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Abstract. Penalized regression methods for simultaneous variable selection and

coefficient estimation, especially those based on the lasso of Tibshirani (1996),

have received a great deal of attention in recent years, mostly through frequen-

tist models. Properties such as consistency have been studied, and are achieved

by different lasso variations. Here we look at a fully Bayesian formulation of the

problem, which is flexible enough to encompass most versions of the lasso that

have been previously considered. The advantages of the hierarchical Bayesian for-

mulations are many. In addition to the usual ease-of-interpretation of hierarchical

models, the Bayesian formulation produces valid standard errors (which can be

problematic for the frequentist lasso), and is based on a geometrically ergodic

Markov chain. We compare the performance of the Bayesian lassos to their fre-

quentist counterparts using simulations, data sets that previous lasso papers have

used, and a difficult modeling problem for predicting the collapse of governments

around the world. In terms of prediction mean squared error, the Bayesian lasso

performance is similar to and, in some cases, better than, the frequentist lasso.

Keywords: Hierarchical Models, Gibbs Sampling, Geometric Ergodicity, Variable

Selection

c© 2004 International Society for Bayesian Analysis ba0001



2 Bayesian Lassos

1 Introduction

A large amount of effort has gone into the development of penalized regression methods

for simultaneous variable selection and coefficient estimation. In practice, even if the

sample size is small, a large number of predictors is typically included to mitigate mod-

eling biases. With such a large number of predictors, there might exist problems among

explanatory variables, in particular, there could be a problem with multicollinearity.

Also, with a large number of predictors there is often a desire to select a smaller subset

that not only fits as well as the full set of variables, but also contains the more impor-

tant predictors. Such concerns have led to prominent development of least squares (LS)

regression methods with various penalties to discover relevant explanatory factors and

to get higher prediction accuracy in linear regression.

We consider a linear regression model with n observations on a dependent variable

Y and p predictors:

y = µ1n + Xβ + ǫ, (1)

where y = (y1, . . . , yn)′, X = (X1, X2, . . . , Xp) is the n × p matrix of standardized

regressors, β = (β1, . . . , βp)
′ and ǫ ∼ Nn

(

0, σ2I
)

. Penalized regression approaches have

been used in cases where p < n, and in the ever-more-common case with p ≫ n. In

the former case, penalized regression, and its accompanying variable selection features,

can lead to finding smaller groups of variables with good prediction accuracy. If p ≫ n,

ordinary least-squares regression (OLS), which minimizes RSS= (ỹ − Xβ)
′
(ỹ − Xβ)

where ỹ = y − ȳ1n, will yield an estimator that is not unique since X is not of full

rank. Moreover, the variances will be artificially large. Here, again, penalized regression

approaches can guide us to good subsets of predictors.

We are going to address both of these cases through a Bayesian approach to penalized

regression. However, we are not specifically interested in variable selection, but rather in

accurate prediction and determining which predictors are meaningful. That is, typically

substantive subject-matter conclusions are based on the interpretation of coefficient

estimates, and uncovering meaningful coefficients is a desired outcome of any model

fitting approach.

1.1 Penalized Regression

To achieve better prediction in the face of multicollinearity, Hoerl and Kennard (1970)

proposed ridge regression, which minimizes RSS subject to
∑p

i=1 |βj |2 ≤ t (L2 norm).
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For the problem of multicollinearity, ridge regression improves the prediction perfor-

mance, but it cannot produce a model with only the relevant predictors. Frank and

Friedman (1993) introduced bridge regression, which minimizes RSS subject to
∑p

i=1 |βj |γ ≤
t with γ ≥ 0. The estimator from bridge regression is not explicit, but Frank and Fried-

man argued that the optimal choice of the parameter γ yields reasonable predictors.

This is because it controls the degree of preference for the true coefficient β to align

with the original variable axis directions in the predictor space. Fan and Li (2001)

proposed the Smoothly Clipped Absolute Deviation (SCAD) penalty for penalized least

squares to reduce bias and satisfy certain conditions to yield continuous solutions. Also,

they derived the fixed tuning parameter asymptotic distribution of the estimator and

showed that the estimator satisfies the oracle property (consistent model selection).

Among methods that do both continuous shrinkage and variable selection, a promis-

ing technique called the Least Absolute Shrinkage and Selection Operator (lasso) was

proposed by Tibshirani (1996). The lasso is a penalized least squares procedure that

minimizes RSS subject to the non-differentiable constraint expressed in terms of the L1

norm of the coefficients. That is, the lasso estimator is given by

β̂L = argmin
β

(ỹ − Xβ)′ (ỹ − Xβ) + λ

p
∑

j=1

|βj | (2)

where ỹ = y − ȳ1n, X is the matrix of standardized regressors and λ ≥ 0 is a tuning

parameter. Fu (1998) compared the lasso, ridge regression and bridge regression using

the criteria of prediction performance. He argued that because of the nonlinearity of

the bridge operator, the bridge model does not always perform the best in estimation

and prediction compared to the other shrinkage models - the lasso and ridge regression.

Knight and Fu (2000) have shown consistency for lasso type estimators (generally bridge

estimators) with fixed p under some regularity conditions on the design. They obtained

the asymptotic normal distribution with a fixed true parameter β and local asymptotics,

that is, when the true parameter is small but nonzero in finite samples. Also, they

derived asymptotic properties of lasso type estimators under nearly singular design

matrices.

For the computation of the lasso, Osborne et al. (2000a) proposed two algorithms.

A compact descent algorithm was derived to solve the selection problem for a particular

value of the tuning parameter, then a homotopy method for the tuning parameter was

developed to completely describe the possible selection. Later, Efron et al. (2004)

proposed Least Angle Regression Selection (LARS) for a model selection algorithm.

They showed that with a simple modification, the LARS algorithm implements the
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lasso, and one of the advantages of LARS is the short computation time compared to

other methods.

For efficiently selecting the optimal fit, the effective degrees of freedom of the lasso

was studied by Efron et al. (2004). They discovered that the size of the active set

(the indices corresponding to covariates to be chosen) can be used as a measure of the

degrees of freedom, which changes, not necessarily monotonically, along the solution

paths of LARS. Zou et al. (2007) improved this and showed that the number of nonzero

coefficients is an unbiased estimate for degrees of freedom of the lasso. In addition,

Zou et al. (2007) showed that the unbiased estimator is asymptotically consistent, thus

various model selection criteria can be used with the LARS algorithm for the optimal

lasso fit.

1.2 Generalizations of the Lasso

The lasso has shown excellent performance in many situations, however it has some

limitations. As Tibshirani (1996) argued, if there exists multicollinearity among pre-

dictors, ridge regression dominates the lasso in prediction performance. Also, in the

p > n case, the lasso cannot select more than n variables because it is the solution

to a convex optimization problem. If there is a meaningful ordering of the features

(such as specification of consecutive predictors), the lasso ignores it. Furthermore, if

there is a group of variables among which the pairwise correlations are very high and

if we consider the problem of selecting grouped variables for accurate prediction, the

lasso tends to select individual variables from the group or the grouped variables (for

example, dummy variables).

To compensate the ordering limitations of the lasso, Tibshirani et al. (2005) intro-

duced the fused lasso. The fused lasso penalizes the L1-norm of both the coefficients

and their differences:

β̂F = argmin
β

(ỹ − Xβ)′ (ỹ − Xβ) + λ1

p
∑

j=1

|βj | + λ2

p
∑

j=2

|βj − βj−1|,

where λ1 and λ2 are tuning parameters. They provided the theoretical asymptotic

limiting distribution and a degrees of freedom estimator.

For grouped variables, Yuan and Lin (2006) proposed a generalized lasso that is
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called the group lasso. The group lasso estimator is defined as

β̂G = arg min
β

(

ỹ −
K
∑

k=1

Xkβk

)′(

ỹ −
K
∑

k=1

Xkβk

)

+ λ

K
∑

k=1

||βk||Gk
,

where K is the number of groups, βk is the vector of βs in group k, the Gk’s are given

positive definite matrices and ||β||G = (β′Gβ)
1/2

. In general, Gk = Imk
, where mk

is the size of the coefficient vector in group k. This penalty function is intermediate

between the L1 penalty and the L2 penalty. Yuan and Lin (2006) argued that it does

variable selection at the group level and is invariant under orthogonal transformations.

Zou and Hastie (2005) proposed the elastic net, a new regularization of the lasso,

for an unknown group of variables and for multicollinear predictors. The elastic net

estimator can be expressed as

β̂EN = argmin
β

(ỹ − Xβ)′ (ỹ − Xβ) + λ1

p
∑

j=1

|βj | + λ2

p
∑

j=1

|βj |2,

where λ1 and λ2 are tuning parameters. The elastic net estimator can be interpreted as a

stabilized version of the lasso. Thus, it enjoys a sparsity of representation and encourages

a grouping effect. Also, it is useful when p ≫ n. They provided the algorithm LARS-EN

to solve the elastic net efficiently based on LARS of Efron et al. (2004).

Fan and Li (2001) showed that the lasso can perform automatic variable selection

but it produces biased estimates for the larger coefficients. Thus, they argued that the

oracle properties do not hold for the lasso. To obtain the oracle property, Zou (2006)

introduced the adaptive lasso estimator as

β̂AL = argmin
β

(ỹ − Xβ)
′
(ỹ − Xβ) + λ

p
∑

j=1

ŵj |βj |,

with the weight vector ŵ = 1/|β̂|γ where β̂ is a
√

n consistent estimator such as

β̂(OLS) and γ > 0. The adaptive lasso enjoys the oracle property and it leads to a

near-minimax-optimal estimator.

Many other lasso variations exist that we will not directly address here. For exam-

ple, Kim et al. (2006) proposed an extension of the group lasso, called blockwise sparse

regression (BSR), and studied it for logistic regression models, Poisson regression and

the proportional hazards model. Park and Hastie (2007) introduced a path following

algorithm for L1 regularized generalized linear models, and provided computational so-

lutions along the entire regularization path by using the predictor-corrector method of
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convex optimization. Balakrishnan and Madigan (2007) proposed a data-driven ap-

proach, the lasso with attribute partition search (LAPS) algorithm, by combining the

fused lasso and the group lasso in particular types of structure classification problems.

Recently, Meier et al. (2008) presented algorithms which are suitable for very high

dimensional problems for solving the convex optimization problems, and showed that

the group lasso estimator for logistic regression is statistically consistent with a sparse

true underlying structure even if p ≫ n.

1.3 The Bayesian Lasso

Tibshirani (1996) noted that with the L1 penalty term in (2), the lasso estimates

could be interpreted as the Bayes posterior mode under independent Laplace (double-

exponential) priors for the βjs. One of the advantages of the Laplace distribution is

that it can be expressed as a scale mixture of normal distributions with independent

exponentially distributed variances (Andrews and Mallows, 1974). This connection

encouraged a few authors to use Laplace priors in a hierarchical Bayesian approach.

Figueiredo (2003) used the Laplace prior to obtain sparsity in supervised learning using

an EM algorithm. In the Bayesian setting, the Laplace prior suggests the hierarchical

representation of the full model. Bae and Mallick (2004) adopted a Markov chain Monte

Carlo (MCMC) based computation with the hierarchical representation of the Laplace

prior in a gene selection problem.

