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Increasingly, political science researchers are turning to Markov chain Monte Carlo meth-
ods to solve inferential problems with complex models and problematic data. This is an
enormously powerful set of tools based on replacing difficult or impossible analytical work
with simulated empirical draws from the distributions of interest. Although practitioners
are generally aware of the importance of convergence of the Markov chain, many are not
fully aware of the difficulties in fully assessing convergence across multiple dimensions. In
most applied circumstances, every parameter dimension must be converged for the others
to converge. The usual culprit is slow mixing of the Markov chain and therefore slow
convergence towards the target distribution. This work demonstrates the partial conver-
gence problem for the two dominant algorithms and illustrates these issues with empirical
examples.

1 Introduction

We show here that users of Markov chain Monte Carlo (MCMC) algorithms must be
careful to note whether the procedure has converged to the true distribution of interest
for every parameter in the model, not just those of primary interest. Failing to do so leads
to incorrect results statistically and substantively. This paper gives the theoretical basis for
Markov chain convergence, which is measured imperfectly through single-dimensional
diagnostics, and then gives detailed advice for practitioners who wish to increase the
reliability of their empirical results. The findings here call for a higher level of caution
than commonly observed in published and unpublished work in political science.
Bayesian applications appear increasingly often in political science research along with
the concomitant MCMC estimation/marginalization process often required to get working
inferences from complicated joint posterior distributions. Recent examples include West-
ern (1998), Quinn, Martin, and Whitford (1999), Smith (1999), Jackman (2000a, 2000b,
2001), Hill and Kriesi (2001), Martin and Quinn (2002), and Gill and Walker (2005). It is
(fortunately) now standard practice to “burn-in” the Markov chain by discarding some
number observations at the beginning of the run under the assumption that they represent
preconvergent samples and are therefore not representative of the distribution of interest.
Regretfully, there exists no broad advice about how long the Markov chain should be run
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in this way to ensure that it has converged to the distribution of interest before collecting
empirical samples.

General issues of Markov chain mixing and convergence have greatly concerned sta-
tisticians working in this area since widespread use of MCMC began after 1990. Most of
the progress here has been in the development of empirical convergence diagnostics that
assess instability through various distributional tests, generally on a parameter-by-
parameter basis. This information is used by practitioners to make decisions about how
long to run the Markov chain since values from the preconvergent phase provide no useful
inferential information. But these empirical diagnostics are explicit or implicit hypothesis
tests of nonconvergence, meaning that they are capable of telling the user that a Markov
chain has not converged but cannot directly assert that it has converged, nor that the chain
is mixing well through the distribution of interest. Nonetheless, no indication of non-
convergence across several diagnostics run multiple times with varying parameter settings
is safely considered sufficient evidence that the Markov chain has converged, even to
conservative practitioners.

Importantly, very little attention has been given to the problem of evidential conver-
gence amongst only subset of the dimensions of the chain (for an exception, see the casual
guidance given in Kass et al. 1998). In fact, a few statisticians feel comfortable ignoring
the problem if the nonconvergence is limited to nuisance parameters (see Chen, Shao, and
Ibrahim 2000, p. 60), notably in statistical genetics where there can be thousands of
parameters (e.g., Krishnan et al. 2004). Yet, the structure of at least one MCMC kernel
(actually the most commonly used one) is built around marginal draws conditional on
other dimensions. Therefore, even the parameters that appear to be converged are condi-
tioned on nonconvergent parameters. The primary result shown in this work is that except
for a small range of applications, evidence of nonconvergence in one dimension provides
evidence of nonconvergence in all dimensions. So even with nuisance parameters, we need
to worry about convergence since they can influence the mixing and convergence of
parameters of primary interest.

In this paper, we address this lack of attention to convergence and mixing issues with an
analysis of the problem focusing on mathematical properties of commonly used algo-
rithms. A preliminary section gives an overview of the two dominant algorithms, followed
by a section that gives an exact technical statement of the problem. The following sections
explain how this problem of partial convergence differently affects the Metropolis-
Hastings algorithm and the Gibbs sampler, and the final section provides specific examples
to illustrate the problem.

