the sample size increases, the likelihood progressively dominates the
prior. While the Bayesian assignment of a prior distribution for the unknown
parameters can be seen as subjective (though all statistical models are actually
subjective), there often are strong arguments for particular forms of the prior:
little or vague knowledge often justifies a diffuse or even uniform prior, cer-
tain probability models logically lead to particular forms of the prior (conju-
gacy), and the prior allows researchers to include additional information
collected outside the current study. A more detailed discussion concerning the
use of the prior is made below.

Summarizing Bayesian Results

Bayesian researchers are generally not concerned with just getting a specific
point estimate of the parameter of interest, ^, as a way of providing empirical
evidence in probability distributions. Rather, the focus is on describing the
shape and characteristics of the posterior distribution of /?. Such descriptions
are typically in the form of credible intervals, quantiles of the posterior, and
particular probabilities of interest such as pij3< 0).

Credible intervals are the Bayesian equivalent of confidence intervals, in
which the region describes the area over the coefficient's support with the
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(1 —d)% of the density symmetrically around the posterior mean. Like frequen-
tist confidence intervals, a credible interval that does not contain zero implies
that the coefficient estimate is deemed to be reliable, but instead of being ( 1 -
0)% "confident" that the interval covers the true parameter value, a credible
interval provides a (\-a)% probability that the true parameter is in the inter-
val.

Sometimes credible intervals are relatively wide, indicating that the coef-
ficient varies considerably and is less likely to be reliable, and sometimes
these regions are quite narrow, indicating greater certainty about the central
location of the parameter.

The final step in Bayesian analysis is to evaluate the model fit to the data
and determine the sensitivity of the posterior distribution to the various
assumptions made. Here, it is usual to modify these assumptions somewhat
and observe whether the conclusions remain both statistically reliable and sta-
ble under such modest changes. Such changes include altering the prior speci-
fication and using alternate forms of the likelihood function.

Obtaining the Posterior Through Simulation

Markov Chain Monte Carlo (MCMC) techniques solve a lingering problem in
Bayesian analysis. Often Bayesian model specifications that were either inter-
esting or realistic produced inference problems that were analytically intract-
able. The basic principle behind MCMC techniques is that if an iterative chain
of consecutive values can be set up carefully and run long enough, then empir-
ical estimations of quantities of interest can be obtained from chain values. So
to estimate multidimensional probability structures (i.e., desired posteriors),
we start a Markov Chain in the appropriate sample space and let it run until it
settles into the correct distribution. Then, when it runs for some time confined
to this particular distribution, we can collect statistics such as means, vari-
ances, and quantiles from the simulated values.

The most common method of producing Markov chains for MCMC work
is the Gibbs sampler, which produces an empirical estimate of the posterior
distribution of interest by iteratively sampling from full conditional distribu-
tions. The result is an estimate of the coefficients that avoids difficult or
impossible analytical calculations."^' The Gibbs method is popular because of
this conditional specification, that is, all one has to do is elaborate each condi-
tional dependency.

The Gibbs sampler works in detail as follows.'^"' For convenience define
(̂  as a /c-dimensional vector of unknown parameters. Call (p^^ the <f> vector
where the /* parameter is jackknifed from the vector (temporarily omitted).
The Gibbs sampler draws from the complete conditional distribution for the
"left out" value: ^{'^i I ^i]), repeating for each value in the vector each time
conditioning on the most recent draw of the other parameters. When each of
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the parameters has been updated in this way, then the cycle recommences with
the completely new vector (f).

This procedure will converge permanently to a limiting (stationary) dis-
tribution that is the target posterior, provided that the chain is ergodic. A
chain is ergodic if it is aperiodic and positive recurrent. Aperiodic chains have
no defined "looping", whereby they repeat the same series of values in a
given period. A Markov chain is recurrent if it is defined on an irreducible
state space such that every substate can be reached from every other substate.
A Markov chain is positive recurrent if the mean time to transition back to the
same state is finite. The ergodic theorem is foundational to MCMC work. It is
essentially the strong law of large numbers in a Markov Chain sense: the
mean of chain values converge almost surely to strongly consistent estimates
of the parameters of the limiting distribution, despite mild dependence (on
some state space S e 9̂  for a given transition kernel and initial distribution).
These properties for the Gibbs sampler are well known and not further dis-
cussed here.'̂ "^ The original article on the statistical application of Gibbs
sampling'^" is a far more demanding read and applies the algorithm to photo
image restoration.

Although the ergodic theorem shows that after a sufficiently large number
of chain iterations are performed, subsequent draws are from the target limit-
ing posterior distribution: 7r(^ 1 X), reality is rarely this clear, and the primary
focus of the current MCMC literature is on assessing convergence. Two pri-
mary philosophies compete for adherents among applied researchers. Gelman
and Rubin'̂ ^1 suggest using the EM algorithm (or some variant) to find the
mode or modes of the posterior, then create an overdispersed estimate of the
posterior as a starting point for multiple chains. Convergence is assessed by
comparing within-chain variance against between-chain variance with the
idea that at convergence, variability within each chain should be similar and
will resemble the estimated target variance.