Recently, Park and Casella (2008) suggested Gibbs sampling for the lasso with the

Laplace prior in the hierarchical model. Specifically, they considered a fully Bayesian

analysis using a conditional Laplace prior specification of the form

π(β|σ2) =

p
∏

j=1

λ

2σ
e−λ|βj|/σ (3)

and the noninformative scale-invariant marginal prior π(σ2) = 1/σ2. They pointed out

that conditioning on σ2 is important because it guarantees a unimodal full posterior.

Lack of unimodality slows convergence of the Gibbs sampler and makes point estimates

less meaningful.

Other Bayes methods with a Laplace prior have been developed for the lasso. Yuan

and Lin (2005) proposed an empirical Bayes method for variable selection and estimation

in linear regression models using approximations to posterior model probabilities that

are based on orthogonal designs. Their method is based on a hierarchical Bayesian

formulation with Laplace prior and showed that the empirical Bayes estimator is closely
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related to the lasso estimator. Genkin et al. (2007) presented a simple Bayesian logistic

lasso with Laplace prior to avoid overfitting and produce sparse predictive models for

text data, and Raman et al. used a Bayesian group lasso for a contingency table analysis.

1.4 Model Selection and Estimation

In traditional statistical data analysis, after the optimal model is found, the subsequent

inference is considered. It is well known that AIC and BIC possess different asymptotic

optimality, that is, BIC is consistent in selecting the true model and AIC is minimax-rate

optimal for estimating the regression function.

In adaptive model selection such as the lasso or bridge regression, in contrast to AIC

and BIC, the penalty term is data-dependent. Some theoretical and empirical results

have been obtained in support of adaptive model selection. Although the results of Yang

(2005) suggest that there still might be a dichotomy, this may be more of a pathology

than a statistical concern (Casella and Consonni 2009). However, the results of Leeb and

Pötscher (2005) also suggest that the distributional properties of post-model-selection

estimators are quite intricate, and are not properly captured by the usual pointwise

large-sample analysis using the maximal scaled mean squared error (MSE) and the

maximal absolute bias.

All this leads use to the fact that we may not have reliable standard errors for

the zero coefficients in penalized regression models. Both the approximate covariance

matrix and the bootstrap methods might not improve the problem. If prediction is the

ultimate goal, and the model-selector/predictor is being used as a predictor, we thus

become more interested in the standard errors of our predictions (and less interested in

selecting the optimal model).

Of course, in the context of a procedure like the lasso, the model selector is, in fact,

nothing more than a point estimate. In a Bayesian analysis using MCMC, we have a

sample from the posterior distribution which we can summarize in any way we please.

For example, we could must report the posterior density, or the mean and standard

deviation. Alternatively, we could use the posterior mode as a point estimator and,

in the hierarchies that we will present, this mode is exactly the lasso point estimate.

Moreover, as we can validly summarize the spread of the posterior, we have a valid

measure of variability.
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1.5 Summary

In this paper, we use hierarchical models and Gibbs sampling to get estimators and

valid Bayesian standard errors for generalized lasso estimators. In Section 2 we look at

standard errors of the lasso, seeing that the bootstrap is not a straightforward option of

putting errors on the coefficient estimates. The hierarchical models resulting in group,

fused and elastic net are developed in Section 3, and in Section 4 we show that the

Markov chains are geometrically ergodic. We compare the Bayesian lassos to their

frequentist counterparts in Section 5, using simulations and data sets that previous

lasso papers have used. There is a discussion in Section 6, and technical details are in

the Appendices.

2 Standard Errors of the Lasso

For inference using the lasso estimator, various standard error estimators have been

proposed. Fan and Li (2001) presented the sandwich formula in the likelihood setting

as an estimator for the covariance of the estimates. Building on their work, Zou (2006)

derived a sandwich formula for the adaptive lasso. However, all of the above approximate

covariance matrices give an estimated variance 0 for predictors with β̂j = 0.

Osborne et al. (2000b) derived an estimate of the covariance matrix of lasso esti-

mators that yields a positive standard error for all coefficient estimates. They pointed

out that, nevertheless, since the distribution of individual lasso coefficient estimates

will typically have a concentration of probability at zero, the estimates may be far from

normally distributed. More recently, Pötscher and Leeb (2007) studied the distribution

of penalized likelihood estimators (lasso, SCAD and thresholding) and showed that the

finite sample distribution of soft thresholding (lasso) is a mixture of a singular normal

distribution and of an absolutely continuous part, which is the sum of two normal densi-

ties, each with a truncated tail. The truncation is at the location of the point mass at 0.

Thus, the suggested estimators might not yield reasonable estimates for the covariance

matrix of β.

Instead of the approximate covariance matrix, as Tibshirani (1996) suggested, an

alternative method of computing standard errors is the bootstrap. To study the behavior

of the bootstrap estimates of the standard error of β̂, we conducted a simple simulation

based on the finite sample lasso distribution of Pötscher and Leeb (2007). We set a

univariate β = 0.16 and generated a sample of size n = 100 from a normal distribution
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Figure 1: Histogram of the bootstrapped estimates of β where a sample of size

100 is drawn with true β = 0.16, and 100, 000 bootstrap samples were used to

estimate the distribution. The dashed lines are density estimators fitted to the

bootstrapped values and the solid lines are the exact distribution of the lasso

estimate, which has a spike at zero represented by the red line. For the exact

distribution the left panel uses a fixed λ = 0.05, and the right panel fixes λ = 0.19,

the GCV estimate.

Fixed Value of λ. λ Estimated by GCV.

with mean β and variance 1. We estimate the lasso in this setting and use bootstrapping

for re-sampling of the lasso estimate. We also consider two settings for the parameter of

penalty term, λ: λ is fixed at 0.05 and is estimated with the generalized cross-validation

(GCV), λ̂ = 0.19. The histograms of the bootstrapped estimates are given in Figure 1.

In Figure 1, the true density is based on the finite sample distribution of the lasso

from Pötscher and Leeb (2007). We observe that there are big peaks at the discontinuity

points −n1/2β = −1.6 and the distributions of the two histograms are highly non-

normal. If we estimate λ by using GCV, most of bootstrap samples are in the area near

around −n1/2β = −1.6.

Samworth (2003) looked into the relation of pointwise asymptotics of consistency of

bootstrap estimators and their finite sample behavior. He noted that the asymptotics

can mask the finite-sample behavior, and inconsistent bootstrap estimators may in fact
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perform better than their consistent counterparts. He illustrated this point with ref-

erence to the parametric bootstrap and the Hodges-Lehmann super-efficient estimator

(for details see Lehmann and Casella, 1998) and Stein estimators. However, he ar-

gued that the inconsistent bootstrap of the super-efficient Hodges-Lehmann estimator,

and of the Stein estimator, can only be improved in a very small neighborhood, and

the improvements come at the expense of considerably worse performance outside this

neighborhood.

Knight and Fu (2000) argued that the bootstrap may have some problems in esti-

mating the sampling distribution of bridge estimators for γ ≤ 1 when the true parameter

values are either exactly 0 or close to 0; in such cases, bootstrap sampling introduces

a bias that does not vanish asymptotically. Also, they argued that the suggested stan-

dard error estimates for the bridge parameter estimates is nontrivial especially when

γ ≤ 1. (Bridge regression with γ = 1 is the lasso.). Thus, bootstrap estimates of

the standard error may cause problems in practice. Problems were also uncovered by

Leeb and Pötscher(2006) who detailed problems in estimating measures of precision of

shrinkage-type estimators, such as James-Stein, lasso-type, and Hodges’ super-efficient

estimators. Lastly, Beran (1982) discussed the bootstrap estimate of the distribution

function of statistics whose asymptotic distribution is normal. He showed that under

certain assumptions the bootstrap estimate is asymptotically minimax. However, he

proved that for a superefficient estimator, the bootstrap estimates are not consistent if

the true parameter is fixed at the point of superefficiency.

From these findings, we see that the bootstrap estimates of the standard error of the

lasso estimator might be unstable and not perform well. In fact, we can use the results

of Knight and Fu (2000) together with those of Beran (1982) to formally establish that

the bootstrap estimates based on the lasso are not consistent if the true β = 0.

Proposition 1 Under model (1), the bootstrap standard errors of β̂j are inconsistent

if βj = 0.

Proof: Details in Appendix 1

Thus, the bootstrap does not allow us to attach valid standard error estimates to

the values of the lasso that are shrunk to zero, in the sense that these estimators are

inconsistent. In this sense we still do not have a general, statistically valid method of

obtaining standard errors of lasso estimates.
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Table 1: Penalty terms for the four types of lasso in model (4).

Model λ1 λ2 h1(β) h2(β)

lasso λ 0
∑p

j=1 |βj | 0

Group lasso λ 0
∑K

k=1 ||β||G 0

positive definite Gk’s and ||β||G = (β′Gβ)
1/2

Fused lasso λ1 λ2

∑p
j=1 |βj |

∑p
j=2 |βj − βj−1|

Elastic net λ1 λ2

∑p
j=1 |βj |

∑p
j=2 |βj |2

3 Hierarchical Models and Gibbs Samplers

The hierarchical representation of the full model, with the Laplace prior written as a

scale mixture of normals with an exponential mixing density, was suggested by Park

and Casella (2008). In this paper, we extend this model to a more general form that

can represent the group lasso, the fused lasso, and the elastic net.

We first exhibit the hierarchical models that lead to the various types of lasso,

and indicate a general strategy that may handle the new lassos that are sure to come.

Technical calculations are deferred to Appendix 2. In Section 3.2 we address the problem

of estimating the ubiquitous tuning parameters.

A general version of the lasso model can be expressed as

β̂ = argmin
β

(ỹ − Xβ)′(ỹ − Xβ) + λ1h1(β) + λ2h2(β) λ1, λ2 > 0, (4)

where the specific choices of h1(β) and h2(β) are given in Table 1. Other penalized

regression models can be expressed similarly. However, in this paper, we consider the

above four models.

The Bayesian formulation of the original lasso, as given in Park and Casella (2008),

is given by the following hierarchical model.

y | µ, X, β, σ2 ∼ Nn

(

µ1n + Xβ, σ2In
)

β | σ2, τ2
1 , . . . , τ2

p ∼ Np

(

0p, σ
2Dτ

)

, Dτ = diag(τ2
1 , . . . , τ2

p ) (5)

τ2
1 , . . . , τ2

p ∼
p
∏

j=1

λ2

2
e−λ2τ2

j /2 dτ2
j , τ2

1 , . . . , τ2
p > 0

σ2 ∼ π(σ2) dσ2 σ2 > 0
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The parameter µ may be given an independent, flat prior, and posterior propriety can

be maintained. After integrating out τ2
1 , . . . , τ2

p , the conditional prior on β has the

desired form (3). Any inverted gamma prior for σ2 would maintain conjugacy, but here

we will use the improper prior density π(σ2) = 1/σ2, with which we also can maintain

propriety. Also note that we are using a conditional version of Laplace distribution, that

is, the resulting prior on β is a Laplace distribution with mean 0 and variance σ2λ−2.

This variation assures unimodality of the posterior (Park and Casella 2008) while the

unconditional version (without σ2) does not.

3.1 Hierarchical Models

We now turn to the other types of lasso, and show how to represent them as a conjugate

Bayesian hierarchy. For each model we describe the unconditional prior on β, and how

to represent it as a normal mixture with β ∼ N(0, Σβ), where Σβ is parametrized

with τis. We only need to specify the covariance matrix of β, denote by Σβ , and the

distribution of the τi.