2 Preliminaries

To establish notation, this section introduces the basic terms and concepts. For more
leisurely theoretical discussions, see Nummelin (1984), Tierney (1994), Norris (1997),
Liu (2001), or Robert and Casella (2004). The objective of MCMC work is to describe
(marginalize) an unwieldy, usually high dimension, joint posterior distribution, 7t(0) on
9 known up to a scale factor. This problem naturally appears in realistic Bayesian model
estimation in the social sciences. Two algorithms dominate applied work and are briefly
described in the following subsections. The Gibbs sampler, however, is actually a special
case of Metropolis-Hastings, and Metropolis-Hastings is sufficiently general that it has
spawned a wide array of hybrid and specialized implementations (cf. Roberts and Rosen-
thal 1998a, section 4; Roberts and Rosenthal 1998b; or Chen, Shao, and Ibrahim 2000,
chap. 2).
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2.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm comes from statistical physics (Metropolis et al. 1953)
but has proved to be enormously useful in general statistical estimation (Barker 1965;
Hastings 1970; Peskun 1973; Chib and Greenberg 1995). Suppose we want to simulate
0, a d-dimensional parameter vector, from the posterior distribution (@) with support
known. At the rth step in the chain, we will draw 0/, j = 1 : d from a multivariate candidate
generating distribution (also called jumping, proposal, or instrumental) over this same
support: ¢,(0’|0). A common variant is the random walk chain where candidate jumping
values are selected by an offset from the current state according to a simple additive scheme,
6’ = 0 + 1, where 1 is a random variable drawn from some convenient distribution.

It must be possible to determine ¢,(0|0’) and ¢,(0'| @). Under the original constraints
of the Metropolis algorithm, these two conditionals needed to be equal (symmetrical
Metropolis sampling), although we now know that this is not necessary, and have the
more flexible restriction of reversibility. That is, the detailed balance equation must hold
to ensure that (@) is the invariant (limiting) distribution:

K(0,0)n(0) = K(0',0)n(0"), (1)

where K (0, 0') is the (probability) kernel of the Metropolis-Hastings algorithm going from
0 to 0. This means that if the chain were started in its invariant distribution, it has the same
chance of starting at © and moving to 0’ as starting at 8" and moving to 0’. Sometimes
K(0,0) is labeled as A(0,0") and called the actual transaction function from 0 to 0’ to
distinguish it from a(0,0") below. The acceptance ratio is now defined with 0" as the
current position and 0’ as the proposal:

_ /(0" ]0') n(#)
q,(0" | 0)m(6)

The subsequent decision that produces the ¢ 4 Ist point in the chain is probabilistically
determined according to:

a(0,0) (2)

N with probability min(a'(ﬂ, 0), 1)/ ' 3)

0l with probability 1 — min(a(0,0'),1)
In the case of symmetry in the candidate generating density, ¢,(0|0’) = g,(0"|0), the
acceptance criteria simplifies to a ratio of the posterior density values at the two points.

These steps can be summarized for a parameter vector of interest according to equation
(3) with the following steps:

1. Sample 0’ from (0 |0), where 0 is the current location.
2. Sample u from U[0:1].

3. If a(0,0') > u, then accept 0'.

4. Otherwise keep 0 (the current value) as the new point.

The algorithm described by these steps also has desirable convergence properties to the
distribution of interest (Roberts and Smith 1994), as discussed below.

2.2 The Gibbs Sampler Algorithm

The Gibbs sampler is a transition kernel created by a series of full conditional distributions
that are updated based on cycling through these conditional probability statements.
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Defining the posterior distribution of interest as (), where 0 is a d-length parameter
vector, the set of full conditional distributions for @ are expressed as m(6;|0_;) for j =
1, ..., d, where the notation 0_; indicates a specific conditional parametric form with 0;
absent on the right-hand-side of the conditional. The Gibbs sampler is then performed by
the following steps:

1. Choose starting values: 0l = [9[10], 9[20]7 A Og)]].
2. At the rth step, starting at r = 1, complete the single cycle by drawing values from
the d conditional distributions given by:

ol ~ (0] 04 0l el glitly

glt ~ (0| o 0yt el el

o~ 0] 000,00 gl
d—1

9[’] - TE(94| e[lt]’ e[zt]v e[3t] o '7951—1)
d

3. Increment ¢ and repeat step 2.

Since the Gibbs sampler conditions only on values from its previous iteration, it clearly
has the Markovian property The Gibbs sampler is a homogeneous Markov chain: the con-
secutive probabilities are independent of ¢, the current length of the chain. This should be
apparent from the algorithm above as there is nothing in drawing from the full conditionals
that is dependent on the absolute value of 7. The Gibbs sampler has the true posterior
distribution of parameter vector as its limiting distribution, meaning that it uses these con-
ditional distributions to produce empirical draws from the marginal distributions of interest.

Credit for introducing the Gibbs sampler on finite state spaces is usually given to
Geman and Geman (1984), but Ulf Grenander (a student of Harald Cramér) actually
applied it to Bayesian modeling in a well known but unpublished paper in 1983. Early
restricted versions, typically labeled as the heatbath algorithm in statistical physics can be
found in Creutz (1979), Ripley (1979), and Creutz, Jacobs, and Rebbi (1983).