Conversely, Geyer'̂ -" recommends implementing one long chain and
using well-known time series statistics to assess convergence. In practice,
most researchers are not as canonical as either specified approach and perform
some combination of them. The approach taken here is to run multiple chains
during a burn-in period, assess convergence, and then, upon success, let one
chain run longer. The burn-in period is an interval in which the Markov Chain
is allowed to run without concern for its trajectory. The idea is to let the chain
run for a sufficiently long period of time as to "forget" its starting point. If the
chain reaches an equilibrium condition, it is moving through the state space of
the target distribution and empirical draws of its position represent samples
from the desired limiting distribution. So assessing convergence is vital to
determining the quality of the resulting inferences.

Though the Gelman and Rubin diagnostic'̂ '*^ is widely accepted, there are
alternative diagnostic techniques. Geweke's'^^' convergence statistic relies on
a comparison of some proportion of the early part of the chain after the bum-in
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period with some non-overlapping proportion of the late part of the chain.
Geweke proposes a difference of means test using an asymptotic approxima-
tion of the standard error for the difference. Since the test statistic is asymptot-
ically standard normal, then for reasonably long chains, small values imply
that the chain has converged, which is quite intuitive. Conversely, values that
are atypical of a standard normal distribution provide evidence that the two
selected portions of the chain differ reasonably (in the first moment), and one
then concludes that the chain has not converged. The selected window propor-
tions can change the value of the test statistic if the chain has not converged.
Therefore, a further diagnostic procedure involves experimenting with these
proportions. The final reported values (0.1 and 0.5) are Geweke's default rec-
ommendation, but similar results were observed using close alternatives.

EMPIRICAL EXAMPLE: MEIER'S MODEL OF EDUCATIONAL
EFFECTS

We illustrate the Bayesian model through a partial replication of a Meier,
Polinard, and Wrinkle'^*' study of the bureaucratic effects on education out-
comes in public schools. Meier, et al. are concerned with whether the educa-
tion bureaucracy is the product or cause of poor student performance. The
issue is one of contention in the literature because of the implications of these
conclusions on the school choice debate.'̂ ^^ Chubb and Moe'^^' have long
argued that the institutional structure of the schools, especially the overhead
democratic control, resulted in the schools being ineffective. The institutional
structure and the bureaucracy have created a process that leads to poor perfor-
mance by the public schools.'^'' This conclusion was challenged by Meier and
Smith,'-'"' who contend that bureaucracy is an adaptation to poor performance
and not the cause.

The authors are seeking to identify the variables that cause poor scholas-
tic performance. Though the methodologies are presumably objective, the
debate on school choice is complex and can clearly be far more normative.'-"^
For the American public, the issue of school performance is particularly
important, and the concern is often associated with funding issues.'̂ ^^ Further,
the nature of Chubb and Moe's'-'-'̂  assertion about democratic control can raise
a more theoretical debate about the role of democratic structures and public
administration in society.'̂ "*' Some have argued that the role and efficacy of
the public schools is measured in part by their place in civic society.'^^' These
implications are significant, not simply so that one can take sides, but rather
because they demonstrate that the methodology chosen as well as the specifi-
cation of any model are not made in an abstract value-free universe, but within
existing context.

In addressing this conflict, Meier, Polinard, and Wrinkle use a linear
model based on a panel dataset of over 1000 school districts for a seven-year
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period to test organizational theory and educational policy. The authors use
these data to find whether there is a causal relationship between bureaucracy
and poor performance by public schools.'^*' As noted above, the central issue
in this literature is one of causality through a "production function" that maps
inputs to outputs in essentially an economic construct. Along with bureau-
cracy, student and school performance can be influenced by a number of vari-
ables, some of which are causally related, including class size, state funding,
teacher salary, and experience. Meier et al. measure bureaucracy as the total
number of full-time administrators per 100 students and lag the variable so as
to create a more likely causal relationship. The authors concede this measure
is incomplete, as it captures only a portion of the more complex definition of
bureaucracy.'•'̂ ^ Nonetheless, they claim the measure has "substantial face
validity."'^^'

The control variables for educational performance included by the
authors reflect student characteristics, measures of resources and district poli-
cies. Specifically, they include three measures of financial capital, which con-
sist of the average teacher salary, per pupil expenditures for instruction, and
the percentage of money each district receives from state funds. A measure of
human capital was included based on teacher experience, and two policy indi-
cators were used by measuring the average class size in the district and the
percent of students in gifted classes.'-''' Though these explanatory variables
are placed in separate categories, some clearly are measuring concepts that are
difficult to distinguish.

