JEFF GILL
Division of Biostatistics
Washington University, St. Louis

Writing Functions in R

freplenc: ‘ElementDege e1Degc;

Ml votring P _name = item->Attriduse
PRS2 0tIing spritenams = (tem->Atiribete:

T.oat X ® Doostiilexical cast<ilonts| itessviotuies
f.oat y = boost::lexical cast<iloaty itemsintiiee
f.0at offset = boost::lexicel cast<icams ilmmimsw
Jad s gned layer = 50; // defeult

TN “._»guib\n.| elpzaz°) I®

oty SIS
' Jaxical cepteiasi s
t'... -
Layer = boos

)
W.::.u-_ - sprivens™!
:Lw:’ = X;

Division of Biostatistics R Primer, Jeff Gill [1]

Motivation

o . oo ; :
Software Stack Cross Validated Discussions Software
Overflow
Discussions

Number
of Blogs

v R 365
10,606
SAS 40
509
Stata 8
SPSS
Others 0-3
Stata

All others Table 3. Number of blogs devoted to each software package on March 13, 2012.

S

3
L

L4
'
[
2
[
]
3
o
L.
(m
[
E
0
L
[
[
-
c
o
=
- =
©
=
—
P
=
[
[=]
-
=
[
@
=

Division of Biostatistics R Primer, Jeff Gill [2]

Introductory Notes

» Functions are an important part of using R because they allow you to customize and extend the
language.

» Functions make you more productive over time.
» Functions can be shared.

» Existing functions can be extended.

» The rules for writing functions are pretty simple.

» Note on lexzical scoping: variables created within functions are temporary, but variables in your R
environment are not and can be read inside the function (although inside names have precedence).

» “Everything is an object in S, and all objects are dynamic and self-defining.” -Chambers (1998,
168): function objects vs. data objects.

Division of Biostatistics R Primer, Jeff Gill [3]

[llustrative Beginning Example

» To test memory retrieval Kail and Nippold (1984) asked 8, 12, and 21 year olds to name as many
animals and pieces of furniture as possible in separate seven minute intervals.

» They find that this number increases across the tested age range but that the rate of retrieval
slows down as the period continues.

YOS

» [n fact, the responses often came in “clusters” of related responses (“lion,” “tiger,” “cheetah,”

etc.), where the relation of time in seconds to cluster size is fitted to be
cs(t) = at® 4+ bt* + ct + d,

where time is £, and the others are estimated parameters (which differ by topic, age group and
subject).

» There are strong theoretical reasons that b = —18a from the literature.

» The researchers were very interested in the inflection point of this function since it suggests a
change of cognitive process.

Division of Biostatistics R Primer, Jeff Gill [4]

[llustrative Beginning Example

948 Child Development

. (3sec)...bird

...(2sec)...tiger. If a pause
time of 1 sec or less is taken to reflect items
retrieved from the same cluster (i.e., t < 1),
then dog/cat would be from the same clus-
ter; the remaining words would represent
different clusters. In this case, ¢f(1) = 1 and
N = 5, so the mean cluster size is 5/(5 — 1), or
1.25, reflecting three one-word clusters and
one two-word cluster. Continuing the
analysis, c¢f(2) = 2, so the mean cluster size is
5/(5 — 2) = 1.67. Again verifying this result,
with t =< 2 sec as a criterion, clusters consist
of doglcat, bird, and lionl/tiger. cf(3) = cf(4)
= ¢f(5) = cf(6 cf(7) = 3, hence the mean
cluster size for t 3-7 is 5/(5 — 3) = 2.5.
Finally, ¢f(8) = 4, so the mean cluster size is
5/(5 —4) = 5.

Cluster sizes computed in this manner
are depicted in the right panel of Figure 2 as
a function of ¢ for the cumulative frequency
data depicted in the left-hand panel of that
figure. The cluster size function, like the
cumulative frequency distribution, has a
plateau between 5 and 7 sec. As before, this
plateau corresponds to the break between
the two distributions of pause times.

dog ...cat .