For the lasso, group lasso, and fused lasso, the covariance matrix Σβ contains only

τis and no λs. This not only results in β and λ being conditionally independent, it is

important for the Gibbs sampler as it results in gamma conditionals for the λs. This

is not the case for the elastic net; to accommodate the squared term we will need to

put λ2 in Σβ . However, because of the normal form, this will also cause no problem for

the Gibbs sampler. In this section we will only give the forms of the models; details on

posterior distributions and Gibbs sampling are left to Appendix 2

Hierarchical Group Lasso In penalized linear regression with the group lasso, the con-

ditional prior of β|σ2 can be expressed as

π(β|σ2) ∝ exp

(

−λ

σ

K
∑

k=1

||βGk
||
)

.

This prior can be attained as a gamma mixture of normals, leading to the group lasso

hierarchy

y | µ, X, β, σ2 ∼ Nn

(

µ1n + Xβ, σ2In
)

βGk
|σ2, τ2

k
ind∼ Nmk

(

0, σ2τ2
kImk

)

(6)

τ2
k

ind∼ gamma

(

mk + 1

2
,
λ2

2

)

for k = 1, . . . , K
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where mk is the dimension of Gk, the grouping matrix. Note that for the group lasso

we need to use a gamma prior on the τi, but the calculations are quite similar to those

of the ordinary lasso. Details of the model are discussed in Appendix 2.3.

Hierarchical Fused Lasso In penalized linear regression with the fused lasso, the con-

ditional prior of β|σ2 can be expressed as

π(β|σ2) ∝ exp



−λ1

σ

p
∑

j=1

|βj | −
λ2

σ

p−1
∑

j=1

|βj+1 − βj |



 . (7)

This prior can also be obtained as a gamma mixture of normals, leading to the hierar-

chical model

y | µ, X, β, σ2 ∼ Nn

(

µ1n + Xβ, σ2In
)

β|σ2, τ2
1 , . . . , τ2

p , ω2
1 , . . . , ω

2
p−1 ∼ Np

(

0, σ2Σβ

)

(8)

τ2
1 , . . . , τ2

p ∼
p
∏

j=1

λ2
1

2
e−λ1τ2

j /2 dτ2
j , τ2

1 , . . . , τ2
p > 0

ω2
1 , . . . , ω

2
p−1 ∼

p−1
∏

j=1

λ2
2

2
e−λ2ω2

j /2 dω2
j , ω2

1 , . . . , ω
2
p−1 > 0

where τ2
1 , . . . , τ2

p , ω2
1 . . . , ω2

p−1 are mutually independent, and Σβ is a tridiagonal matrix

with

Main diagonal =

{

1

τ2
i

+
1

ω2
i−1

+
1

ω2
i

, i = 1, . . . , p

}

,

Off diagonals =

{

− 1

ω2
i

, i = 1, . . . , p − 1

}

,

where, for convenience, we define (1/ω2
0) = (1/ω2

p) = 0.

Here for the first time we have correlation in the prior for β, adding some difficulty

to the calculations. Details about the derivation of the fused lasso prior and it Gibbs

sampler are discussed in Appendix 2.4.

Hierarchical Elastic Net In penalized linear regression with the elastic net, the condi-

tional prior of β|σ2 can be expressed as

π
(

β|σ2
)

∝ exp







−λ1

σ

p
∑

j=1

|βj | −
λ2

2σ2

p
∑

j=1

β2
j







. (9)
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This prior can also be written as a normal mixture of gammas, leading to the hierarchical

model

y | µ, X, β, σ2 ∼ Nn

(

µ1n + Xβ, σ2In
)

β | σ2, D∗
τ ∼ Np(0p, σ

2D∗
τ ), (10)

τ2
1 , . . . , τ2

p ∼
p
∏

j=1

λ2
1

2
e−λ2

1τ2
j /2 dτ2

j , τ2
1 , . . . , τ2

p > 0,

where D∗
τ is a diagonal matrix with diagonal elements (τ−2

i + λ2)
−1, i = 1. . . . , p. Note

that, in this case, β is not conditionally independent of λ2, as it appears in the covariance

matrix. However, as this term comes into the exponent of the posterior as a “normal”

component, the Gibbs sampler is still straightforward. Details are in Appendix 2.5.

3.2 Tuning Parameters

The lassos of the previous section all have tuning parameters λ1 or λ2. Typical ap-

proaches for estimation of these parameters are cross-validation, generalized cross-

validation and ideas based on Stein’s unbiased risk estimate (Tibshirani, 1996). In

the Bayesian framework, Park and Casella (2008) suggested some alternatives based on

empirical Bayes using marginal maximum likelihood, putting λ1 or λ2 into the Gibbs

sampler with an appropriate hyperprior. In this paper, we use the suggested gamma

prior for a proper posterior from Park and Casella (2008), and also for comparison,

estimate the tuning parameters with marginal maximum likelihood.

We use gamma priors on λ2 given by

π(λ2) =
δr

Γ(r)

(

λ2
)r−1

e−δλ2

, (r > 0, δ > 0). (11)

The prior is put on λ2 for convenience - because of the way λ enters into the posterior.

The one exception is the λ2 parameter in the elastic net. As that parameter refers to

the normal piece of the prior on β, it is given a typical gamma prior. (It enters as a rate

parameter, so a gamma prior on the rate is equivalent to the usual conjugate inverted

gamma prior on the variance.)

When the prior (11) is used in the hierarchy, the full conditional distributions of all

the λs are gamma distributions, and are listed in Appendix 2.

The tuning parameters can also be estimated through marginal likelihood, which

can be implemented with an EM/Gibbs algorithm (Casella, 2001). This approach was
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also used by Park and Casella (2008), where more details about the empirical Bayes

update of the hyperparameters are discussed. In our setting and notation, iteration

t uses the output from the Gibbs sampler with hyperparameter λ2(t−1) (the estimate

from iteration t − 1) to update the estimate λ2(t). Details are given in Appendix 2.

4 The Lasso Gibbs Sampler

In this section we investigate the convergence properties of the Gibbs sampler from the

Bayesian lasso (5) and, by simple extension, the convergence of the Gibbs samplers

of the other lassos that we consider. We use the convergence relationship between

joint and marginal models, first developed by Liu, Wong and Kong (1994), to adapt

the results of Hobert and Geyer (1998) to the hierarchy considered here. Specifically,

Hobert and Geyer (1998) proved geometric ergodicity of the block Gibbs sampler in a

oneway random effects model with conjugate priors. We adapt their proof to a oneway

random effects model that reflects the lasso priors. We then show that the hierarchy (5)

can be obtained as a marginal model from this oneway random effects model. Lastly, we

adapt and extend the results of Liu, Wong and Kong (1994) to bound the convergence

rate of the lasso Gibbs sampler.

If we just consider a oneway model on Y and θ, a regression model such as in (5)

can be obtained as a marginal model. Specifically, start with

y ∼ N
(

θ, λ−1
e I

)

, θ ∼ N (1µ, Σθ) (12)

and make the transformation θ → 1µ + Xβ + X̂η where X ′1 = X̂ ′1 = X̂ ′X = 0, and

take Σθ to be of the form

Σ−1
θ = λ0J + XAX ′ + X̂X̂ ′, (13)

where J is the matrix of 1s, Dτ is the covariance matrix of the βs in (5), and A =

(λ/σ2)(X ′X)−1D−1
τ (X ′X)−1. These choices zero out all the difficult cross terms when

||y − 1µ − Xβ − X̂η||2 is expanded, and when η is integrated out; what remains is

y ∼ Nn

(

µ1n + Xβ, σ2In

)

, β ∼ Np

(

0p,
σ2

λ Dτ

)

. Thus, the lasso is a marginal model

when starting with a oneway random effects model.

Liu, Wong and Kong (1994) compare convergence rates of the following two scans

1. x1|y, y|x1

2. (x1, x2)|y, y|(x1, x2),
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where the first scan is based on the marginal distribution of (x1, y), when x2 has been

integrated out. Note that, from the above discussion, this is exactly the situation

that will occur when we apply a Gibbs sampler to the models in Section 3. Taking

(x1, x2) = θ = (β, η), and y the vector of variances, scan (1) is in the form of the

Gibbs sampler for the lasso, while scan (2) is the Gibbs sampler of the oneway model.

Liu, Wong and Kong (1994) (Theorem 5.1) state that the operator norm of scan (1) is

less than or equal to the operator norm of scan (2), implying that scan (1) is better.

However, we can say a bit more. For reversible chains, as are (1) and (2), the chain

is geometrically ergodic if and only if the operator norm is less than one (Roberts and

Rosenthal, 1997; Roberts and Tweedie, 2001). Thus, if scan (2) is geometrically ergodic,

then so is scan (1). We can further bound the total variation norm, where we recall

that the total variation norm between two distributions P and Q is

||P (·) − Q(·)|| = sup
A

|P (A) − Q(A)| =
1

2

∫

X
|p(x) − q(x)|dx.

Denote the transition kernel of scan (2) by K((x1, x2, y), ·) with stationary distribution

π(x1, x2, y). Then scan (1) has transition kernel K((x1, y), ·) =
∫

X2
K((x1, x2, y), ·) dx2

with stationary distribution π(x1, y) =
∫

π(x1, x2, y)dx2.

Proposition 2 The n-step transition kernels of the scans (1) and (2) have the rela-

tionship

||Kn((x1, y), ·) − π(·)|| ≤
∫

X2

||Kn((x1, x2, y), ·) − π(·)||f(x2|x1)dx2,

where f(x2|x1) is the conditional distribution of x2|x1.

Thus, the total variation norm of scan (1) is bounded by integrating the total varia-

tion norm of scan (2) over all possible initial values of the variable x2, weighting by

the conditional distribution of x2|x1. If scan (2) is geometrically ergodic with bound

ρnM(x1, x2, y), then ρn
∫

M(x1, x2, y)f(x2|x1)dx2 bounds the total variation norm of

scan (1). The proof of the proposition is given in Appendix 3

Finally, for the lasso model (5) we can put together the transformations in (12)-(13),

together with Proposition 2 to obtain the geometric ergodicity of the lasso. The proof

is in Appendix 4.

Proposition 3 For the lasso model (5), the block Gibbs sampler with blocks (β, µ) and

(λ−1
e , τ ) is geometrically ergodic.
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Thus, the convergence of the Gibbs sampler is expected to be (and is) quite rapid.

Moreover, if desired, we also have a Central Limit Theorem for the Monte Carlo esti-

mates.

5 Applications

In this section, we carry out simulations to compare the performance of proposed mod-

els and apply models to real data sets for practical application in terms of prediction

accuracy. We have based our simulations and data analyses to reflect those that have

appeared in other papers that have developed lasso estimators. For the most part, we

estimate the λ tuning parameters by using prior distributions and including them in the

Gibbs sampler, as opposed to using marginal MLE. This is partly due to the faster speed

of the Gibbs sampler, and the fact that the estimates were very close in all examples.

5.1 Simulation

We simulate data from the true model

y = Xβ + σǫ, ǫi ∼ iid N(0, 1) for i = 1, . . . , n.

Five models were considered in the simulations. The first three examples were used

in the original lasso paper (Tibshirani, 1996) and in the elastic net paper (Zou and

Hastie, 2005), to compare the prediction performance of the lasso and the elastic net

systematically. The second and third examples are also appropriate for the fused lasso,

while the the fourth and fifth examples create a grouped variable situation.