The linear model proposed by the authors is affected by both serial corre-
lation and heteroscedasticity. Meier et al. address these concerns through a set
of six dummy variables for each year as well as through the use of a weighted
least squares.''*"' The authors discuss both issues at length, but conclude that
though the heteroscedasticity was significant, it was ultimately trivial in con-
sequence. We account for this in a better way by adding a random effects term
to the Bayesian model that allows for greater individual heterogeneity of the
error term, but in the same model specification.''*''

Meier et al. then present the finding that their lagged measure of bureau-
cracy does not have a significant influence on the outcome variable of student
performance measured by the pass rate. Additionally, in the model, measures
of poverty as well as the measures related to gifted classes and class size are
significant at conventional levels using the NHST (7'> 4).'''^'

The Education Production Function

The dominant framework for describing education policies and outcomes is
the education production function: how the mixture of inputs combines with
the established processes to determine learning outcomes. Essentially all model
specifications in this literature (Bayesian or otherwise) reduce to different
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interpretations of the form of the education production function. This has been
described in other language as "the relationship among the different inputs
and into outcomes of the educational process."'̂ ''̂ ' This is essentially an eco-
nomic model, which depicts student achievement as a direct function of
resource inputs and the way those inputs are applied.̂ '*'*' In this framework, a
school is considered essentially the way economists view the firm: acquiring
and managing inputs to process clients with the goal of maximizing some
defined output.

If we subscribe to the standard economic conditions for technical effi-
ciency as prescribed in the traditional literature, then a realistic description of
the relationship between inputs and outputs appears even less obtainable. The
required conditions typically include:'''^'

1. administrators control input allocation;
2. competition for "customers";
3. knowledge of input and output pricing and availability;
4. an identifiable production process; and
5. accurate feedback on success or failure.

Control of input allocation obviously varies according to the level of the
administrator, but it certainly is not absolute at any level. Competition for cus-
tomers is an interesting and currently debated question. Some scholars have
argued that treating the student body as customers can lead to a decline in the
rigor of the curricula and teaching methods.'''*' In general, public school
administrators do not compete, nor do they consider students to be customers
in the traditional economic sense. One notable exception is the genesis of
charter schools, which are small in number but increasingly popular. Knowl-
edge about pricing is probably the most reasonable of these assumptions in the
public education context. However, it is clear that this knowledge is certainly
not absolute (nor would it be in most commercial settings), and output pricing
is not really an applicable concept. The idea that the education production
function is identifiable to educators and administrators is greatly debated, but
no scholar is willing to assert that public school managers in the aggregate
have a substantial claim on the form of the production function.

THE MEIER MODEL: SUMMARY AND REPLICATION

We address this debate initially by replicating the exact linear model of Meier,
Polinard, and Wrinkle,'*^ except using an explicitly Bayesian setup. That is,
we specified normal (but very diffuse) priors on the parameters and calculated
a posterior distribution according to the Bayesian principle. These specifica-
tions refiect the underlying Gauss-Markov assumptions of the standard linear
model, but are re-expressed in a Bayesian context as described in previous
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sections. Obviously we did not have to do this since there is nothing method-
ologically wrong with the original linear model estimated with least squares
(other than a Null Hypothesis Significance Test interpretation, perhaps). How-
ever, our Bayesian replication of the classicist result is done to solidify the
integrity of our proposed paradigm and to serve as a starting point for the
more elaborate Bayesian specifications to come.

Our estimation of the Meier et al. model is done using Gibbs Sampling as
implemented in the WinBUGS package. This also was not essential since the
normal priors are conjugate, meaning that the resulting posterior form is also
normal and that the posterior can be analytically calculated. However, we are
trying to demonstrate the flexibility of this computing approach as well as the
general Bayesian perspective.

Since the first stage involved replicating a classicist or NHST model, we
assumed no prior knowledge and incorporated that ignorance into the model
in the form of diffuse Gaussian normal priors with a large variance. Another
expression of prior ignorance is obtained by centering these distributions at
zero.'''^' A large variance gives a diffuse prior, which usually leads to a poste-
rior that favors information from the likelihood function, unless the sample
size is small.'̂ '*''

The Bayesian model specifications are often given in "stacked" notation
that summarizes the distribution assumptions (priors and likelihood):

^ P ] = /̂ O + A^l P ]+ - + /^k

£li^~N(Q.O,r)

/?[/]-AT (0.0,10)

for i = ]: n. This means that the outcome variable is assumed to be normally
distributed around the systematic component with fixed variance (line 1), this
systematic effect (X) is a linear additive specification with a random effects
term (lines 2 and 3), and that the coefficient estimates are given identical dif-
fuse normal priors (line 4). The explanatory variables are denoted x, and are
columns from the explanatory variable matrix X.