The final issue to be considered is how
to identify the precise point at which the
initial decelerating curve begins to acceler-

CUMULATIVE FREQUENCY

1 ®
TIME (IN SECONDS)

ate, for this value differentiates the longer
pause times associated with retrieval of
clusters from the briefer pause times as-
sociated with rapid emission of items. In
fact, functions like those depicted in Figure
2 are well described by a third-order
polynomial of the type

cs(t) = at® + bt* + ct + d, 2)

where cs refers to cluster size and t is time in
seconds. Further, the second derivative of
this polynomial, —b/3a, corresponds to the
inflection point at which the function stops
decelerating and starts accelerating. Once
this inflection point is known, pauses in the
retrieval protocol can be identified un-
ambiguously as reflecting either search for
additional clusters or emission of items from
within a cluster. Then one can derive the
number of clusters as well as the average
size of clusters in the retrieval protocol.

Cluster sizes were calculated for each
individual’s retrieval protocol for ¢ ranging
from 2 to 10 sec. These cluster values were
then fit to equation (2) with sTEPIT. The
estimated values of a and b were used to
calculate the inflection point of the cluster
size function. Of the 39 individuals, six had
at least one protocol that included either a
negative number or an extraordinarily large

CLUSTER SIZE

13 ®
TIME (IN SECONDS)

FIG. 2.—Cumulative frequency of pause times (left panel) and cluster size (right panel) as a function
of time for one 8-year-old. The function in the right panel is derived from the best-fitting values of the

a and b parameters from equation (2).

Division of Biostatistics R Primer, Jeff Gill [5]

[llustrative Beginning Example

» We can specify hard-coded values of the parameters (below) by trial and error.

cs <- ¢c(1.6,1.65,2.15,2.5,2.67,2.85,3.1,3.92,5.55)
seconds <- 2:10

cog <- function(a,c,d,t) a*t”3 + (-18*a)*t"2 + c*t + d

par (mfrow=c(1,1) ,mar=c(5,5,3,3),col.axis="white",col.lab="white",
col.sub="white",col="white",bg="black")

plot(seconds,cs,pch=19,ylim=c(0,6) ,xlab="",ylab="")

cs.vals <- cog(a=0.04291667,c=4.75,d=-7.3,t=seconds)

lines(seconds,cs.vals,col="pink",1lwd=3)

mtext (side=1,1ine=2.5,cex=1.5,"Time In Seconds")

mtext (side=2,1ine=2.5,cex=1.5, "Number of Animals")

Division of Biostatistics R Primer, Jeff Gill [6]

Nonlinear (Weighted) Least-Squares

Number of Animals
3

2 4 (3 8 10
Time INn Seconds

Division of Biostatistics R Primer, Jeff Gill [7]

[llustrative Beginning Example

» We can also use the R function nls to estimate these by minimizing residuals:

cog.df <- data.frame(seconds=seconds,cs=cs)
cog.nls <- nls(cs ~ a*seconds”3 + (-18%a)*seconds”2 + c*seconds + d,
start=c(a=10,c=10,d=-10) ,trace=TRUE) ; summary(cog.nls)

Estimate Std. Error t value Pr(>|t])
a 0.02013 0.01211 1.662 0.1476
c 2.35048 1.16637 2.015 0.0905
d -2.52056 1.79998 -1.400 0.2109
Residual standard error: 0.4572 on 6 degrees of freedom

Division of Biostatistics R Primer, Jeff Gill [8]

[llustrative Beginning Example

» And then plot the results:

par (mfrow=c(1,1) ,mar=c(4,4,4,4),0oma=c(3,3,3,3),col.axis="white",col.lab="white",
col.sub="white",col="white",bg="black")
plot(seconds,cs,pch=19,ylim=c(0,6) ,xlab="",ylab="")
cs.vals <- cog(a=summary(cog.nls)$parameters[1,1],
c=summary (cog.nls)$parameters[2,1],
d=summary (cog.nls)$parameters[3,1],
t=seconds)
lines(seconds,cs.vals,col="palevioletred3",lwd=3)
mtext (side=1,1ine=2.5,cex=1.5,"Time In Seconds")
mtext (side=2,1ine=2.5,cex=1.5,"Number of Animals")

Division of Biostatistics R Primer, Jeff Gill [9]

[llustrative Beginning Example

Number of Animals
3

2 4 6 8 10
Time In Seconds

Division of Biostatistics R Primer, Jeff Gill [10]

General Form

» Functions need a name that you provide (make them intuitive!).
» The function name is followed by the assignment operator.

» Then list the input parameters in parenthesis.

» Open commands with an open curly brace.

» Type commands one-per-line or semi-colon separated.

» The last line of commands is what you return to the user, either with the return() command
with the object inside the parentheses or just by typing an object.

» Finish with a close clurly brace.