3 Statement of the Problem

In applied work there are two practical questions that a user of MCMC algorithms must
ask: (1) how long should I run the chain before I can claim that it has converged to its
invariant (stationary) distribution, and (2) how long do I need to run the chain in stationarity
before it has sufficiently mixed throughout the target distribution? The key factor driving
both these questions is the rate at which the Markov chain is mixing through the parameter
space: slow mixing means that the definition of “long” gets considerably worsened. This
work addresses an additional question of equal importance but insufficient attention: What
does it mean when a univariate MCMC convergence diagnostic, applied to each dimension
of a multidimensional Markov chain, provides evidence that some, but not all, of the
dimensions have not converged? This question is important because while convergence is
a multidimensional concept, as explained in the following paragraphs, the convergence
diagnostics commonly used in practice all operate on a single dimension at a time.

There is also a difference between being in the state of convergence and measuring the
state of convergence. A Markov chain has converged at time ¢ to its invariant distribution
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(the posterior distribution of interest for correctly setup Bayesian applications) when the
transition kernel produces draws arbitrarily close to this distribution and the process
therefore generates only legitimate values from a distribution in proportion to the actual
target density. For a given measure of “closeness” (i.e., for some specified threshold, see
below), a Markov chain is either in its invariant distribution or it is not. There is no such
thing as “somewhat converged” or “approaching convergence.” In fact, Rosenthal (1995a)
gives an example Markov chain that converges in exactly one step. So diagnostics and
mathematical proofs that make claims about convergence are thus analyzing only a two-
state world.

To put more precision and clarity on such statements, start with the nonempty outcome
space, Q, that has an associated c-algebra, and an arbitrary state space, denoted S,
that define the possible realizations of the Markov chain of interest. Now define the
vector 0, € SSR?! (d > 1) as the rth empirical draw (reached point) from the chain
MC(0,,7 > 0), operating on the d-dimensional measurable space (S, Q), having the tran-
sition operator f defined on the Banach space of bounded measurable functions,' and
having 7(0) as its invariant distribution. Invariance in this context means that 7 is a prob-
ability measure on (S, Q), such that (s) = [f(0,s)1(d8), Vs € Q. So far, all we have
done is notate the measure space for the Markov chain and require that the applicable
probability function on this space is well behaved.

Define A (and later B) as an arbitrary and finite subset of S. We will use these subsets to
make statements about the behavior of the Markov chain as it traverses the state space. In the
discrete case, this can be a single event or a collection of events. In the continuous case, this
is a defined subregion of S. The transition kernel of the Markov chain, f{) (generalizing K
above), is the mechanism that maps S x Q— [0, 1] such that for every A € Q, the function
(-, A) is measurable and for every 0 € S the function f(6, -) is a valid probability function.
So, all this says that we can define the measure space for the Markov chain and properly
identify the probability mechanism (function) that governs movement through this space.

An aperiodic chain is one that has no deterministically repeating sequence: for an
irreducible Markov chain (all substates communicate) on a finite or continuous state space,
the greatest length for a repeating cycle is the trivial value of 1. This is easy to visualize in
the case of finite state spaces since these are discrete values or positions. For continuous
state spaces, these are subspaces or regions, broadly defined as done in the last paragraph.
For Markov chains operating on a finite state space, recurrence is the property that the
chain visits every state infinitely often in the limit. This is implied if the chain is positive:
the expected time to return to any state having started there is finite (Robert and Casella
2004, chap. 6). For continuous state spaces, positive Harris recurrence for a Markov
chain (sometimes called ¢-recurrence) means that there is a o-finite measure ¢ on
(S, Q) such that for every definable subspace A in Q with ¢(A) > 0 the probability that
the chain reaches A infinitely often in the limit is one for all starting points:
P06, € Aio.)=1, VA € S and all 0 (in our specific case ¢ is ). Colloquially, Harris
recurrence assures us that the chain is not impeded from reaching every arbitrary subspace
from any given point, even wildly misguided starting points: “there is no measure-
theoretic pathology” to worry about (Chan and Geyer 1994). All Markov chains discussed
from this point on are assumed to meet the conditions of aperiodicity and (appropriate)

'A normed vector space is called a Banach space if it is complete under this metric. Completeness means that for
a given probability measure space (typically given as (Q, F, P) denoting a space, a field (class of subsets of Q),
and a probability measure on F),if A C B, B € F, P(B) = 0, then A € ¥ and P(A) = 0. This condition for fallows
us to ignore a set of measure problems that can otherwise occur. It also provides results on a general state space as
well as the easier case of a finite countable state space.
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recurrence, although we will occasionally issue a reminder. See Athreya, Doss, and
Sethuraman (1996) for additional technical details on theoretical issues beyond those
discussed here.

If MC(0,,¢ > 0) is an aperiodic positive Harris recurrent Markov chain (such as the
Gibbs sampler and common variants of the Metropolis-Hastings algorithm), then we call it
ergodic (Tweedie 1975). Ergodic Markov chains have the important property that:

S r(0)= [ r@)n(@)do @)

proven originally by Doeblin (1940). This result means that empirical averages for the
function f() converge to a probabilistic average of the function over the limiting distribution.
In fact, it is this principle that underlies and justifies all MCMC for Bayesian stochastic
simulation; it is exactly the link between “Markov chain” and “Monte Carlo.” Since we are
often interested in the posterior mean of the distribution of interest from a Bayesian model,
equation (4) then implies that 1 3~ £(0,) ~ [ 07(8)d®, for sufficiently large .