• Example 1: We simulated n = 20 data set to fit models and n = 200 data set

to compare prediction errors of proposed models with eight predictors. We let

β = (3, 1.5, 0, 0, 2, 0, 0, 0)′ and σ = 3. The pairwise correlation between xi and xj

was set to be corr(i, j) = 0.5|i−j|.

• Example 2: Example 2 is the same as Example 1, except that βj = 0.85 for all

j.

• Example 3: We simulated n = 100 data set to fit models and n = 400 data

set to compare prediction errors of proposed models with 40 predictors. We set

β = (0′,2′,0′,2′)′ where 0 is a 0 vector with length 10 and 2 is similarly a 2

vector with length 10, and σ = 15; corr(i, j) = 0.5.
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• Example 4: 15 latent variables Z1, ..., Z15 were first simulated according to a

centered multivariate normal distribution with corr(i, j) = 0.5|i−j|. Then Zi is

trichotomized as 0, 1 or 2 if it is smaller than Φ−1 (1/3), larger than Φ−1 (2/3) or

in between. We set

β = (−1.2, 1.8, 0, 0, 0, 0, 0.5, 1, 0, 0, 0, 0, 1, 1, 0,0′)′ where 0 is a 0 vector with length

30 and σ = 3. We simulated n = 50 data set to fit models and n = 400 data set

to compare prediction errors of proposed models. We treat each Zi as a group.

• Example 5: In this example, both main effects and second-order interactions

between Z1 and Z2 were considered. Four categorical factors Z1,Z2,Z3 and Z4

were first generated as in example 4. We set

β = (2, 3, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 2.5, 2, 0, 1.5, 1, 0, 0, 0, 0)′ and σ = 3. We simulated

n = 100 data set to fit models and n = 400 data set to compare prediction errors

of proposed models. We again treat each Zi as a group, as well as grouping the

interactions.

For each generated data set in the examples, we fit lasso, elastic net, fused lasso and

grouped lasso models, as appropriate, using the Gibbs sampler. For the prior density of

the parameter λ, we used a gamma distribution with shape parameter a = 1 and scale

parameter b = 0.1, which is relatively flat and results in high posterior probability near

the MLE. The Bayesian estimates are posterior means using 10,000 iterations of the

Gibbs sampler (after 1,000 burn-in iterations). For the prediction errors, we calculate

the average of mean squared error for the simulated examples and four methods based

on 50 replications.

Table 2 summarizes median mean squared errors (MSEs) in Examples 1-3 based on

50 replications and for comparison, median mean-squared errors from 50 replications

of the LARS-Lasso and LARS-EN from Zou and Hastie (2005) are added. The Gibbs-

Mean uses the posterior mean as the point estimate. Comparing these estimates to the

lasso counterparts, we see that the median MSE of the Bayesian lasso is smaller than

LARS-lasso, but the LARS-elastic net does better than the Bayesian elastic net for

Example 1. The Bayesian elastic net is based on the näıve elastic net model of Zou and

Hastie (2005); this might a the reason for the larger MSE, but this is only conjecture.

However, in all, the MSE of the Bayesian lassos are quite competitive. The fused lasso

model, which is reasonable for Examples 2 and 3, has excellent MSE there.

In Table 2 we also show the MSEs of Gibbs-Mode, which also can be used as a

Bayesian lasso point estimate. We estimate λ with its posterior mean from Gibbs
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Table 2: Median mean squared errors for Examples 1-3 and three methods, based

on 50 replications: Bayesian lassos vs. LARS-EN from Zou and Hastie (2005) vs.

Gibbs-Mode, standard errors in parentheses.

Method Models

Example 1 Example 2 Example 3

Gibbs-Mean Lasso 2.61(1.50) 2.17(1.68) 41.51(10.52)

Elastic Net 6.80(2.42) 2.89(2.02) 22.70(6.20)

Fused Lasso ——– 1.17(1.61) 16.13(4.53)

LARS Lasso 3.06(0.31) 3.87(0.38) 65.0(2.82)

Elastic Net 2.51(0.29) 3.16(0.27) 56.6(1.75)

Gibbs-Mode Lasso 3.13(1.92) 3.76(2.64) 56.69(16.27)

sampler, then estimate β using the LARS algorithm with this value of λ (instead of

cross-validation). Gibbs-Mode can be used as an alternative model selector. Compared

to LARS-Lasso, the median MSE of the Gibbs-Mode is smaller for Examples 2 and 3,

and comparable for Example 1. However, the posterior mean is a substantially better

point estimator.

Table 3 summarizes the average1 model errors over 200 runs in Example 4-5. For

comparison, the average mean squared errors of LARS, Group LARS from Yuan and

Lin (2006) and Gibbs-Mode Group lasso are added. We observe that the models that

were selected by lasso (or LARS) are larger than those selected by other methods in

Example 4-5, which is in line with the findings of Yuan and Lin (2006). Gibbs-Mode

Group Lasso estimates λ using the posterior mean from the Gibbs sampler, and then

estimates coefficients using the grplasso package (Meier, 2009; see also Meier et al.

2008) . Gibbs-Mode Group lasso does better than Group lasso for Example 4, but is

slightly less precise than Group lasso for Example 5.

Overall, the Bayesian Hierarchical lassos perform as well as, or better than the LARS

fit in most of the examples. This is, in one sense, a comment on the method of choosing

the tuning parameter λ, and shows that putting λ into the Gibbs sampler seems to be

as effective as choosing it by cross-validation.

1Table 2 uses median mean squared errors and Table 3 uses average MSE to enable comparison with

the previously published results. This is also the reason for the different number of iterations.
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Table 3: Average mean squared errors for Examples 4-5 and three methods, based

on 200 replications: Bayesian lassos vs. Group LARS from Yuan and Lin (2006)

vs. Gibbs Group LARS, standard errors in parentheses.

Method Models

Example 4 Example 5

Gibbs-Mean Lasso 1.27(0.28) 0.50(0.06)

Elastic Net 0.53(0.11) 0.34(0.03)

Group Lasso 0.37(0.02) 0.11(0.03)

Group LARS Lasso 1.17(0.47) 0.13(0.05)

Group Lasso 0.83(0.4) 0.09(0.04)

Gibbs -Mode Group Lasso 0.59(0.42) 0.14(0.06)

5.2 Data Analysis

In this section, we consider two different data sets, again choosing ones that have been

analyzed in previous lasso papers. The intent is to fit this work into the existing litera-

ture and highlight differences.

Prostate Cancer Data

The prostate cancer data is from Stamey et al. (1989), who examined the correlation

between the level of a prostate specific antigen and a number of clinical measures in

men who were about to receive a radical prostatectomy. The factors were log(cancer

volume), log(prostate weight), age, log(benign prostatic hyperplasia amount), seminal

vesicle invasion, log(capsular penetration), Gleason score and percentage Gleason scores

4 or 5. We fit the above models to log(prostate specific antigen) using the Bayesian lasso.

Details about fitting the lasso and elastic net to these data are in Tibshirani (1996) and

in Zou and Hastie (2005), respectively.

The previous papers divided the data into a training set with 67 observations and a

test set with 30 observations. Model fitting was carried out on the training data, and

performance is evaluated with the prediction error (MSE) on the test data. For the group

lasso, we made two arbitrary groups: log(cancer volume), log(prostate weight), age

and log(benign prostatic hyperplasia amount) vs. seminal vesicle invasion, log(capsular

penetration), Gleason score and percentage Gleason scores 4 or 5. Thus, we expect
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Table 4: Mean squared prediction errors for the prostate cancer data based on

30 observations of the test set for both the Bayesian lassos and the elastic net

of Zou and Hastie (2005). Predictions are based on the posterior mean of β for

the Bayesian method, and on the model fitting and tuning parameter selection

by ten-fold CV for LARS.

Gibbs LARS

Lasso Näıve elastic net Fused Lasso Lasso Näıve elastic net elastic net

0.478 0.474 0.483 0.499 0.566 0.381

inaccurate prediction for the group lasso.

Table 4 shows similar prediction accuracy of the Bayesian lasso, elastic net and

fused lasso, all out performing the lasso and the näıve elastic net. Among all models

and methods, the elastic net has the smallest prediction error. Zou and Hastie (2006)

argued that in this case, the elastic net is actually univariate soft thresholding (UST),

because the selected λ2 is very big (1000). However, UST totally ignores the dependence

between predictors and treats them as independent variables. Thus, it might not work

well if there exist collinearity among independent variables.

Figure 2 compares posterior median estimates for Bayesian lasso model (left) with

the ordinary lasso (right) for the prostate cancer data. The figure shows the paths of

these estimates as their respective shrinkage parameters (λ) are varied. The paths of

Bayesian lasso appear to be smooth, but are similar in shape to the lasso paths. The

vertical line in the lasso panel represents the estimate chosen by n-fold (leave-one-out)

cross-validation, whereas the vertical lines in the Bayesian lasso panel represent the

estimate chosen by marginal maximum likelihood (EM Gibbs) and the posterior mode

(Gibbs). The estimated λs from Gibbs and EM Gibbs are λ = 2.968 and λ = 3.107

respectively. Note that, although the lines corresponding to the estimates of λ appear

in different places in the corresponding plots, this is a result of the choice of horizontal

scale: |β|/ max(|β|), that is, the horizontal axis is each coefficient divided by its own

maximum over the path, so the axis goes from 0− 1 for all coefficients (as done in Park

and Casella 2008). The resulting point estimates are quite similar.

Figure 3 shows the 95% equal-tailed credible intervals for regression parameter βs

based on the posterior mean Bayesian lasso estimates with, for comparison, overlaid

point estimates of original lasso, posterior mode lasso, posterior means of elastic net,
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Figure 2: Bayesian Lasso (left panel) (λ = 2.986) and Lasso (right panel) trace

plots for estimates of the prostate cancer data regression parameters, with

vertical lines indicating the estimates chosen by n-fold cross-validation (lasso

λ = 2.940) and posterior mode (Bayesian lasso λ = 2.986). The Bayesian Lasso

estimates were posterior means computed over a grid of λ values, using 10,000

consecutive iterations of the Gibbs sampler after 1,000 burn-in iterations for

each λ.
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and fused and lasso. It is interesting to note that all estimates are all inside the credible

intervals, showing that the substantive conclusion will be quite similar no matter which

approach is used. However, we again remark that only the Bayesian lassos provide valid

standard errors for the zero-estimated coefficients.

Birth Weight Data

The birth weight data set is from Hosmer and Lemeshow (1989), and records the birth

weights of 189 babies and eight predictors concerning the mother. Among the eight

predictors, two are continuous (mother’s age in years and mother’s weight in pounds at

the last menstrual period) and six are categorical (mother’s race, smoking status during
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Figure 3: For the prostate cancer data, posterior mean Bayesian lasso estimates

(◦) and corresponding 95% equal-tailed credible intervals. Overlaid are the lasso

estimates based on n-fold cross-validation (△), and posterior mode estimates from

the Bayesian lasso (+), elastic net (×), and fused lasso (⋄) based on 10, 000 Gibbs

samples.

pregnancy, number of precious premature labors, history of hypertension, presence of

uterine irritability, number of physician visits). This data set was used to fit the group

lasso (Yuan and Lin 2006). As in Yuan and Lin, we model both mother’s age and weight

by using third-order polynomials, and fit the Bayesian lasso, elastic net, and group lasso.