» Complete form:

my.fun <- function(in.parameters) { commands; return(output) 7}

Division of Biostatistics R Primer, Jeff Gill [11]

Millions of Functions Already Exist in R

First

function() cat("\n Welcome to R!\n\n")
.Last

function() cat("\n Goodbye!\n\n")

mean

function (x, ...)

UseMethod ("mean")
<environment: namespace:base>

1s
table
mode

Division of Biostatistics R Primer, Jeff Gill [12]

Defining Functions

dam
Error: object "dam" not found

dam <- function(in.vec) median(abs(in.vec - median(in.vec)))
dam(runif (100,0,23))
[1] 5.975548

my.binom <- function(max,p) {
out.probs <- NULL
for (i in O:max)
out.probs <- c(out.probs,choose(max,i)*(p~i)*((1-p)~ (max-i)))
return(out.probs)

binom.probs <- my.binom(3,0.5)
[1] 0.125 0.375 0.375 0.125

Note indentations.

Division of Biostatistics R Primer, Jeff Gill [13]

Multiple Arguments

» You can pass multiple arguments to a function, but be careful about the order if the context is
not obvious.

» Example using X.Vals <- rchisq(100,df=3) data:

mean(X.Vals)

mean (x=X.vals)

mean (x=X.vals, na.rm=FALSE)

mean(X.vals, na.rm=FALSE)

mean (na.rm=FALSE, x=X.vals)

mean(na.rm=FALSE, X.vals)

mean (FALSE,X.Vals) # WILL FAIL:
Error in mean.default (FALSE, X.Vals)

’trim’ must be numeric of length one

» To see what arguments a functions needs use args ().

» Some functions use defaults for specific arguments, so you do not have to type them if the default
is okay.

Division of Biostatistics R Primer, Jeff Gill [14]

More On Arguments

» Arguments in R are evaluated “lazily” meaning that if not needed, they are ignored:

simple.fun <- function(x,y) A
return(log(x))

+
simple.fun(2) [1] 0.69315

but the reverse is not true: extra parameters in the function call cause failure;

simple.fun(1,3,9,12)
Error in simple.fun(1l, 3, 9, 12) : unused arguments (9, 12) # 3 OKAY FROM VARIABLE

» Argument defaults can also be set to NULL.

» The ... argument has two main functions: when you expect an unknown number of other
functions to be called by this function, and when modifying an existing function and you don’t
care about the last set of arguments:

simple.fun <- function(x,y,...) {
return(log(x))

+
simple.fun(1,3,9,12) [1] O

Division of Biostatistics R Primer, Jeff Gill [15]

Naming Your Functions

» Use an intuitive name that is original, bad: ZBR.139.v23, good: kernel .fit.
» Do not use the name of an existing R function, although this is not fatal.

» If you do that R will give your function precedence over the built-in function, so important functions
like mean, 1m, seq will not be available until you delete yours.

» Most common case: name a variable ¢, for example:

¢ <- function(x) x°3

c(3)

[1] 27

c(1,2,3)

Error in c(1, 2, 3) : unused arguments (2, 3)
rm(c)

c(1,2,3)

[1] 1 2 3

Division of Biostatistics R Primer, Jeff Gill [16]

Defining Functions, Defaults

» Default values can be very useful, such as alpha=0.05.
» Users can override defaults with explict values.

» For example,

my.binom <- function(num,p=0.5) {
out.probs <- rep(NA,num)
for (i in O:num)
out.probs[i] <- choose(num,i)*p~i * (1-p)~ (num-i)
return(out.probs)
+
my .binom(5)
[1] 0.03125 0.15625 0.31250 0.31250 0.15625 0.03125
my.binom(5,0.1)
[1] 0.59049 0.32805 0.07290 0.00810 0.00045 0.00001

» [t is also convenient to nest functions within other functions:

mean (my.binom(5))
[1] 0.19375

Division of Biostatistics R Primer, Jeff Gill [17]

A Simple Function For Matrices

» [unctions also work on matrices.

tr <- function(in.mat) sum(diag(in.mat))
tr
function(in.mat) sum(diag(in.mat))

clement.mat <- matrix(c(0,1.732051,0,0,1.732051,0,2.0,0,0,2.0,0,1.732051,
0,0,1.732051,0), nrow=4)
clement.mat
[,1] [,2] [,3] [,4]
[1,] 0.0000 1.7321 0.0000 0.0000
[2,] 1.7321 0.0000 2.0000 0.0000
[3,] 0.0000 2.0000 0.0000 1.7321
[4,] 0.0000 0.0000 1.7321 0.0000

tr(clement .mat)
[1] O

Division of Biostatistics R Primer, Jeff Gill [18]