A chain that is positive recurrent (finite state space) or positive Harris recurrent (con-
tinuous state space) and aperiodic is also o-mixing in #, meaning that:

1
lim —

t—o

o(t) = sup | P(6, € B,y € A) — P(6, € B)P(0p € A) | e 0 (5)
A.B — 00

(Rosenblatt 1971). This means that for the subspaces of S, A, and B that produce the largest
difference [the designation sup, 5 in equation (5)], the joint probability of starting at some
point in A and ending at some point in B at time ¢ converges to the product of the individual
probabilities. In other words, these events are asymptotically (in #) independent for any
definable subspaces. This second result from ergodicity justifies our treatment of Markov
chain iterations as independent and identically distributed samples (Chan 1993).

There are actually some additional measure-theoretic nuances and extensions of these
properties, such as the implied assumption that 7t(0) is not concentrated on a single point
as in a Dirac delta function (a “distribution” only in one technical sense), but the defi-
nitions given here are sufficient for the present purposes. Also, it is important to remember
that ergodicity is just one way to assert convergence. It turns out, for instance, that
a periodic Markov chain can also converge under a different and more complicated set
of assumptions (Meyn and Tweedie 1993, chap. 13), and we can even define ergodicity
without an invariant distribution (Athreya and Ney 1978). All this theory leads now to
a rigorous definition of convergence that we can use to understand partial results.

A Markov chain that has converged has the property that repeated applications of the
transition kernel produce an identical distribution: nf = m. By far, the most commonly used
method? of measuring such convergence is the rotal variation norm:

100 =) | =5supa [ 17(0)~r(6) | do, (©

which is also half of the L, distance (the 1/2 is sometimes omitted by authors). The 1/2
comes from limit theory: it turns out that as t — o, the total variation norm for A converges
to twice the empirical difference for all such subspaces (Meyn and Tweedie 1993, p. 311).

’The L, “chi-square” distance is also useful; see Diaconis and Saloff-Coste (1996). Another suggestion is the
infinity norm ||f|| ,, = supgex |If(0)|| (Roberts and Polson 1994). Geometric ergodicity can be asserted with the
V-norm as shown in Meyn and Tweedie (1993, chap. 16). Zellner and Min (1995) propose three potentially
useful alternatives as well.
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Here 0 is a d-dimensional random variable lying within A, the subspace that makes the
difference within the integral as great as possible. When we integrate over 0 € A, it
produces a supremum over the measurable subspace A for the set of all measurable
functions on A (a set that includes f(0,) and 1(8)). So there are two important operations
occurring in the statement of equation (6): (1) selection of a subspace that makes the
resulting quantity as large as possible and (2) integration of the distributional difference
over this subspace. In this way, we get the most pessimistic view of the difference between
7(6,) and (@) possible. Another common way to write the total variation norm (Meyn and
Tweedie 1993, p. 311) defines 1(A) as a signed measure on the state space S for the
subspace A. For our purposes, [(A) is the integrated difference of two distributional state-
ments over all of A. Then the total variation norm can be expressed as:

Il = sup u(A) = inf u(4), (7)

which shows the same principle as equation (6) due to the explicit statement of the integral.

Thus, if || £(0,) — w(0) | =0 as r— o, O converges to a random variable from 7(0),
and this convergence is actually stronger than standard convergence in distribution
(i.e., convergence of cumulative distribution functions [CDFs]). When || (0,) — n(0) ||
reaches a value close to 0 (say o for now), we are willing to assert convergence. The
problem, of course, is that 7t(0) is a difficult form analytically, which is why we are using
MCMC in the first place. Theoretical work that puts explicit bounds on convergence
includes Lawler and Sokal (1988), Sinclair and Jerrum (1988), Frieze, Kannan, and Polson
(1993), Ingrassia (1994), Robert (1995), Rosenthal (1995a), Liu (1996), Mengersen and
Tweedie (1996), as well as Roberts and Tweedie (1996). For discrete problems, it turns out
that the converge rate can be established in proportion to the absolute value of the second
eigenvalue of the transition matrix (kernel) (Sinclair and Jerrum 1989; Diaconis and
Stroock 1991; Fill 1991; Fulman and Wilmer 1999), but this can also be quite difficult
to produce for realistic problems (Frigessi et al. 1993). For examples where these ap-
proaches work in practice, see Goodman and Sokal (1989), Amit (1991), Amit and
Grenander (1991), Meyn and Tweedie (1994), Rosenthal (1995b, 1996), Polson (1996),
Cowles and Rosenthal (1998), Roberts and Rosenthal (1999), and Mira and Tierney (2001).
Usually, these solutions are particularistic to the form of the kernel and can also produce
widely varying or impractical bounds.