The data were divided into a randomly chosen training set with 151 observations and

a test set with 37 observations. Model fitting and shrinkage parameter estimation was

carried out on the training data, and mean squared prediction errors were calculated

on the test data.

The prediction errors are reported in Table 5, but note that our training set may

not be the same as that of Yuan and Lin (2006). However, estimation and prediction

can be compared. From Table 5, we observe that all of the Bayesian lassos give better
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Table 5: Mean-squared prediction errors for the birth weight data based on

37 observations of test set: For comparison, mean-squared errors based on the

randomly selected 37 observations of test set from Yuan and Lin (2005) are added.

Predictions are based on the posterior mean of β for the Bayesian method, and

on the model fitting and tuning parameter selection by Cp-criterion for group

LARS.

Gibbs Lassos

Lasso Näıve Fused Group Group Group Group Stepwise

elastic net Lasso Lasso LARS garrotte Lasso

171944.8 102651.8 89787.5 36620.3 609092.8 579413.6 579413.6 646664.1

prediction than the LARS fit, with the Bayesian group lasso giving the most precise

prediction. One reason for this performance difference may be the fact that we used a

more extensive dummy variable structure than Yuan and Lin (2006). For example, for

an explanatory variable like “physician’s visit”, coded (0, 1, 2, 3 or more), we fit the four

means instead of one coefficient. This resulted in a much smaller mean-squared error in

Table 5.

From Figure 4 we observe that lasso, elastic net and fused lasso seem to treat each

category of regressors as independent variables. However, the group lasso estimates are

very consistent within categories. Yuan and Lin (2006) note that “the number of physi-

cian visits should be excluded from the final model, ... the backward stepwise method

excludes two more factors: mothers weight and history of hypertension”. The Bayesian

group lasso suggests excluding race and number of physician visits, but probably not

the other estimates. Premature labor experience increases the birth weight of baby,

history of hypertension and uterine irritability decrease the birth weight, and smoking

during pregnancy mildly decreases the birth weight. The age of mothers has positive a

relationship but mothers weight at the last menstrual period has a negative relationship

with the birth weight.

State Failures in Asia

These data are collected by the State Failure Task Force (SFTF, Esty et al. 1999), which

is a U.S. government funded group of interdisciplinary researchers whose objective is

to understand and forecast when governments cease to function effectively (usually
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Figure 4: For the birth weight data, posterior mean Bayesian group Lasso esti-

mates (◦) and corresponding 95% equal-tailed credible intervals for mothers age

(age, age2,age3),weight at the last menstrual period (lwt, lwt2,lwt3), race(white,

black, other), smoking(no-yes), history of premature labor (ptl1, ptl2, ptl3), his-

tory of hypertension (ht-no, ht-yes), uterine irritability (ui-no, ui-yes),physician

visit during the first trimester (ftv-no, ftv-1, ftv-2, ftv-3 or more). Overlaid

are the lasso (+), elastic net (×), fused lasso(⋄) and posterior mode group lasso

(▽) posterior means based on 10, 000 Gibbs samples.
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collapsing in violence and disarray). Through a series of reports they have created a

warning system of state failures based on the analysis of a huge collection of covariates

(about 1,200) on all independent states around the world with a population of at least

500,000, from 1955 to 1998. Thus the greatest challenge is to consider a vast number

of potential model specifications using prior theoretical knowledge and model-fitting

comparisons. The final results of the SFTF team are controversial because they end up

using only three explanatory variables, democracy, trade openness and infant mortality.

Their findings are criticized on substantive grounds for being oversimplified (Millien

and Krause 2003, Parris and Kate 2003, Sachs 2001), and on methodological ground for

their treatment of missing data and forecasting procedures (King and Zeng 2001).
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One consistent criticism of the SFTF approach is the use of all global regions in a

single analysis. It is clear to area studies scholars that state failures occur with strong

regional explanations that can differ significantly. Therefore we choose to concentrate

on Asia, which constitutes both an interesting and important set of cases. In the

original data for this subset, there are p = 128 explanatory variables with n = 23

observations. Here we omit four cases that had greater than 70% missing data, making

standard missing data tools inoperable. In addition, eighteen variables provided no

useful information and were dropped as well. Thus, for the final analysis, we have

p = 110 explanatory variables with n = 19 observations to apply to the LARS algorithm,

the Bayesian lasso, and the Bayesian Elastic Net, all with a probit link function for the

dichotomous outcome of state failure.

Interestingly, the LARS lasso picks three variables, just like the stepwise procedure

of the State Failure Task Force, but they are three different explanatory variables:

⊲ polxcons: the level of constraints on the political executive, from low to high
⊲ sftpeind: an indicator for ethnic war, 0 = none, 1 = at least one
⊲ sftpmmax, the maximum yearly conflict magnitude scale

(see http://globalpolicy.gmu.edu/pitf for a more detailed explanation of these vari-

ables). Recall that the LARS lasso is a variable weighter not a variable selector, where

the weights are either zero or one. Thus the LARS lasso zeros-out 107 variables here

in favor of the 3 listed above. From a political science context, the LARS lasso asserts

that the key determinants of state failure are: the degree to which the key leaders of

government are constrained from making unilateral policy choices, the presence of an

ethnic war on its borders (not an ethnic civil war, however), and the severity level of

the greatest conflict that the nation is exposed to. As a group, these variable suggest

a crises and reaction theory whereby governments that are faced with severe conflicts,

perhaps of an ethnic nature, and have a limited ability for the political executive to

quickly and non-consultatively respond, are more likely to fail.

Table 6 provides the top ten variables by absolute median effect from the Bayesian

lasso, and also include for these variables the LARS lasso conclusion. The Bayesian

Elastic Net produces results that are virtually indistinguishable from the Bayesian lasso

for these data. We therefore omit the results summary for this approach from the table.

Every coefficient credible interval of the Bayesian lasso covers zero, including the ten

given in Table 6. This indicates a broad lack of traditional statistical reliability despite

the three choices of the LARS lasso. Recall that we cannot produce corresponding

credible intervals for the LARS lasso, so the credible intervals from the Bayesian lasso are



Kyung et al. 27

Table 6: LARS Lasso and Bayesian Lasso Results, Top Ten Effects By Bayesian

Lasso Posterior Median (absolute value).

Bayesian Lasso Quantiles LARS Lasso

Variable 0.05 0.10 0.50 0.90 0.95 Weight

sftpeind -0.2387 -0.0888 0.3823 1.6498 2.3219 0.1999

sftpmmax -0.3282 -0.1686 0.2257 1.2086 1.6969 0.0307

sftpmag -0.4095 -0.2380 0.1927 1.1228 1.6081 0.0000

sftpcons -0.4197 -0.2315 0.1846 1.0907 1.5559 0.1750

sftpnum -0.4430 -0.2407 0.1657 1.0253 1.4062 0.0000

sftpem1 -0.4421 -0.2636 0.1480 1.0140 1.4609 0.0000

dispop1 -1.3756 -0.9410 -0.1213 0.3031 0.5050 0.0000

sftpeth -0.5091 -0.2951 0.1194 0.9251 1.3498 0.0000

sftgreg2 -0.4616 -0.2811 0.1137 0.9115 1.3047 0.0000

polpacmp -0.5071 -0.3106 0.1098 0.8568 1.2240 0.0000

the only available measure of uncertainty. Thus, given the evidence from the Bayesian

lasso, we are inclined to believe that the LARS lasso is overly-optimistic with these

choices.

There is an interesting and confirmatory finding from Table 6. In terms of posterior

effect size (absolute value of the posterior median), the Bayesian lasso’s top four variables

contain the three picked by the LARS lasso. The sole exception is

⊲ sftpmag: the magnitude of conflict events of all types,

which is closely related to sftpmmax. This is reassuring since it implies that the two

approaches are focusing on a small core of potentially important explainers. While

picking the top ten effect sizes is arbitrary, there is a noticeable drop in magnitude after

this era. The Bayesian lasso therefore brings some additional variables to our attention:

⊲ sftpnum: the number of critical (negative political events).
⊲ sftpem1: the ethnic war magnitude indicator number 1.
⊲ dispop1: the population proportion of the largest politically significant communal group

seeking autonomy and subject to discrimination.
⊲ sftpeth: the ethnic wars score.
⊲ sftgreg2: the subregion used by sftf. . . scores.
⊲ polpacmp: a 0-10 point indicator with increasing levels of autocratic governmental con-

trol.
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Figure 5: For the top ten coefficients of Table 6, the solid circle is the median

from the Bayesian Lasso, and the square is the LARS Lasso estimate. The solid

line is the 95% credible interval.

These variables reinforce the themes in the first first four: ethnic groups, ethnic conflict,

magnitude of conflict, and the level of executive control of government, without broad

consulation, appear to be important determinants of state failure. Moreover, looking

at Figure 5 also suggests that, although the credible intervals cover zero, all of them a

clearly skewed right or left, suggesting the existence of an effect in that direction.

It appears that these data contain many small, overlapping explanatory effects that

contribute to the outcome of state failure in incremental ways that are difficult to sort-

out with lasso approaches or conventional tools. This example is interesting because

of the difficulty in picking from among the many p ≫ n possible right-hand-side vari-
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ables and the suspect stepwise manner taken by the creators of the data producing only

poldemoc, pwtopen, and sfxinfm. The LARS lasso picked none of these three but also

picked a very parsimonious set of explanations. The Bayesian lasso, as indicated in

the table, finds little support for the the stepwise-chosen result. Another problem with

adopting this three-variable model is that political scientists have strong theory and

evidence to support the causal power of: executive constraints, the level of autocracy,

the extent of civil violence, population proportion of ethnic groups, multilateral inter-

ventions, ongoing conflict with neighboring states, the level of ethnic war/genocide, and

so on. The LARS lasso picks-up some of these effects, such as the level constraints on

the executive and the presence of ethnic war in the region. These contrasting results

(stepwise regression, LARS lasso, Bayesian lasso) also demonstrate a difficulty faced

by the SFTF team: many variables are seemingly important for theoretical reasons but

remain unhelpful in terms of statistical prediction due to their small contributory power

and highly overlapping explanations.

6 Discussion

Using the basic identity (14), it is relatively straightforward to form a (near) conjugate

hierarchical model that will result in a posterior distribution reflecting a penalized least

squares approach. Varieties of the lasso fall into this category.

A goal of the lasso is to both select and estimate, thus it will set some coefficient

estimates equal to zero (selection) and estimate others to be non-zero. Although the

lasso is not a consistent estimator (Zou 2006), some of its variations are, for example, the

adaptive lasso. Bayesian estimation, based on the output of a Gibbs sampler, typically

consists of estimating means and standard errors through Monte Carlo averages. How

does a Bayesian approach achieve the goals of the lasso?

First, we must realize that a model selector such as the lasso is no more than a

point estimator of the coefficient vector. In fact, it is exactly the posterior mode from

the hierarchical models that we have used. Having the MCMC output allows us to

summarize the posterior in any manner that we choose - although it is typical to use

the posterior mean, we could also use the posterior mode. Moreover, we have some

assessment of how sure we are that such coefficients are actually zero. As the lasso

cannot produce valid standard errors if the true coefficients are zero, it cannot give any

confidence assessment of these estimates.
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Of course, we are trading the Bayesian standard error for the frequentist standard

error. As our hierarchies all use proper priors, the Bayesian credible intervals will not

maintain a guaranteed coverage against all parameter values. However, coverage prob-

ability infima are typically attained at atypical values of the parameters - for example,

as they approach infinity - and for reasonable parameter values the Bayesian intervals

should have adequate frequentist coverage (if that is desired). However, perhaps the

more important point is that, at this time, we have no default frequentist analysis that

will provide valid confidence intervals.