Logit and Inverse-Logit (Logistic) Functions

logit <- function(mu) log(mu/(1-mu))
inv.logit <- function(Xb) 1/(1+exp(-Xb))

X <- matrix(rnorm(10000,0,5) ,ncol=10)

beta <- rt(10,df=5)

inv.logit (X%*%beta)

[,1]
[1,]
[2,]
[3,]
[4,]
[5,]
(6,]

O O -~ O© NN ©

.7054e-01
.0785e-06
.9983e-01
.8339e-01
.9999e-01
.9999e-01

Division of Biostatistics R Primer, Jeff Gill [19]

Loops In Functions

» Two basic kinds: for and while (see also repeat).
» Loops make functions powerful through, possibly many, iterations of some work.
» Makes less work for humans!

» A simple R function for Newton-Raphson mode-finding to get a square root:

newton.raphson.ex <- function(mu,x,iterations) {
for (i in 1:iterations)
X <= 0.5%(x + mu/x)
return(x)

newton.raphson.ex(99,2,3)
[1] 10.74386
newton.raphson.ex(99,2,6)
[1] 9.949874

Division of Biostatistics R Primer, Jeff Gill [20]

Termination

» Sometimes it’s handy to write-in termination criteria to functions.

» For example, our Newton-Raphson root-finding algorith should be stopped when further iterations
provide trivial changes.

» Now define a tolerance for this parameter, which is a default, and rewrite according to:

newton.raphson.ex <- function(mu,x,tol=1e-06) {
diff <- 1
while (diff > tol) {
x.new <- 0.5%(x + mu/x)
diff <- abs(x.new - x)
X <- X.new

}

return(x)

newton.raphson.ex(99,2)
[1] 9.949874

Division of Biostatistics R Primer, Jeff Gill [21]

Lab Assignment

» Run the following function with the commands afterwards (and possibly more).

» Determine what this function does.

myFunction <- function(x){
out <- TRUE
checker <- function(a, b){
if (b>a) {TRUE} else {FALSE}
+
for(i in 1:(length(x)-1)){
out <- (checker(x[i], x[i+1])*out)
+

return(as.logical (out))

myFunction(c(4,3,2,1))
myFunction(c(1,2,2,4))
myFunction(c(1,2,3,4))
myFunction(2)
myFunction(c(TRUE, FALSE))

Division of Biostatistics R Primer, Jeff Gill [22]

A Function for a New Distribution

» The Witch’s Hat Distribution:

d
p(0]x) = (1 —9)[2m0°]” d/QGXP[Z% = 0,)°

» [mplementing with a function:

witch.hat <- function(tl,t2,y,sigma,delta,T=1) {
theta <- c(t1,t2)
normalizer <- (l-delta) * (1/(sqrt(2*pi)*sigma)) length(theta)

exponent <- exp(-sum(((y-theta)/sigma)~2/2)/T)
(normalizer * exponent + delta)

Division of Biostatistics R Primer, Jeff Gill [23]

A Function for a New Distribution

delta <- 0.00000000001

sigma <- 0.01

y <- ¢(0.4,0.6)

thetal <- seq(0,1,length=40)

theta2 <- seq(0,1,length=40)

witch.dens <- matrix(NA,length(thetal),length(theta2))

par (mfrow=c(1,3) ,mar=c(0.5,0.5,0.5,0.5),0oma=c(0.01,0.01,0.01,0.01))
for(i in 1:length(thetal))
for(j in 1:length(theta2))
witch.dens[i,j] <- witch.hat(thetallil],theta2[j],y,sigma,delta,T=1)
persp(thetal,theta2,witch.dens, theta = 135, phi = 30,box=F,zlim=c(0,600))
mtext (side=1,cex=1.3, line=-15,"Temperature T=1")

Division of Biostatistics R Primer, Jeff Gill [24]