Markov chain mixing is a related, but different, concern than convergence. Mixing is
the rate at which a Markov chain moves about the parameter space, before or after reaching
the stationary distribution. Thus, slow mixing causes two problems: it retards the advance
towards the target distribution, and once there, it makes full exploration of this distribution
take longer. Both these considerations are critical to providing valid inferences since the
preconvergence distribution does not describe the desired marginals and failing to mix
through regions of the final distribution biases summary statistics. Mixing problems come
from high correlations between model parameters, weakly identified model specifications,
and are often more pronounced for model precision parameters. Although we are more
concerned with the convergence implications of poor mixing here, recommendations for
identifying and solving such problems are given later.

4 A Convergence Finding for the Metropolis-Hastings Algorithm

As the number of dimensions increases, the sensitivity (and complexity) of the Metropolis-
Hastings algorithm increases dramatically since the measure space (S, ) is defined such
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that each abstract point in S is d-dimensional and the c-field of subsets of € is generated
by a countable collection of sets on SR?. An ergodic Markov chain MC(0,,¢ > 0) has
the property:

| f(6,) —7m(0) | =0 as t— o, VO e Q, (8)

but the size of d is critical in determining the rate since each step is d-dimensional. The
primary complexity introduced by dimensionality here has to do with the strictness by
which we apply f(0,) — 7(0). Suppose now that there is a subset of these dimensions e < d
that are of primary interest and the remaining d — e are essentially a result of nuisance
parameters. Is it then reasonable to require only evidence of partial convergence? That is,
at time 7 for some small 5:

| f(0F) — n(0%) [[~5, VO* e 9)
but,

1F(87) = m(87) > 5 Vo' e ™™, (10)

where decisions are made one at a time for each of these dimensions using standard
empirical diagnostics of stationarity. Even though our evidence is derived from these
diagnostics, it is important to note that they measure Markov chain stability rather than
actual convergence, and so the sum of each of these across dimensions is used to just assert
convergence (convergence in total variation norm gives stationarity but the converse is not
similarly guaranteed).

The term partial convergence (or incomplete convergence) is introduced here since
there appears to be no scholarly concern to the problem by probabilists or statisticians and
therefore no vernacular to adopt. Partial convergence comes from a similar, but distinct,
problem of convergence for contact processes on connected graphs (see Salzano and
Schonmann 1997, 1999).°

There is one very important distinction to be made here. The Markov chain
MC(0,,7 > 0) is assumed ergodic over all of § and is thus guaranteed to eventually
converge across all of :i¢. What we see by observing equations (9) and (10) at time
point ¢ is a lack of evidence to say that there is full dimensional convergence. Can a
Markov chain operating in d dimensions be drawing from the true invariant distribution
in e subdimensions but not in d — e subdimensions? Recall that the standard empirical
diagnostics in WinBUGS, coda, and boa (Brooks, Gelman, and Rubin [BGR]; Geweke,
Heidelberger, and Welch; Raftery and Louis, plus graphical methods), as well as others
used in practice (Brooks, Dellaportas, and Roberts [1997] develop one based on the total
variation norm discussed above), provide a series of parameter-by-parameter tests of
nonconvergence.* Hence, they indicate when a single dimension chain is sufficiently
trending as to violate specific distributional assumptions that reflect stability, but they
do assert convergence in the opposite case.

These diagnostics operate on marginal distributions individually since the output of the
MCMC process is a set of marginal empirical draws. Unfortunately, the total variation
norm given above only shows us if the chain has converged simultaneously across every
dimension, providing a strong disconnect between theoreticians who derive convergence

There is also a neat parallel with Duncan Macintosh’s (1994) theory that all empirically adequate scientific
theories about nature partially converge to the true theory.

“Good overviews and critiques of these diagnostics can be found in Cowles and Carlin (1996), Brooks and
Roberts (1998), and at a more basic level in Gill (2007, chap. 12).
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properties for specific chains under specific circumstances and the masses who want to run
simple empirical diagnostics in easy-to-use software environments. To see this disconnect
more clearly, consider the right-hand-side of equation (6) written out with more detail:

—supA‘/ // [f(01,...,0q),
2 gea | Jo, 011 04

—n(@l,...,E)d)]dﬁl ~~~d66d66+1 de . (11)

If f() and n() were able to be expressed as independent products [i.e., f(x, y) = fix)f(y)] for
the 0;, then this would be a straightforward integration process. As stated, this cannot be
true for m since we are doing MCMC for this very reason. But what about f{)? Consider the
actual transition probability for the Metropolis-Hastings algorithm from 0 to '