With the introduction of the LARS algorithm, computation of the lasso path has

become quite rapid. The Gibbs samplers presented in this paper are also quite fast. Of

course we have shown that they are geometrically ergodic, but the other point is that,

in application, the sampler runs very quickly. Moreover, after one run of the Gibbs

sampler we not only have our point estimates, but also estimates of standard error.

To use lasso estimates, the tuning parameter λ must be estimated, typically by cross-

validation. In the hierarchical model we consider two choices: marginal MLE using an

EM/Gibbs sampler, and putting a prior on λ and entering it in the Gibbs iterations.

We find that the latter is more attractive, mainly due to the facts that it is much faster

and, in all the examples that we saw, the posterior mean from the Gibbs iterations is

very close to the marginal MLE. We note, however, that when we put λ into the Gibbs

iterations, our estimates of the regression coefficients are not based on a fixed value of

λ, but rather are marginalized over all λ, leading to somewhat of a robustness property.

Throughout, we have used hierarchical models of the form

y | µ, X, β, σ2 ∼ Nn

(

µ1n + Xβ, σ2In
)

, β ∼ N(0, Σβ),

where Σβ is parametrized with τis that are given gamma priors. We have shown how

to parameterize Σβ to obtain the lassos in this paper but, of course, there can be many

more parameterizations. These would arise from other practical restrictions on the βi,

and in many cases will be easily implementable. This follows because for all the lassos,

with the exception of the elastic net, λ and β are conditionally independent given the

τis, leading to a straightforward Gibbs sampler.
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Appendix

1 Inconsistency of Lasso Estimates

We show that the lasso is a superefficient estimator when β = 0 based on Theorem 2 of

Knight and Fu (2000). Assume the following regularity conditions for the design,

1. Cn = 1
n

∑n
i=1 x′

ixi → C,

2. 1
n max1≤i≤n xix

′
i → 0,

where xi is 1×p design vector of ith response and C is a nonnegative definite matrix. We

note that X is a n × p matrix of standardized regressors so that the diagonal elements

of Cn (and hence those of C) are all identically 1. Recall that the bridge estimator

(Frank and Friedman, 1993) is given by

β̂B = arg min
β

(ỹ − Xβ)
′
(ỹ − Xβ) + λ

p
∑

j=1

|βj |γ

for a given λ where γ > 0.
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Theorem 1 (Knight and Fu, 2000) Suppose that γ ≥ 1. If λn/
√

n → λ0 ≥ 0 and C is

nonsingular then
√

n
(

β̂B − β
) →

d arg min(V ),

where

V (u) = −2u′W + u′Cu + λ0

p
∑

j=1

ujsgn(βi)|βj |γ−1

if γ > 1,

V (u) = −2u′W + u′Cu + λ0

∑

j = 1p [ujsgn(βi)I(βj 6= 0) + |uj|I(βj = 0)]

if γ = 1 and W ∼ N
(

0, σ2C
)

, where sgn denotes the sign of the parenthetical quantity.

We use Theorem 1 with p = 1, σ2 = 1 and β = 0, so the Cramér-Rao lower bound

is 1. The limiting distribution of the lasso is that of the random variable V ∗, where

V ∗ = argmin
u

V (u) = arg min
u

u2 − 2uW + λ0|u|,

where W ∼ N(0, 1). It is straightforward to check that V (u) is convex, so it has a

unique minimum. A little calculus will show that

V ∗ =











2W+λ0

2 if W < −λ0/2

0 if − λ0/2 ≤ W ≤ λ0/2
2W−λ0

2 if W > λ0/2.

Of course EV ∗ = 0, so

Var(V ∗) = 2

∫ ∞

λ0/2

(

2w − λ0

2

)2

φ(w) dw,

where φ(w) is the standard normal pdf. Now

d

dλ0
Var(V ∗) = −

∫ ∞

λ0/2

(2w − λ0)φ(w) dw < 0,

so Var(V ∗) is a strictly decreasing function of λ0, with a maximum at λ0 = 0, where it is

equal to 1. Thus, for any λ0 > 0, Var(V ∗) < 1, showing that the lasso is superefficient.

Beran (1982) showed that the bootstrap is not consistent for superefficient estimators

(such as the classic Hodges estimator). This is exactly the situation that we are in here,

and we conclude that the bootstrap is not consistent for the lasso if the parameter is

zero.
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2 Lasso Hierarchies

2.1 Basic Identity

The Laplace (double-exponential) distribution is a scale mixture of a normal distribution

with an exponential mixing density (Andrews and Mallows 1974), that is

a

2
exp(−a|z|) =

∫ ∞

0

1√
2πs

exp

(

−z2

2s

)

a2

2
exp

(

−a2

2
s

)

ds. (14)

To prove this, rewrite

∫ ∞

0

exp

(

−z2

2s

)

a2

2
exp

(

−a2

2
s

)

ds =
a2

2
exp(−a|z|)

∫ ∞

0

exp

(

− 1

2s
(|z| − as)2

)

ds.

Now recall the inverse Gaussian density

f(x|µ, λ) =
λ1/2

(2πx3)1/2
exp

(

− λ

2µ2x
(x − µ)2

)

.

Making the transformation as = 1/r, it can be shown that the integral above is an

inverse Gaussian density, which leads directly to (14). We will use similar techniques

with appropriate modifications for group lasso and fused lasso. The main idea is to

introduce the appropriate latent parameters.

2.2 Original Lasso

As Park and Casella (2008) argued, because the columns of X are centered, it is easy

to analytically integrate µ from the joint posterior, under its independent, flat prior. In

this paper, we marginalize it out in the interest of simplicity and speed. Thus, we use

ỹ = y − y, where y =
∑n

i=1 yi/n.

Given λ, the full conditional posterior of the full hierarchical lasso is given by

β | µ, σ2, τ2
1 , . . . , τ2

p , X, y ∼ Np

(

(

X ′X + D−1
τ

)−1
X ′ỹ, σ2

(

X ′X + D−1
τ

)−1
)

,

1/τ2
j = γj | µ, β, σ2, X, y ∼ inverse Gaussian

(

λ2σ

|βj |
, λ2

)

I(γj > 0) (15)

for j = 1, . . . , p,

σ2 | µ, β, τ2
1 , . . . , τ2

p , X, y ∼

inverted gamma

(

n − 1 + p

2
,
1

2
(ỹ − Xβ)

′
(ỹ − Xβ) +

λ

2
β′D−1

τ β

)

.
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2.3 Group Lasso

Partition the β vector into K groups G1, . . . , GK of sizes m1, . . . , mK where
∑K

k=1 mk =

p. Denote by βGk
the vector of βjs in group k (k = 1, . . . , K). Let the conditional prior

of β be

π(β|σ2) ∝ exp

(

−λ

σ

K
∑

k=1

||βGk
||
)

,

where ||βGk
|| =

(

β′
Gk

βGk

)1/2
. We introduce the latent parameters τ2

1 |σ2, . . . , τ2
K |σ2

such that

βGk
|τ2

k , σ2 ind∼ Nmk

(

0, σ2τ2
kImk

)

and τ2
k

ind∼ gamma

(

mk + 1

2
,
λ2

2

)

,

for k = 1, . . . , K. Now, similar to (14),

∫ ∞

0

(

1

2πσ2τ2
k

)mk/2

exp

[

−||βGk
||2

2σ2τ2
k

]

(

λ2

2

)

mk+1

2 (

τ2
k

)

mk+1

2 −1

Γ
(

mk+1
2

) exp
[

−λ2τ2
k/2
]

dτ2
k

= exp [−λ||βGk
||/σ] , (16)

where we needed the gamma prior on τ2
k to get the correct Jacobean.

Full Conditionals The full conditional posteriors of the hierarchical grouped lasso model

are

βGk
| β−Gk

, σ2, τ2
1 , . . . , τ2

K , λ, X, ỹ ∼ Np



A−1
k X ′

k



ỹ − 1

2

∑

k′ 6=k

Xk′βGk′



 , σ2A−1
k



 ,

1/τ2
k = γk | β, σ2, λ, X, ỹ ∼ inverse Gaussian

(
√

λ2σ2

‖βGk
‖2

, λ2

)

I(γk > 0)

for k = 1, . . . , K, (17)

σ2 | β, τ2
1 , . . . , τ2

K , λ, X, ỹ ∼ inverted gamma

(

n − 1 + p

2
,

1

2
‖ỹ − Xβ‖2 +

1

2

K
∑

k=1

1

τ2
k

‖βGk
‖2

)

.

where β−Gk
= (βG1 , . . . , βGk−1

, βGk+1
, . . . , βGK

) and Ak = X ′
kXk + (1/τ2

k )Imk
.
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Estimation of λ With a gamma(r, δ) priors, the full conditional distribution of λ2 is

π(λ2|β, σ2, τ2
1 , . . . , τ2

K , X, ỹ) ∼ gamma

(

p + K

2
+ r,

1

2

K
∑

k=1

τ2
k + δ

)

,

which can be added into the Gibbs sampler.

To estimate λ from the marginal likelihood, the E-step in the EM algorithm involves

taking the expected value of the log likelihood, conditional on ỹ and under λ(t−1), to

get

Q
(

λ2|λ2(t−1)
)

=
p + K

2
ln
(

λ2
)

− λ2

2

K
∑

k=1

Eλ(t−1)

[

τ2
k |ỹ
]

+ c,

where c = terms not involving λ. At the M-step:

λ(t) =

√

p + K
∑K

k=1 Eλ(t−1)

[

τ2
k

∣

∣ỹ
]
,

where the expectation is over the marginal distribution of the τ2
k . The output from the

Gibbs sampler can be used to calculate this expectation through a Monte Carlo average.

2.4 Fused Lasso

The conditional prior of β given σ2 is given in (7). We introduce 2p−1 latent parameters

τ2
1 , . . . , τ2

p , σ2
1 . . . , σ2

p−1 and, as in basic identity, use the fact that

λ1

2σ
e−λ1|βj |/σ =

∫ ∞

0

1
√

2πσ2τ2
j

exp

(

−
β2

j

2σ2τ2
j

)

λ2
1

2
e−λ2

1τ2
j /2dτ2

j ,

for j = 1, . . . , p and

λ2

2σ
e−λ2|βj+1−βj |/σ =

∫ ∞

0

1
√

2πσ2ω2
j

exp

[

− (βj+1 − βj)
2

2σ2ω2
j

]

λ2
2

2
e−λ2

2ω2
j /2dω2

j ,

for j = 1, . . . , p − 1. From the identity

p
∑

j=1

β2
j

τ2
j

+

p−1
∑

j=1

(βj+1 − βj)
2

σ2
j

= β2
1

(

1

τ2
1

+
1

σ2
1

)

+ β2
2

(

1

τ2
2

+
1

σ2
1

+
1

σ2
2

)

+ . . .

β2
p−1

(

1

τ2
p−1

+
1

σ2
p−2

+
1

σ2
p−1

)

+ . . .