A Function for a New Distribution

for(i in 1:length(thetal))
for(j in 1:length(theta2))
witch.dens[i,j] <- witch.hat(thetalli],theta2[j],y,sigma,delta,T=25)
persp(thetal,theta2,witch.dens, theta = 135, phi = 30,box=F,zlim=c(0,2200))
mtext (side=1,cex=1.3, line=-15,"Temperature T=25")

for(i in 1:length(thetal))
for(j in 1:length(theta2))
witch.dens[i,j] <- witch.hat(thetallil],theta2[j],y,sigma,delta,T=300)
persp(thetal,theta2,witch.dens, theta = 135, phi = 30,box=F,zlim=c(0,6000))
mtext (side=1,cex=1.3, line=-15,"Temperature T=300")

Division of Biostatistics R Primer, Jeff Gill [25]

A Function for a New Distribution

Temperature T=1 Temperature T=25 Temperature T=300

Division of Biostatistics R Primer, Jeff Gill [26]

Example Function That Finds Primes From 1 To Given Max

find.primes <- function(max) {

num.vec <- seq(l,max,by=2) # SETUP VECTOR TO EVALUATE
if (max > 5) primes <- 3 else(stop("min of max = 5")) # START PRIMES VECTOR,
CHECK FOR VALID INPUT
for (i in 3:length(num.vec)) { # START LOOPING VECTOR
if (min(num.vec[i] %) primes !'= 0)) # EVALUATE CURRENT VALUE
primes <- c(primes,num.vec[i]) # ADD TO PRIMES VECTOR
+
return(c(1,2,primes)) # RETURN TO USER

find.primes(200)

[1] 1 2 3 b 7 11 13 17v 19 23 29 31 37 41 43 47 b3 59 61 67
[21] 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167
[41] 173 179 181 191 193 197 199

Division of Biostatistics R Primer, Jeff Gill [27]

Lab Assignment

» Write a function to produce the first max Fibanacci numbers.
» The series starts with: 0,1,1,2,3,5,8,13,....

» Modify your function to return only the primes from this series.

Division of Biostatistics R Primer, Jeff Gill [28]

The Gibbs Sampler

> Consider two exponential pdfs with parameters conditional on each other:
f(zly) oc yexp[—yz], f(y|z) oc zexp[—zy], 0<z,y <B < oo.
where we want to describe the marginal distributions of x and .

¢ For two parameters, = and y, this involves a starting point, [xg, 7], and the cycles defined by
drawing random values from the conditionals according to:

x1 ~ f(x|yo), y1 ~ f(ylr1)
xo ~ f(x|y1), y2 ~ f(ylwa)

I3 ~ f(x\yg), Ys ~ f(y!ﬂ??))

T ~ [(2|Ym—1), Ym ~ f(Y|Tm).

Division of Biostatistics R Primer, Jeff Gill [29]

The Gibbs Sampler, Conditional Exponential Distributions

gibbs.expo <- function(B,m) {
x <= c(runif(1,0,B),rep((B+1),length=(m-1)))
y <= c(runif(1,0,B),rep((B+1),length=(m-1)))
for (i in 2:m) <
while(x[i] > B) x[i] <- rexp(l,y[i-1])
while(y[i] > B) yl[i] <- rexp(1l,x[i])
+
return(cbind(x,y))

gibbs.expo(B=5, m=500)

Division of Biostatistics R Primer, Jeff Gill [30]

The Gibbs Sampler (cont.)

Division of Biostatistics R Primer, Jefl’ Gill [31]
) L J

A Smoothers As Nonparametric Displays of Bivariate Relationships

» Smoothers are graph-
ical ways to show
generally non-linear
relationships in data
without having to
give a parametric or
functional form.

» This is a very ac-
tive area In research
statistics.

Division of Biostatistics 3 Primer, Jefl’ Gill [32)]

Kernel Smoothers

» An extension of the running-line smoother where explicit weights are included in the smoothing
function s().

» Standard idea: weight the points closer to x; more than remote points.

» Pick £ points to the left and & points to the right of the x; point, producing a neighborhood size
of 2k + 1.

» Define the jth weight for the ith point as the function:
wij = Cd (

> ¢ is a normalizing constant such that [s(u)du = 1:

1=1

Q?i—Ij

A

) for 7 € Ny 1, 0 otherwise

where:

ZCZ'—ZUJ'

A

)

> A is the window width: 2k + 1,

> and d(t) is a decreasing function in t = |x; — x| /\.

Division of Biostatistics 3 Primer, Jefl’ Gill [33]

Kernel Smoothers

» So the smoothed y-axis point is:

2k+1

y =S yz’X Z WijYi-

» Common forms:

d(t) = ¢(t) |Gaussian|
4
2(1—1¢%), | <1
d(t) = < il S [Epanechnikov]
L0, otherwise
(3(3—52), |t| <1
d(t) = < o) 18 < [minimum variance]
0, otherwise

\

» Others: box, triangle, Parzen, miscellancous polynomials.