Additionally, we corrected for missing data, not by deletion, by case, but
by imputing missing data points through Bayesian estimation using the R
package: multiple imputation by chained equations (mice). Multiple imputa-
tion creates a posterior distribution for the missing data conditional on the
observed data, then draws randomly from this distribution to create multiple
replications (5-10) of the original dataset, each of which are then analyzed.
Final summary of the results is produced by an average of the resulting coeffi-
cients (with a standard error adjustment).'^'''
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Table 1. Posterior Summary, Meier Replication Model

Explanatory Variables

Constant Term
Lag of Student Pass

Rate
Lag of Bureaucrats
Low Income Students
Teacher Salaries
Teacher Experience
Gifted Classes
Class Size
State Aid Percentage
Funding Per Student

(xlOOO)

Mean Effects

9.172
0.677

-0.081
-0.108

0.073
-0.009

0.097
-0.220
-0.002

0.065

Standard Deviation

1.358
0.008

0.262
0.006
0.053
0.046
0.023
0.052
0.004
0.174

Posterior standard error of T= 0.00072

95% Credible Interval

[6.510: 11.840]
[0.661:0.693]

[-0.595:0.431]
[-0.119:-0.097]
[-0.035:0.181]
[-0.099: 0.082]
[0.054:0.139]
[-0.322:-0.118]
[-0.010: 0.006]
[-0.276: 0.406]

Meier, Polinard, and Wrinkle argue that their results are robust, and that
using Bayesian estimation with diffuse priors does not change this assessment
or the statistical outcome. We were able to replicate the original study with
very little difference (the small changes were likely due to our imputation of
the missing data and a different treatment by the original authors). A table of
our output is included in Table 1. The replicated linear model here is (unsur-
prisingly) very robust, and it supports the original conclusions of the authors.
Specifically, we also find support for the demographic variables as well as
class size effects.

INSERTING SUBSTANTIVE PRIOR INFORMATION

The Bayesian Model with Meier-Priors

As illustrated above, the Meier et al. model is robust to modest changes in the
assumptions. With a model that is particularly stable, there initially appears to
be little that a Bayesian regression analysis can add. Nonetheless, there has
been extensive work on related subjects concerning the role of bureaucracy as
well as other factors in the performance of public schools. In fact, scholars
have done extensive work in the area.'^'' Bayesian estimation allows us to
incorporate this previous work within the new model.

To expand on the Meier et al. model, we included non-sample informa-
tion for the creation of the Bayesian prior drawn from Meier's previous work
on school bureaucracy and school performance with Kevin Smith.'^^' Clearly,
Meier et al. were not uninformed entering their more recent study,'^^' and
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Bayesian inference allows for the incorporation of that knowledge. The Smith
and Meier (1995) work includes data and inference on the impact of funding
and other institutional variables on student achievement in Florida. These data
include district level data for all of the public schools in Florida. Smith and
Meier note that the Florida data provides a diverse group of students with con-
stant measures over time. The Florida data represents both rural and urban dis-
tricts as well as different ethnic and socioeconomic compositions.'^'*'

The prior information was added to the 2000 Meier, Polinard, and Wrinkle
study by incorporating the previous study's findings into the distributions for
the explanatory variables, creating "Meier-priors." The distributions remain
normal, but are now centered around values drawn from 1995 Smith and
Meier findings. Thus, the model specification differs from the replication only
in the prior assumptions for the y5'̂ '̂:

/?[0]~ W(0.0,10) /?[1]~ W (-0.025,10) /?[2]-^(0.0,10) /? [3] - W (0.23,10)

-^(0.615,10) /?[5]-A'(-0.068,10) /?[6]~ A'(0.0.10) /?[7]~ ^(-0.033,10)

-^(0.299,10) ^[9]-Af (0.0.10) ^[10]-W(0.0,10) /?[11]~ ^(0.0.10)

-^(0.0,10) ^[14]-W (0.0,10)

where obviously some of these are left uninformed. The data drawn from the
Smith and Meier research were insufficient to address all of the variables in
the current models. For variables without adequate information to form a
more specific prior, a diffuse prior centered at zero was used. This permits the
prior to be largely shaped by the data.'^*' Additional research in the field may
allow for a greater degree of specification for the unknown variables.

Meier et al. are relying on the linear model assumptions of asymptotic nor-
mality and constant variance of the residuals, whether they state it or not. Our
model employs a random effects specification with the term t specified as an
inverse-gamma distribution for the variance in the outcome variable allowing
for greater unit heterogeneity than the Meier model, but in the same specifica-
tion for a random effects model. The inverse-gamma distribution is appropriate
because it is the conjugate prior for the normal-linear model variance. Instead of
having a constant variance, the model will draw on the inverse-gamma distribu-
tion for that parameter. This makes the MCMC estimation procedure work
much better, and it allows for systematic inclusion of data heterogeneity.