β2
p

(

1

τ2
p

+
1

σ2
p−1

)

− 2

p−1
∑

j=1

βjβj+1

σ2
j
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we see that β|τ2
1 , . . . , τ2

p , ω2
1 . . . , ω2

p−1, σ
2 is multivariate normal with mean vector 0 and

variance-covariance matrix σ2Σβ with

Σ−1
β =





















1
τ2
1

+ 1
ω2

1
− 1

ω2
1

0 0 · · · 0 0

− 1
ω2

1

1
τ2
2

+ 1
ω2

1
+ 1

ω2
2

− 1
ω2

2
0 · · · 0 0

...
...

...
...

...
...

...

0 0 0 · · · − 1
ω2

p−2

1
τ2

p−1
+ 1

ω2
p−2

+ 1
ω2

p−1
− 1

ω2
p−1

0 0 0 · · · 0 − 1
ω2

p−1

1
τ2

p
+ 1

ω2
p−1





















.

Full Conditionals Given λ1 and λ2, the full conditional posteriors of the hierarchical

fused lasso are

β | σ2, τ2
1 , . . . , τ2

p , ω2
1 , . . . , ω

2
p−1, X, ỹ

∼ Np

(

(

XTX + Σ−1
β

)−1

XTỹ, σ2
(

XTX + Σ−1
β

)−1
)

,

1/τ2
j = γj | β, σ2, ω2

1 , . . . , ω
2
p−1, X, ỹ ∼ inverse Gaussian

(√

λ2
1σ

2

β2
j

, λ2
1

)

with γj > 0 for j = 1, . . . , p (18)

1/ω2
j = ηj | β, σ2, τ2

1 , . . . , τ2
p , X, ỹ ∼ inverse Gaussian

(√

λ2
2σ

2

(βj+1 − βj)
2 , λ2

2

)

with ηj > 0 for j = 1, . . . , p − 1,

σ2 | β, τ2
1 , . . . , τ2

p , ω2
1 , . . . , ω

2
p−1, X, ỹ

∼ inverted gamma

(

n − 1 + p

2
,
1

2
(ỹ − Xβ)

T
(ỹ − Xβ) +

1

2
βTΣ−1β

)

.

Estimation of λ1 and λ2. With gamma(r, δ) priors, the full conditional distributions of

λ2
1 and λ2

2 are

π(λ2
1|β, σ2, τ2

1 , . . . , τ2
p , ω1, . . . , ω

2
p−1, λ1, X, ỹ) ∼ gamma



p + r,
1

2

p
∑

j=1

τ2
j + δ



 ,

π(λ2
2|β, σ2, τ2

1 , . . . , τ2
p , ω1, . . . , ω

2
p−1, λ2, X, ỹ) ∼ gamma



p − 1 + r,
1

2

p−1
∑

j=1

σ2
j + δ



 ,

which can be added to the Gibbs sampler. Although we use the same prior parameters

for λ1 and λ2, different values can be used.
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For marginal likelihood estimation, the E-step of the EM algorithm involves taking

the expected value of the log likelihood, conditional on ỹ and under λ
(t−1)
h (h=1,2), to

get

Q
(

λ2
1|λ

2(t−1)
1

)

= p ln
(

λ2
1

)

− λ2
1

2

p
∑

j=1

E
λ
(t−1)
1

[

τ2
j |ỹ
]

+ c

Q
(

λ2
2|λ

2(t−1)
2

)

= (p − 1) ln
(

λ2
2

)

− λ2
2

2

p−1
∑

j=1

E
λ
(t−1)
2

[

ω2
j |ỹ
]

+ c∗,

where c = terms not involving λ1 and c∗ = terms not involving λ2. At the M-step:

λ
(t)
1 =

√

2p
∑p

j=1 E
λ
(t−1)
1

[

τ2
j

∣

∣ỹ
] , λ

(t)
2 =

√

√

√

√

2(p − 1)
∑p−1

j=1 E
λ
(t−1)
2

[

ω2
j

∣

∣ỹ
] ,

where the expectations are over the marginal distributions of the τ2
k and ω2

k. The output

from the Gibbs sampler can be used to calculate these expectations through Monte Carlo

averages.

2.5 Elastic Net

The conditional prior of β given σ2 is given in (9). Using the basic identity (14), the

conditional prior can be expressed as

π
(

β|σ2, σ2
1 , . . . , σ2

p

)

∝
p
∏

j=1

√
λ2√

2πσ2
exp

[

− λ2

2σ2
β2

j

]

×
∫ ∞

0

1
√

2πσ2τ2
j

exp

[

−
β2

j

2σ2τ2
j

]

λ2
1

2
exp

[

−
λ2

1τ
2
j

2

]

dτ2
j ,

so we see that, conditional on τ2
j , βj ∼ N(0, σ2(τ−2

j + λ2)
−1).
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Full Conditionals Given λ1 and λ2, the full conditional posteriors of the hierarchical

elastic net are

β | σ2, τ2
1 , . . . , τ2

p , X, ỹ ∼ Np

(

(

XTX + D∗
τ
−1
)−1

XTỹ, σ2
(

XTX + D∗
τ
−1
)−1

)

,

1/τ2
j = γj | β, σ2, X, ỹ ∼ inverse Gaussian

(√

λ2
1σ

2

β2
j

, λ2
1

)

I(γj > 0) (19)

for j = 1, . . . , p,

σ2 | β, τ2
1 , . . . , τ2

p , X, ỹ ∼ inverted gamma

(

n − 1 + p

2
, (20)

1

2
(ỹ − Xβ)

′
(ỹ − Xβ) +

1

2
β′D∗

τ
−1

β

)

, (21)

where D∗
τ is a diagonal matrix with diagonal elements (τ−2

i + λ2)
−1, i = 1. . . . , p.

Estimation of λ1 and λ2. With gamma(rh, δh), (h = 1, 2) priors, the full conditional

distributions of λ2
1 and λ2 are

π(λ2
1|β, σ2, τ2

1 , . . . , τ2
p , λ1, X, ỹ) ∼ gamma



p + r1,
1

2

p
∑

j=1

τ2
j + δ1





π(λ2|β, σ2, τ2
1 , . . . , τ2

p , λ2, X, ỹ) ∼ gamma





p

2
+ r2,

1

2σ2

p
∑

j=1

β2
j + δ2



 .

Here we have used different prior parameters, as λ1 and λ2 come into the posterior in

slightly different ways.

For marginal likelihood estimation using the EM algorithm, the E-step involves

taking the expected value of the log likelihood, conditional on ỹ and under λ
(t−1)
h

(h=1,2), to get

Q
(

λ2
1|λ

2(t−1)
1

)

= p ln
(

λ2
1

)

− λ2
1

2

p
∑

j=1

E
λ
(t−1)
1

[

τ2
j |ỹ
]

+ c

Q
(

λ2|λ(t−1)
2

)

=
p

2
ln (λ2) − λ2

2

p
∑

j=1

E
λ
(t−1)
2

[

β2
j

σ2
|ỹ
]

+ c∗,

where c = terms not involving λ1 and c∗ = terms not involving λ2. At the M-step:

λ
(t)
1 =

√

2p
∑p

j=1 E
λ
(t−1)
1

[

τ2
j

∣

∣ỹ
] , λ

(t)
2 =

p
∑p

j=1 E
λ
(t−1)
2

[

β2
j

σ2

∣

∣ỹ
] .
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3 Proof of Proposition 2

A typical transition on scan (2) is y → (x1, x2) → y′, where we note that given y,

(x1, x2) is independent of the past xs. This is a key property of the two-stage Gibbs

sampler (or Data Augmentation). The kernel of this transition is f(y′|x1, x2)f(x1, x2|y),

and integrating over x2 gives
∫

f(y′|x1, x2)f(x1, x2|y)dx2 =
f(x1, y

′)

f(y)

∫

f(y|x1, x2)f(x2|x1, y
′)dx2.

Exploiting the conditional independence property we have
∫

f(y|x1, x2)f(x2|x1, y
′)dx2 = f(y|x1),

and hence
∫

f(y′|x1, x2)f(x1, x2|y)dx2 =
f(x1, y

′)

f(y)
f(y|x1) = f(x1|y)f(y′|x1),

which is the one-step transition kernel from scan (1). To complete the relationship be-

tween the n-step kernels, we need to look at the initial transition and the final transition.

We have

Initial: f(y|x1) =
∫

f(y|x1, x2)f(x2|x1)dx2

Final: f(x1|y) =
∫

f(x1, x2|y)dx2

and

Kn((x1, y), (x′
1, y

′)) =

∫

X ′

2

∫

X2

Kn((x1, x2, y), (x′
1, x

′
2, y

′))f(x2|x1)dx2dx′
2.

Lastly, if we write π(x1, y) =
∫

X ′

2

∫

X2
π(x1, x2, y)f(x′

2|x1)dx2dx′
2, then (ignoring the

constant 1/2)

||Kn((x1, y), ·) − π(·)||

=

∫

X ′

1

∫

Y′

|Kn((x1, y), (x′
1, y

′) − π(x′
1, y

′)|dy′dx′
1

=

∫

X ′

1

∫

Y′

∣

∣

∣

∣

∣

∫

X ′

2

∫

X2

|Kn((x1, x2, y), (x′
1, x

′
2, y

′)) − π(x′
1, x

′
2, y

′)|f(x2|x1)dx2dx′
2

∣

∣

∣

∣

∣

dy′dx′
1

≤
∫

X2

∣

∣

∣

∣

∣

∫

X ′

2

∫

X ′

1

∫

Y′

Kn((x1, x2, y), (x′
1, x

′
2, y

′)) − π(x′
1, x

′
2, y

′)dy′dx′
1dx′

2

∣

∣

∣

∣

∣

f(x2|x1)dx2

=

∫

X2

||Kn((x1, x2, y), ·) − π(·)||f(x2|x1)dx2
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4 Proof of Proposition 3

Hobert and Geyer (1998) proved geometric ergodicity of the two-stage Gibbs sampler

from the model

y ∼ N
(

θ, λ−1
e I

)

, λe ∼ gamma(a2, b2),

θ ∼ N
(

1µ, λ−1
θ I

)

, λθ ∼ gamma(a1, b1) (22)

µ ∼ N(µ0, λ
−1
0 ),

when the two blocks were taken as (µ, θ) and (λe, λθ), and all other parameters are

known and set so that all priors are proper. By taking A = λθI in (13), the marginal

model is

y ∼ N
(

1µ + Xβ, λ−1
e I

)

, β ∼ N(0, λ−1
θ I). (23)

From Section 4, and in particular Proposition 2, we have the following corollary.

Corollary 1 If the block Gibbs sampler for model (22) is geometrically ergodic, then

the block Gibbs sampler for model (23) is also geometrically ergodic.

In each case, the blocks in the sampler are composed of the mean parameters (θ, µ) or

(β, µ), and the variance parameters (λ−1
e , λ−1

θ ).