Division of Biostatistics 3 Primer, Jefl’ Gill [54]

Kernel Smoothers

» Using the R function ksmooth:

par (mfrow=c(1,1) ,mar=c(5,5,5,5) ,bg="lemonchiffon")

plot (x0,y0,pch="+",1wd=1,xlab="Per Capita Income",ylab="Body Mass Index")
lines(ksmooth(x0,y0,kern="normal" ,bandwidth=4) ,col="navy")

mtext (side=3,cex=1.3,1line=2,"Gaussian Kernel Smoother")

Division of Biostatistics R Primer, Jeft’ Gill [56]

Kernel Smoothers

><
D
=]
<
©n
171
<
=

>
=]
=1
o

50

Per Capita Income

Division of Biostatistics 3 Primer, Jefl Gill [36]

Kernel Smoothers, Rolling Our Own

epan <- function(x) ifelse(abs(x) <= 1, 0.75%x(1-x72), 0)

k.sm <- function(x,y,k) {
S.y <—-y
for (i in 1:length(x)) {
lo <- ifelse(i-k >= 1, i-k, 1)
hi <- ifelse(i+k <= length(x), i+k, length(x))
w <- epan(x[i] - x[lo:hi])/sum(epan(x[i] - x[lo:hi]))
s.y[i] <= y[lo:hi] %*% w

Division of Biostatistics 3 Primer, Jefl Gill [37]

Kernel Smoothers, Rolling Our Own

X <- seq(0,10,length=100)

Y <- sin(X) + rnorm(length(X),0,0.3)

par (mar=c(3,3,1,1),col.axis="white",col.lab="white",col.sub="white",
col="white",bg="slategray")

plot (X,Y,pch="+")

for (j in c(1,5,10)) lines(X,k.sm(X,Y,j),col=colors() [3+24%*j],1ty=],1lwd=2)

Division of Biostatistics R Primer, Jefl’ Gill [38]
) L J

Kernel Smoothers, Rolling Our Own

Division of Biostatistics 3 Primer, Jefl’ Gill [39]

Lab Assignment

» Write a minimum variance function:

3
d(t) = 3850, [t <1
instead of the Epanechnikov function by modifying it.

» Modify the k.sm function to to call your mininum variance function.

» Produce a graph with the fake data just given.

Division of Biostatistics 3 Primer, Jefl’ Gill [40]

Different Ways To Write the Same Function

frobenius <- function(in.mat) <{

Frob <- 0 # START WITH ZERO
for (i in 1:nrow(in.mat)) # LOOP THROUGH ROWS
for (j in 1:ncol(in.mat)) # LOOP THROUGH COLUMNS
Frob <- Frob + in.mat[i,j]"2 # ADD SQUARED VALUES
Frob~ (1/2) # RETURN SQUARE ROQOT

frobenius <- function(in.mat) (sum(diag(in.mat%*%t(in.mat))))"~(1/2)

X <- matrix(c(5,2,3,2.99,2,1,2,1,5,2,3,3),4,3)
frobenius (X)
[1] 10.195

Division of Biostatistics R Primer, Jeft’ Gill [47]

General Guidance For Writing Functions

» Insert comments, even if your instructor doesn’t very much.

» First solve a basic core problem, particularly for complex settings.
» Modularize as much as possible: functions calling other functions.
» Corollary 1: avoid rewriting the same code.

» Corollary 2: test sub-functions first.

» Contrive fake data where you know the answer to test your code.
» Use print statements when problems occur.

» Use meaningful variable and function names.

Division of Biostatistics R Primer, Jeft’ Gill [42]

Writing Functions For Others To Use (including yourself in 6 months)

» Make the call and the variable definitions as clear as possible.
» Use checking: stop, stopifnot (), warning().
» Consider writing an R package if it is something really useful and unique.

» Don’t expect others (even coauthors!) to understand the inner guts of your code without help.

Division of Biostatistics R Primer, Jeft’ Gill [43]

Lab Assignment

» Using the hemodialysis data, write a function that summarizes the data for tobacco users.
» First search on the tobacco variable for 1 rather than 0.
» Create a new data frame to store these cases.

» Summarize each variable across columns for these cases.