In the Meier-prior model, as in the case of the initial simple replicated
model, the lagged bureaucracy variable was not significant in the new Baye-
sian result. However, even in this case, where the model was particularly
robust, the use of the Bayesian estimation illustrates that the initial NHST
model was incomplete. The impact of teacher salaries on student performance
is significant in these data despite the original finding in the Meier et al. linear
model. Our results are displayed in Table 2.
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Table 2. Posterior Summary, Meier-Prior Model

Explanatory Variables

Constant Term
Lag of Student Pass Rate
Lag of Bureaucrats
Low Income Students
Teacher Salaries
Teacher Experience
Gifted Classes
Class Size
State Aid Percentage
Funding Per Student

(xlOOO)

Mean Effects

9.173
0.686
0.004

-0.149
0.196

-0.549
0.096

-0.216
0.004
0.118

Posterior standard

Standard Deviation

1.358
0.008
0.258
0.006
0.053
0.046
0.021
0.051
0.004
0.172

error of r= 0.00072

95% Credible Interval

[6.510: 1JL1.840]
[0.670: 0.701]
[-0.498:0.516]
[-0.116:-0.094]
[0.920: 0.300]
[-0.144:0.035]
[0.055: 0.138]
[-0.316:-0.116]
[-0.004: 0.012]
[-0.219:0.455]

Interestingly, Meier et al. expected to find a positive relationship between
teacher salaries and student performance.'^'^ The original NHST model was
unable to find the positive link between the salaries and the test scores. This is
true despite both the expectations of the authors as well as the prior research
that suggested such a relationship should exist.^^^' The posterior distribution
of the model indicates a positive relationship with a 95% credible interval
bounded away from zero: [-0.116:-0.094].

Our result does not actually reject the findings of Meier et al., nor are we
suggesting that the conclusions reached by those scholars are in error. In fact,
the Bayesian model generated results that were closer to the expectation of the
researchers since it incorporated knowledge to which the researchers already
had access. Meier et al. had noted that economic theory provides that higher
salaries attract better teachers.'^^^ Hence, the incorporation of prior research,
especially a scholar's own work, should be the norm, especially in the area of
public administration where more practical and germane prescriptive findings
are sought.

We also replicated the model using an interaction between class size
and teacher salary as the variables are related.'*'*' The information for the
Bayesian priors were again drawn from the previous research by Smith and
Meier.'^'' The interaction is multiplicatively defined, and given its own
prior. As in the case of some of the other explanatory variables, since we
had no prior expectations for the sign or magnitude of such an interaction,
the interaction coefficient is assigned a normal prior centered at zero with a
large variance.

Interestingly, the interaction coefficient was found to have a negative
sign, with 95% credible interval bounded away from zero, as provided in
Table 3. This means that larger class sizes have a dampening effect on the
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Table 3. Posterior Summary, Interaction Model

Explanatory Variables Mean Effects Standard Deviation 95% Credible Interval

Constant Term
Lag of Student Pass Rate
Lag of Bureaucrats
Low Income Students
Teacher Salaries
Teacher Experience
Gifted Classes
Class Size
State Aid Percentage
Funding Per Student

(XlOOO)
Class Size x Teacher

Salaries

4.799
0.684

-0.042
-0.105

0.382
-0.066

0.096
0.196
0.002
0.049

-0.015

2.373
0.008
0.261
0.006
0.099
0.046
0.021
0.191
0.004
0.175

0.007

Posterior standard error of T= 0.00071

[0.165:9.516]
[0.667: 0.699]
[-0.557: 0.469]
[-0.117:-0.094]
[0.189:0.575]
[-0.156:0.025]
[0.054:0.138]
[-0.180:0.569]
[-0.006: 0.010]
[-0.294: 0.392]

[-0.029: -0.002]

positive (reliable) impact of increasing teacher salaries. Interestingly, the
posterior distribution for class size now shows a much less reliable effect in
the interaction model (the 95% credible interval is nearly centered at zero).
Interaction effects can sometimes be "kleptomaniacs" in that they serially
steal explanatory power and reliability from main effects. This finding says
that the effects of class size are now only reliable in this model in the context
of specified teacher salary levels. Notice that this changes the context of the
education production function conceptualization considerably from the origi-
nal specification.

The Bayesian Model with Chubh and Moe Priors

To observe the sensitivity of the model to competing research, we also created
a model with prior information drawn from the work of Chubb and Moe.'*^'
As noted earlier, Chubb and Moe contend that political institutions place a
burdensome bureaucracy on the public schools, which ultimately harms stu-
dent achievement. The authors support their contention with statistical infer-
ences based on an extensive survey of American high school students. Our
new contrasting Bayesian model is still linear with normal distributions, but
the prior values are drawn from the findings from Chubb and Moe instead of
being taken from Smith and Meier, or left diffuse to operationalize ignorance.
The resulting model specification differs from the previous models only in the
prior assumptions for the p. As in the previous models, where the variables are
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without sufficient information to form a more specific prior, a diffuse prior
centered at zero was used.