A(0,0') = min{%, 1}g(0'|0) +(1—1r(0))30(0"), (12)

where g() is the proposal distribution,

o [0)s010) e
0= [ min a0,

and

39(0') =1 if 6 =0 and 0 otherwise

(the Dirac delta function). It is pretty obvious from looking at equation (12) that we cannot
generally disentangle dimensions. In particular, note the conditionals that exist across 0
and 0’. What this means is that decisions to jump to a proposal point in d-space (S, Q) are
made based on the current position in every dimension for the Metropolis-Hastings algo-
rithm. So if the chain has not converged in the ith dimension, i € [e + 1 : d], its current
placement affects the single acceptance ratio and therefore the probability of making
a complete d-dimensional jump. And this is all under the assumption of ergodicity or
better: geometric ergodicity or uniform ergodicity. Geometric ergodicity requires that:

1/(8:) —n(8) | < m(B)p', VO, 0<p<1, (13)

where m(0) is any finite, nonnegative function. Under these conditions, the tth step
transition probability converges to the invariant distribution at a geometric rate, which
can be very quick depending on the value of p. If instead of specifying the function m(0),
we find a constant m such that:

1£(8;) —m(6) [| <mp', VO, 0<p<1, (14)

then the chain is uniformly ergodic, which means it converges even faster.

So now that we know that nonconvergence in at least one dimension affects decisions to
move in all dimensions, the natural question is how does this work? A Metropolis-Hastings
chain dimension that has not converged is producing on average lower density contribu-
tions in the acceptance ratio. Therefore, in cases where the conditionality on the current
state is explicit (all general forms except the independence chain Metropolis-Hastings
where jumping values are selected from a convenient form as in the random walk chain,
but ignoring the current position completely: g(0' | 0) = 7(0)), it retards the mixing of the
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whole chain. Because the chain is ergodic, it is o-mixing (sup,|P(0, € B,0 €
A) — P(0, € B)P(0, € A)| goes to 0 in the limit), but inefficiently so (slowly) since non-
convergence for the d — e dimensions implies poorer mixing and greater distance between
P(0; € B,0p € A) and P(0, € B)P(0, € A).

It is no secret that a chain that is completely in its invariance distribution mixes better
(Robert and Casella 2004, chap. 12). So even in the case where 0;, the unconverged
dimension here is not a parent node in the model specified by =, there is a negative effect:
a Markov chain that has not sufficiently mixed through the target distribution produces
biased empirical summaries because collected chain values will be incomplete, having had
insufficient time to fully explore the target.

5 A Convergence Finding for the Gibbs Sampler

Robert and Richardson (1998) show that when a Markov chain, MC(6,, + > 0), is
derived from another Markov chain, MC(¢,, t > 0), by simulating from a distribu-
tion according to (8 | ¢,), the properties of the first chain inherit that of the condi-
tional. Critically, this conditionality defines new subspaces of (S, ) with new measure
properties.

For our purposes, the important point is that if MC(&,, ¢ > 0) is geometrically ergodic,
then MC(6,, t > 0) is as well, which is easy to demonstrate using the data augmentation
principle. The marginal distribution for the geometrically ergodic chain at time ¢ is f($)
with invariant distribution for n(¢). We can now express the invariant distribution of 6
in conditional terms:

7(6) = /¢ 7(6 | O)n(0)do, (15)

with the marginal distribution at time ¢:

£:(0) = /4) 7(0 | 0 (6)do. (16)

These integrals over ¢ result from a standard data augmentation process and currently
come before the integration of 0 € A in the calculation of the total variation norm (we will
switch this order below). Note that m(0 | ¢) appears in the second expression without
reference to time since 0, is simulated at each step from n(0 | ¢). These define the total
variation norm for 6,:

1
1£:(8) — =(0) || = Z5up A

/e/d)n(9|¢)ft(¢)d¢d6—/e/d)n(6|¢)n(¢)d¢de

0o
<II £i(¢) — (o) I, (17)

where the inequality comes from 7(6 | ) < 1 by the integration of a probability function
over the measure space for ¢ (the rate p carries through as well). This says that the total
variation norm of 6 can never be higher than the total variation norm of ¢, the random
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quantity it is conditioned on. Switching the order of integration in the last line comes from
stated regularity conditions on probability functions. Note that this process in equation
(17) is related to, but distinct from, so-called Rao-Blackwellization where intentional
conditioning is imposed to reduce the variance of computed expectations or marginals
(Casella and Robert 1996). The result in equation (17) is that a nonconvergent dimension
to the Gibbs sampler (just 0 here) “pushes” the others (just 0 here) away from stationarity
as well, even if these pass an empirical diagnostic for convergence. Observe also, that if the
two integrals in the first line of equation (17) were calculated-out at that point, it would just
be a way to calculate the total variation norm for 6 using data augmentation (which might
or might not be easier). Although we may want to perform these calculations in practice,
such a step does not help in producing the inequality result.