Rather than prove this corollary, we will present a similar corollary with the lasso

hierarchy. The proof of Corollary 1 is very similar. For the lasso model (5) we take A =

(λ/σ2)(X ′X)−1D−1
τ (X ′X)−1 in (13), which means that we start with the hierarchical

model

yp×1 ∼ N
(

θ, λ−1
e I

)

θ ∼ N (1µ, Σ(τ ))

µ ∼ N
(

µ0, λ
−1
0

)

(24)

λe ∼ gamma(a2, b2)

1/τ2
j ∼ iid gamma(a1, b

∗
2) ⇔ λθj

= τ2
j iid inverted gamma(a1, b2),

where Σ(τ ) is of the form

Σ(τ ) = diag(τ2
1 , . . . , τ2

p ) ∼
p
∏

j=1

λ

2
e−λτ2

j /2 dτ2
j . (25)
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Note that we can assume Σ(τ ) is diagonal by making the transformation y → Py,

θ → Pθ, and Σ(τ ) → PΣ(τ )P ′ = Dτ = diagonal. This results in

y∗

p×1 = Py ∼ N
(

θ∗, λ−1
e I

)

(26)

θ∗ = Pθ ∼ N (vµ, Dτ ) ,

where v = P1 and the diagonal elements of Dτ depend on all of the τ2
j .

We will show that, for this model with variance priors as in (5), the block Gibbs

sampler is geometrically ergodic. Geometric ergodicity can be demonstrated by using

the following lemma, given in Hobert and Geyer (1998), who note that it is a special

case of Lemma 15.2.8 of Meyn and Tweedie (1993).

Lemma 1 Suppose the Markov chain {Xn : n = 0, 1, ...} is Feller continuous. If for

some positive function w that is unbounded off compact sets, E[w(Xn + 1)|Xn = x] ≤
ρw(x) +L, for some ρ < 1 and L < ∞, then the Markov chain is geometrically ergodic.

Feller continuity (Meyn and Tweedie, 1993, Chap. 6) is easily verified here (see Hobert

and Casella, 1998). We now adapt the proof of Hobert and Geyer (1998) to establish

the drift condition of Lemma 1, which will establish Proposition 3. Here, a1, b1, a2,

b2, µ0 and λ0 are known. Let θ∗ =
(

θ∗1 , . . . , θ∗p
)′

and let λθ∗ =
(

λθ∗

1
, . . . , λθ∗

p

)′
. This

transformed model is similar to the two stage hierarchy in Hobert and Geyer (1998)

except for the relationship between µ and θ, and the inverted gamma prior on ληj
.

The univariate conditional densities that are required to use the Gibbs sampler are

given by

λe|λθ∗ , θ∗, µ, y∗ ∼ gamma





p

2
+ a2, b2 +

1

2

p
∑

j=1

(

y∗
j − θ∗j

)2





λθ∗

j
|λe, θ

∗, µ, y∗ ∼ inverted gamma

(

a1 +
1

2
, b1 +

1

2

(

θ∗j − vjµ
)2
)

for j = 1, . . . , p

µ|λe, λθ∗ , θ∗, y∗ ∼ N

(

v′D−1
τ θ∗ + λ0µ0

v′D−1
τ v + λ0

,
1

v′D−1
τ v + λ0

)

(27)

θ∗j |λe, λθ∗ , µ, y∗ ∼ N





λey
∗
j +

vj

λθ∗
j

µ

λe + 1
λθ∗

j

,
1

λe + 1
λθ∗

j



 for j = 1, . . . , p.

Here, v′D−1
τ θ∗ =

∑p
j=1 vjθ

∗
j /λθ∗

j
and v′D−1

τ v =
∑p

j=1 v2
j /λθ∗

j
.
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We consider a block Gibbs to update all of the normal components simultaneously.

Let ξ =
(

θ∗1 , . . . , θ∗p, µ
)′

. From (27), we deduce that

ξ|λe, λη ∼ Np+1 (µξ, Σξ) ,

where

Σ−1
ξ =

[

D2 −v

−v′ λ0 + v′D−1
τ v

]

and the mean µξ is the solution to

Σ−1
ξ µξ =













λey
∗
1

...

λey
∗
p

λ0µ0













, (28)

where D = diag

(

√

λe + 1
λθ∗

j

)

for j = 1, . . . , p. Let

t =

p
∑

j=1

λe
v2

j

λθ∗
j

λe + 1
λθ∗

j

=

p
∑

j=1

v2
j

λθ∗

j

−
p
∑

j=1

(

vj

λθ∗

j

)2
(

λe +
1

ληj

)−1

,

then by using the Cholesky factorization, the precision matrix of ξ can be expressed as

Σ−1
ξ = LL′ =

(

D 0

c′
√

λ0 + t

)(

D c

0
√

λ0 + t

)

,

where c =



− v1

λθ∗1

r

λe+ 1
λθ∗

1

, . . . ,− vp

λθ∗p

r

λe+ 1
λθ∗p





′

. Thus, it can be shown that

Σξ = L−1′L−1 where L−1 =

(

D−1 0

− c′D−1
√

λ0+t
1√

λ0+t

)

.
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The upper bounds of the variance and covariances are

Var (µ|λe, λθ∗) =
1

λ0 + t
≤ 1

λ0

Var
(

θ∗j |λe, λθ∗

)

=
1

λe + 1
λθ∗

j















1 +
v2

j

λθ∗

j

(

λe + 1
λθ∗

j

)

(λ0 + t)















≤ 1

λe + 1
λθ∗

j

+
v2

j

λ0

Cov
(

θ∗i , θ∗j |λe, λθ∗

)

=

vi

λθ∗
i

vj

λθ∗
j

(

λe + 1
ληi

)

(

λe + 1
λθ∗

j

)

(λ0 + t)

≤ vivj

λ0

Cov
(

µ, θ∗j |λe, λθ∗

)

=
vj

λθ∗

j

(

λe + 1
λθ∗

j

)

(λ0 + t)

≤ vj

λ0
.

We use (28) to calculate E [µ|λe, λθ∗ ] and E
[

θ∗j |λe, λθ∗

]

for j = 1, . . . , p.

E [µ|λe, λθ∗ ] =

p
∑

j=1

λey
∗
j Cov

(

µ, θ∗j |λe, λθ∗

)

+ λ0µ0Var (µ|λe, λθ∗)

=
1

λ0 + t





p
∑

j=1

λey
∗
j +

vj

λθ∗
j

λe + 1
λθ∗

j

+ λ0µ0



 ≤ C1 < ∞

E [θ∗i |λe, λθ∗ ] =

p
∑

j=1

λey
∗
j Cov

(

θ∗i , θ∗j |λe, λθ∗

)

+ λ0µ0Cov (µ, θ∗i |λe, λθ∗)

=
λey

∗
i

λe + 1
λθ∗

i

+
vi/λθ∗

i

λe + 1
λθ∗

i







1

λ0 + t





p
∑

j=1

λey
∗
j +

vj

λθ∗
j

λe + 1
λθ∗

j

+ λ0µ0











≤ C2 < ∞,

for i = 1, . . . , p and C1 and C2 are constants. E [µ|λe, λθ∗ ] is a convex combination of

y∗
j and µ0, and E [θ∗i |λe, λθ∗ ] for i = 1, . . . , p is a convex combination of E [µ|λe, λθ∗ ]

and y∗
i . Thus, these are uniformly bounded by a constant.

We now show that Lemma 1 works for our proposed model. Note that for our

model, we have a block Gibbs sampler with a fixed scan that updates ξ then (λe, λθ∗).

Given ξ, λe and λθ∗ are independent, thus the order of update does not matter. To

construct an energy function for a drift condition, we need to calculate some conditional

expectations. Here, we compute the conditional expectation given the variables of the

last iteration (“last”) as

E [w (λe, λθ∗ , µ, θ∗) |last] = E {[w (λe, λθ∗ , µ, θ∗) |µ, θ∗, last] |last} . (29)
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Define the functions

w1 = (w11, . . . , w1p)
′ =

(

λθ∗

1
, . . . , λθ∗

p

)′

w2 = 1/λe

w3 = (w31, . . . , w3p)
′
=
[

(θ∗1 − v1µ)2, . . . , (θ∗p − vpµ)2
]′

w4 =

p
∑

j=1

(

y∗
j − θ∗j

)2

w5 = (w51, . . . , w5p)
′ =

(

e
c/λθ∗1 , . . . , e

c/λθ∗p

)′

w6 = ecλe ,

where c is a positive constant. Consider the energy function w = A1w1 + A2w2 +

A3w3 + A4w4 + A5w5 + A6w6 where A1, A3, A5 are positive vectors and A2, A4 and

A6 are positive constants to be determined. With the same argument in Hobert and

Geyer, it can be shown that the level set

{(µ, θ∗, λe, λθ∗) : w (µ, θ∗, λe, λθ∗) ≤ γ}

is unbounded off compact sets.

Let 0 < c < min{b1, b2}, then

E
(

ecλe |µ, θ∗, last
)

=

(

b2 + 1
2

∑p
j=1

(

y∗
j − θ∗j

)2

b2 + 1
2

∑p
j=1

(

y∗
j − θ∗j

)2 − c

)a2+p/2

≤
(

b2

b2 − c

)a2+p/2

= c6,

(30)

where c6 is a constant, and

E
(

e
c/λθ∗

j |µ, θ∗, last
)

=

(

b1 + 1
2

(

y∗
j − θ∗j

)2

b1 + 1
2

(

y∗
j − θ∗j

)2 − c

)a1+1/2

≤
(

b1

b1 − c

)a1+1/2

= c5, (31)

where c5 is a constant for j = 1, . . . , p. To make this procedure works, a1 needs to be

a1 > 1/2, then for j = 1, . . . , p,

E (w1j |µ, θ∗, last) =
b1 + 1/2

(

θ∗j − vjµ
)2

a1 − 1/2
=

2b1 + w3j

2a1 − 1
. (32)

Since a2 + p/2 > 1, we have

E (w2|µ, θ∗, last) =
b2 + 1

2

∑p
j=1

(

y∗
j − θ∗j

)2

a2 + p/2 − 1
=

2b2 + w4

2a2 + p − 2
. (33)
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Now, for j = 1, . . . , p

E (w3j |last) = Var
(

θ∗j − vjµ|λe, λθ∗

)

+
{

E
(

θ∗j − vjµ|λe, λθ∗

)}2

≤ Var
(

θ∗j |λe, λθ∗

)

≤ c∗3 +

(

λe +
1

λθ∗

j

)−1

≤ c3 + w2, (34)

where c∗3 and c3 are constants. Similarly,

E (w4|last) =

p
∑

j=1

Var
(

y∗
j − θ∗j |λe, λθ∗

)

+

p
∑

j=1

{

E
(

y∗
j − θ∗j |λe, λθ∗

)}2

≤
p
∑

j=1

Var
(

θ∗j |λe, λθ∗

)

+ c∗4 ≤ c∗∗4 +

p
∑

j=1

(

λe +
1

λθ∗

j

)−1

≤ c4 + pw2. (35)

Therefore, E (w1j |last) ≤ C1 + δ1w2 and E (w2|last) ≤ C2 + δ2w2 where

δ1 =
1

2a1 − 1
< ∞ and δ2 =

p

2a2 + p − 2
< 1.

Now, there exists an ǫ > 0 and a 0 < ρ < 1 such that ǫ (pδ1 + 2p) + δ2 < ρ. Therefore

E



ǫ





p
∑

j=1

w1j +

p
∑

j=1

w3j + w4



+ w2 +

p
∑

j=1

w5j + w6|last





≤ C∗ + ǫ (pδ1 + p + p)w2 + δ2w2

≤ C∗ + ρw2

which implies geometric ergodicity by Lemma 1.