/?[0]-- Af (0.0,10) /?[1]~ Â  (-.023,10)/?[2]-A'(0.025,10)^[3]-A'(0.0,10)

/?[4]~ /V (0.042,10)/?[5] - A'(0.016,10)/?[6] - N (0.002,10)/?[7] - N (-0.007,10)

/y[8] - /V (0.032,10) /?[9] - Af (-0.017,10)/?[10] ~ Af (0.0,10) /?[11] - A? (0.0,10)

/?[12]-Af(0.0,10) /?[13]-A'(0.0,10) ,tf [14]-N (0.0,10) /? [15] - Af (0.0,10)

The results from the Chubb and Moe model actually illustrate the particu-
lar strength of the Meier study. Despite unfavorable prior information, the
resulting posteriors are not substantively affected as illustrated in Table 4,
where the posterior distributions are very similar to those produced by the
Meier-priors. Since the posterior distribution is a compromise between the
prior distributions (our operationatizing of Chubb and Moe's 1990 research
beliefs), and the likelihood function (contribution of the data at hand), then
these findings indicate that the data are strongly informed about the structure
of the specified education production function. Therefore, the last result con-
firms the general reliability of the findings by Meier et al. as the data is clearly
dominating the resulting posterior, and therefore suggest that the controversy
between these authors in the literature is somewhat misguided as to its focus.

Markov Chain Convergence

As noted above, the reliability of a posterior generated through MCMC is
based upon an assumption of convergence. It is essential for the Markov chain

Table 4. Posterior Summary, Chubb-Moe Priors Model

Explanatory Variables

Constant Term
Lag of Student Pass Rate
Lag of Bureaucrats
Low Income Students
Teacher Salaries
Teacher Experience
Gifted Classes
Class Size
State Aid Percentage
Eunding Per Student

(xlOOO)

Mean Effects

9.173
0.686
0.004

-0.105
0.197

-0.055
0.096

-0.216
0.004
0.118

Standard Deviation 95% Credible Interval

1.358
0.008
0.259
0.006
0.053
0.046
0.021
0.051
0.004
0.174

[6.510: 11.840]
[0.670: 0.702]
[-0.506:0.512]
[-0.116:-0.094]
[0.091:0.301]
[-0.143:0.034]
[0.054:0.139]
[-0.314:-0.116]
[-0.004: 0.001]
[-0.223: 0.459]

Posterior standard error of 7= 0.00072
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to have reached its stationary distribution for the resulting empirical summa-
ries to be meaningful. We found that the specified model rapidly converged
and mixed well throughout this distribution after approximately 20,000 itera-
tions. Nonetheless, we ran the models much longer to be confident of conver-
gence before reporting posteriors. As we discussed at length above, there are
several different tests for convergence. Initially, we used the widely accepted
Gelman and Rubin test.'^^' Gelman and Rubin's convergence diagnostic uses a
measure of within chain variance and between chain variance and is accessi-
ble with little difficulty through the WinBUGS (see Appendix) package.
A score of 1.2 or less is considered acceptable for lacking evidence of non-
convergence, and all of our subchains achieved a score of approximately.

For additional evidence to support convergence, we also used the Geweke
test,'^' also discussed earlier. The Geweke test is essentially a t-test of means-
difference with large enough sample size that the statistic is normally distrib-
uted with tail values supporting a difference in chain periods and therefore
non-convergence. It is common in this context to rely upon the artificial, but
convenient cut-off p-value of 0.05 when making such decisions. We imple-
mented the Geweke test in R using the package: Bayesian Output Analysis
(BOA, freely available at: www.public-health.uiowa.edu/boal/). BOA pro-
duces a menu driven interface for use with the statistical programs S-Plus and
R. The p-values produced in our Geweke test were greater than 0.05 for each
parameter sub-chain. We therefore find that the results do not provide any evi-
dence against convergence.

DOES PRIOR MEAN BETTER?

The Bayesian approach has been criticized for the interjection of prior infor-
mation that is subjective in nature. This subjectivity can be introduced, not
only from the nature of the previous data used, but also by the weight given it
in the specification of the prior distribution.'^^' Arguably, the use of prior
information will hurt the objective results obtained through the sample data
alone. Criticism of the use of prior information is not new, and scholars have
claimed that the use of this information would make the resulting experiment
dependent on the interpretation of prior experience.'**' Similarly, claims have
been made that the method itself does not reassure scholars that the data has
been interpreted fairly.'*^' Others have claimed that the use of priors will
tempt scholars into selecting information based on a desired outcome rather
than science: that Bayesian methods would provide a "larger means for skull-

The nature of the criticism is based on assumptions about the objectivity
of the NHST method that are simply untrue. In the NHST model, the prior is
unspecified, but "fiat" by default, representing a type of ignorance even when
the researcher is bringing considerable knowledge to the study. We illustrated



26 Wagner and Gill

this in our first replication by generating Meier model results in a Bayesian
regression analysis simple by using a diffuse normal prior centered at zero.
(See Table 1). No matter which methodology is employed, the researcher is
making an assumption about prior ignorance each time she runs a model. This
is true whether that assumption is accurate or not.