One utility of this result is that if we can intentionally augment a target chain with
a simple form that is known to be geometrically ergodic, then we can impose this property
even though we increase the dimension of (S, Q) (Fill 1991; Diaconis and Saloff-Coste
1993). Robert and Richardson (1998) point out that this is particularly useful when a target
chain of unknown convergence characteristics is conditioned on a simple discrete Markov
chain known to be geometrically ergodic with specific p and m(0) (alternately m). Also, if
the chain that is conditioned on is a-mixing, the target chain will be as well.

The big point comes from the structure of the Gibbs sampler (the default engine of
WinBUGS). Since the kernel is an iteration of full conditionals, n(6, |0_;) forj =1,.. ., d,
then according to the logic just discussed, either the Gibbs sampler is geometrically
ergodic in every dimension or it is not geometrically ergodic in any dimension. Impor-
tantly, since the subchains share the same geometric rate of convergence, p, one should be
cautious with empirical diagnostics since they provide evidence of nonconvergence not
evidence of convergence (see Asmussen, Glynn, and Thorisson 1992, for a detailed dis-
cussion on this point). Recall that at any given time ¢, a Markov chain is either converged to
its invariant distribution or it has not: there is a specific time when || £(0,) — 7(0) || < for
some chosen 8, we just do not necessarily know the moment.

Suppose for a two-parameter Gibbs sampler 0; passes some empirical diagnostic and
0, does not. Since they share the same rate of convergence, for 6; to be in its invariant
distribution while 0, is not means that you are testing the chain for convergence during the
very small number of intervals where the differing results are due to probabilistic features of
the chain or the test. Given the standard number iterations expected for MCMC work in
political science (generally tens or hundreds of thousands), the probability that you have
stumbled up this exact interval is essentially 0. Conversely, the test fails for 0, because the
Markov chain for this dimension is either not yet in stationarity or is in stationarity but has
failed to sufficiently explore the target distribution to produce a stable summary statistic for
the chosen diagnostic. The latter condition only exists for a relatively short period of time,
even with poor mixing. Moreover, the faster the convergence rate (i.e., geometric or uni-
form), the smaller the numerator in the calculation of this probability making it even
less likely that the user caught the interval of intermediate results using the Gibbs samplers
with listed properties above, where the size of this effect is notably a function of m(0) (or m)
and p. Therefore for the Gibbs sampler, evidence of nonconvergence in any dimension is
evidence of nonconvergence in all dimensions. In textbook, Gibbs sampling every param-
eter is conditional on every other parameter (actually in Bayesian hierarchical models most
parameters are not conditional on every other parameter). Returning to the notation of
equation (17), we note that § and ¢ would both be conditional on each other in a Gibbs
sampler. If 8 cannot converge faster than ¢ and ¢ cannot converge faster than 9, then they
converge at the same rate regardless of what various empirical tests are telling us. So for
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users of the usual diagnostic packages, coda and boa, the standard for multidimensional
convergence needs to be high. For a relatively small number of parameters, one would
expect broad consensus across diagnostics. However, for large numbers of model parame-
ters, we need to be aware that the diagnostics are built on formal hypothesis tests at selected
o levels and therefore 1 — o tests for large numbers of parameters will fail for about o
proportion of dimensions, even in full convergence.

Note that this same logic applies to Metropolis-Hastings MCMC for parameters with
conditions formed by hierarchies, which are a natural and common feature of Bayesian
model specifications. This inheritance of convergence properties does not necessarily
occur, however, for every parameter as in the perfectly symmetric case of the Gibbs
sampler. It also is not reciprocal in that the conditions in a Bayesian hierarchical model
flow downward from founder nodes to dependent nodes. Note that these conditionals result
explicitly from the model rather than through algorithmic conditioning in the Gibbs
sampler sense. In addition, parameters can be highly correlated without these structural
relationships. The difficulty posed by all these characteristics is that they generally slow
the mixing of the chain, making convergence and full exploration more difficult.

6 Empirical Examples

6.1 Convergence Problems from Priors Specifications (Gibbs Sampling)

A standard regression tool from the empirical modeling toolbox for dealing with censored
data is the tobit model (Tobin 1958), which is described in detail in Amemiya (1985, chap.
10). Suppose an interval-measured outcome variable is censored such that all values that
would have naturally been observed as negative are reported as O (generalizable to other
values). A classic example is public support for some practice where the practice is
adopted in only some cases (trade protection, death penalty, campaign contributions).
So support for the death penalty in murder cases in Hawaii is recorded as 0, but is unlikely
to actually be 0. If z is a latent outcome variable in this context with the assumed relation
z=xB + € (and z; ~ N(xB, 6%)), then the observed outcome variable is produced accord-
ing to: y; = z;if z; > 0 and y; = 0 if z; < 0. The resulting likelihood function is:

1?1y %)= TT 1= 0(“B) | TT (o e 5500502 19

vi=0 yi>0

where @ denotes the normal CDF. Chib (1992) introduces a blocked Gibbs sampling
estimation process for this model using data augmentation, and Albert and Chib (1993)
extend this to discrete choice outcomes. This is a quite natural approach since augmen-
tation can be done with the latent variable z. A flexible parameterization for the priors is
given by Gawande (1998):