Secondly, a different but important type of prior information is regularly
used in the standard NHST model through choices made about coding
schemes, transformations, and interpretation. In the 2000 Meier et al. study,
the authors make an assumption about the coding of bureaucracy based upon
assumptions and experience they bring to the research. They measure bureau-
cracy as the total number of full-time administrators per 100 students and lag
the variable so as to create a more likely causal relationship. Though this is
admittedly incomplete, the authors claim the measure still has considerable
information.'^'' Others may not agree that a measure of administrators cap-
tures the key components of bureaucracy: that the authors' measure fails to
account for rules, procedural restraints, or even the more ubiquitous notion of
red tape, which is itself the subject of significant scholarly work.'™^ Indeed,
Meier et al. concede the omission,'^'^ but proceed nonetheless.

In the context of the school debate, the process of model specification is
particularly influenced by a more normative context. It is one choice to struc-
ture an inquiry with a judgment about funding issues.'̂ ^^ Chubb and Moe's
contentions concerning democratic control raise a complex set of questions
about the role of democratic structures and public administration in society
beyond more basic issues of funding or average number of administrators.'^^'
Additionally, centering schools within a model of civic society presents a dif-
ferent set of variables to consider in specifying a model.'̂ '*' Making the issue
one of school choice presents additional considerations.''^' No matter how
objective one attempts to make a model, the methodology chosen as well as
the specification of any model are not made in an abstract value free universe,
but within existing substantive context.

Further, Meier et al. make additional assumptions about the relationship of
the variables to each other as well as the expected outcome based on previous
knowledge. Though each of the explanatory variables are measured separately
in the Meier, et al. linear model, the authors concede that they are intended to
capture three general concepts: student characteristics, measures of resources,
and district policies.''*' Though not addressed at length by the authors, concep-
tually the nature of these related variables creates difficulty for the NHST model
because closely related variables may carry little independent knowledge.'^''

The use of previous research through the Bayesian prior can address this
problem and allow for a greater distinction in collinear or near-collinear vari-
ables. A Bayesian regression addresses issues of collinearity by using more
individual coefficient information than an ordinary least squares model, which
results in smaller standard errors for the regression coefficients.''^' As a result,
the data is strengthened by the Bayesian model and this often generates more
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precise coefficients. In formulating, specifying, and finalizing models, previ-
ous knowledge is not only used, it is vital. This is as true in a NHST model as
in a Bayesian one; the key difference is that scholars using Bayesian
approaches admit it.

Meier et al. openly discuss some of the assumptions that are inherent in
their coding schemes, but many authors do not. Bayesian estimation forces
scholars to display the assumptions concerning prior information within the
context of the model and to justify the usage of that prior information.""
Researchers employing the NHST model use prior information and may con-
ceal it under subjective schema. Bayesians candidly bring the information to
the model and allow the reader to determine whether its use and weight were
sufficiently justified within the context of the study.

The incorporation of prior information may be necessary where there are
simply too few data points for the asymptotic assumptions for a NHST model
to work. Bayesian methods have been advocated for research involving a
small number of observations and cases with nonstochastic data as it allows
for estimates and predictions when there is insufficient data to fit the desired
model using standard methods (Western and Jackman'^"' produce an informa-
tive model with only 20 cases!). Small data sets that produce fragile statistical
inference in a standard model are more effectively handled by the Bayesian
approach because of the incorporation of prior information in the estimation.
In non-Bayesian estimations, small data sets and collinearity will produce
results that are highly sensitive to model specifications. This may result in
researchers discarding a study, not because the data fails to provide informa-
tion, but, rather, because the methodological tools are insufficient.

We concede that the use of prior information is subjective and calls for
the researcher to make specifications that are subject to criticism, but note that
the Bayesian is always responsible for overtly declaring and defending her
assumptions. The weight given the priors in our replication was not great, and
as a result, the findings are largely similar to the original study. However, our
methods and assumptions are transparent and other scholars can make differ-
ent assumptions about the prior research and justify those assumptions in a
new model with smaller variances and less diffuse priors. The end result is a
dialogue, rather than a defensiveness argument concerning the hidden
assumptions and specifications of a NHST model.

CONCLUSION: A NEW DIRECTION?

The purpose of this article was to propose the Bayesian inferential process for
statistical analysis in public administration research. We have demonstrated
several of the advantages, including: overt statement of assumptions, the abil-
ity to include prior information, the reliance upon information in the data
above other model components, and the flexibility of specifications.
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We have also illustrated that the use of the default flat or diffuse prior in
an NHST model to indicate ignorance is an assumption that can inadvertently
alter results even in the most stable or robust of linear models, whether the
researcher is aware of it or not. Bayesian model uncertainty is certainly char-
acterized subjectively within the context of data collection and analysis, but so
is every other approach. Conversely, the openness and flexibility of the Baye-
sian approach allows the researcher to be more sensitive to the types of data
collected, including data that might be the result of convenience samples
rather than the random sampling required for standard statistical methods. The
Bayesian paradigm provides a means of scientifically updating knowledge
about the parameters of interest.

The use of the standard quasi-frequentist NHST approach is the dominant
methodology in the discipline.'^'' Nonetheless, public administration research
often involves the extensive use of prior information. There is little sense in
continuing to rely upon a methodology that cannot account for previous
research, even when that research has been performed by the same scholar.
This is particularly true in the field of public administration, which has a rich
descriptive history. Such prior knowledge and research can, and should be
updated with empirical work rather than isolated as stand-alone findings.
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APPENDIX: WINBUGS CODE FOR THE SPECIFIED MODELS

Replication Model. This WinBUGS code replicates the Meier, Polinard,
and Wrinkle (2000) finding using a Bayesian approach.

Model {

beta0'diiorm(0.0,0.0Ol);

b8ta3"<taorm(0.0,0.001);

b«ta6"(iiiom(0.0,0.001);

•betaS'dnormCO .0,0.001);

betal2*dnotiii(0.0.0.001);

botal"dnonii(-20,0.001)l(-10,0>;

beta4"dnorm(0.0,0.001);

b6ta7'dnorm(-[>. 0.0.001)

betaWdiiorm(0.0,0.001);

betal3-dnom(0.0,0.001)
b8tals-<toorm(0.0,0i001); t:au"dganina(16,8)

for (i In I : H) {

epsilon[i]-dnorm(0.0. tau)
lambda [lj <- tetaO +

betal*X9[l]

beta4*X3[i]

bata7*X6[i]

bBta2*X10[i]

beta6*X4[i]

bota8*X7[i]

beta2"<lnorm(0.0,0.001!

beta5"dnorm(-0.0,0.00

beta8-<JiiorB{0,0,0.001!

betall"dnonii(0.0,0.00:

betal4"clnorm(0.0,0.00:

betalO*Xll[i] + bBtall*X12[i]

betal3*X14[i] + batal4*X15[i]

ep8ilon[i]

b9ta3»X2[i]

beta6*XB[l]

beta9*X8[i]

b8tal2»X13Ci]

betal5*X16[i]

cliiorm(lanb(la[i], tau)

Informed Prior Model with Interaction. The final Bayesian models are speci-
fied below. The interaction model is specified immediately below. The
interim informed prior model can be obtained by commenting out the interac-
tion term (beta 16).

Model {

betaO'dttom (0.0,0.1);

betaS'diioniiW.aS.0.1);

beta6"diionii(0.0,0.1);

beta9"<lnonii(0.0,0.1);

betal"dnorm(-.025,0.1);

batal'dnormCO.615,0.1);

bata7"diiorm(-. 033,0.1);

betalO"diionn(0.0,0.1);

b8tal2"dnonii(0.0,0.1); betaI3"dnonii(0.0,0.1);

batal5"dnorm(0.0,0.1); batal6'daorm(0.0,0.1);

beta2"diiorn(0.0,0.1)

beta5"diiorffl(-0.068.0.1)

b8ta8'djjonii(0.299,0. i )

batall-dnonii(0.0,0.1)

betal4"<lnonii(0.0,0.1)

tau'dgamma(16,6)
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for (i in 1 ; H) {

epalloaCiJ'daotmCO.O, tau)

lambda [i] <- betaO +

batal*X9[i] + bata2*X10[i]

l)8ta4*X3[l] * beta5*X4[l]

b8ta7*X6[i] + beta8*X7[i]

batalO»Xll[i3 + l)otall»X12Ci]

betal3*X14[i] + l)etal4*X15[l]

betal6»X6*X3 + epsllonCi]

Y[l] ' dnormdaniljdaLi], tau)

bata3*X2[i]

bBta6*X6[i]

ljeta9*X8[i]

betal2*X13[l]

betal5*X16[i]

The model informed by the Chubb and Moe (1990) data can be obtained by
replacing the /?priors witb the following:

betaO"daonii(0.0,0.1);

bata3"dnonii(0.0,0.1);

\,etae-clnonn(0.002.0.1);

beta9"diiom(0.017,0.1);

betal2"<JnonB(0.0,0.1);

betal6'dnorm(0.0,0.1);

betal-di»orm(-.023,0.1)

I)eta4"'dnorm(0.042,0.1) ;

beta7-daorBi(0.007,0.1);

betalO"diiora(0.0,0.1);

batal3'diiorm(0.0,0.1);

tau"clgaiiiiiia(16,6)

beta2"dnQra(0.024,0.1)

beta6"diiorm(.0016,0.1)

beta8~(liiorm(0.032,0.1)

l)etall"cUioriii(0.0,0.1)

'betaWdnoraW.0,0.1)