Bl o*~N(By1o%B;") o> ~Tg(2 1) (19)
with vector hyperparameter f3,, scalar hyperparameters By, vo > 2, y; > 0 (ZG here
denotes the inverse gamma PDF), and appropriately sized identity matrix I. Substantial
prior flexibility can be achieved with varied levels of these parameters. For instance,
a likelihoodist-like result for B can be specified with B, =0 and small B,. A diffuse
prior specification for o is achieved by stipulating small y, and large 7y, since

Ezglo®] = (v1/(vo — 1))
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The resulting full conditional distributions for Gibbs sampling are given for the
block, 62, and the individual z]y; = 0 as:

Bl o% 2y, X~N((Bo +X'X) ") (BoBo + X'z), (67 °By + o °X'X) "))

2 _ Yot+n v+ (z—XB) (z—XB)
G |B7Z7y7X Ig( 2 b) 2 >
zi|yi=0,B,0,X~TN(XB,c*)I[(—=,0),

(20)

where 7N () denotes the truncated normal and the indicator function /(— o, 0) provides
the limits of truncation.

Norrander (2000) uses tobit models to look at social and political influences on U.S.
state decisions to impose the death penalty since the Supreme Court ruled the practice
constitutional in Furman v. Georgia 1972. The central question addressed is whether the
ideology, racial and religious makeup, political culture, and urbanization are causal effects
for state-level death sentences from 1993 to 1995. Norrander posits a causal model
whereby public opinion centrally, influenced by past policies and demographic factors,
determines death penalty rates by legitimating the practice over time. Her results are
convincing, but some curious “nonfindings” also emerge, in particular the lack of support
(across several model specifications) for state ideology and the current murder rate as
affecting sentencing rates.

The tobit model is appropriate here because 15 states did not have capital punishment
provisions on the books in the studied period and so the effect of public opinion on death
penalty rates is therefore censored in the data. That is, if these states had the legal ability to
impose death penalty sentences, then we would see evidence of some relationship between
the explanatory variables and the count. Note that the data are also truncated at O since
states cannot impose a negative number of death penalty sentences.

Unfortunately, the estimation process is sensitive to values of By, and this is why it is
common to see very diffuse priors in this specification. Suppose we wanted to approach
this project in a much more canonical Bayesian fashion by actually specifying informed
prior information. After all, we actually know about some of these effects: a state’s will-
ingness to sentence convicted murders to death should be positively affected by past rates
of executions, influenced by current state culture and opinion, increased with increasing
average level of conservative ideology, and increased with murder rates. In order to avoid
a lengthy policy discussion for this pedagogical example, we will simply pull prior means
from bivariate regression slope coefficients for each of these variables against the sen-
tencing rate, shown in the left-hand side of Table 1. These prior means are then used in the
specification of normal distributions all with variance 10 and By, = 0.02, as a way to be
somewhat skeptical.’

A Gibbs sampler is applied using the full conditional distributions given above for 3,
c?, and the z; using estimates from a regular non-Bayesian treatment as starting points.
What we see from the results in the right-hand side of Table 1 (10,000 iterations total
summarizing the last 2000) is that the introduction of prior information, albeit reasonably
mild prior information, leads to a defensible finding on ideology (although still not on the
murder rate). More interesting for our purposes, altering the precision value of By upwards

5Although this makes use of the data to stipulate prior distributions, these are bivariate relationships and thus not
indicative of a full multivariate relationship. The signs of these slopes are all in normally expected directions for
affecting death penalty rates and the priors are all given large variance. In practice, the rationale for specifying
prior distributions should be more substantively driven.
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Table 1 Tobit model for death sentences by state

Prior Posterior
Bo o’ B op
Constant 1.0000 10 —14.2951 3.4128
Past rates 180.2485 10 171.2920 8.2988
Political culture 0.9596 10 0.3323 0.1415
Current opinion 5.7686 10 3.8777 1.0645
Ideology 6.4436 10 3.1074 1.0714
Murder rate 0.5019 10 0.0152 0.0761

slightly ruins the stability of the Markov chain. This is dangerous since researchers can set
this parameter to reflect varying prior weight, moving the full conditional specification for
B away from the influence of the data in equation (20) and making the Gibbs sampler less
stable. We also know that precision terms are more susceptible to mixing problems than
unbounded cases. For instance, if we change By to 0.1, then at iteration 160, the subchain
for ideology begins a march toward negative infinity. This dimension is shown to be more
variable than the others anyway in Fig. 1, where traceplots for the stable Markov chain for
By = 0.02 are shown down the first column and traceplots for the problematic version for
By = 0.1 are shown down the second column. The values that the stable chain displays here
endure through the 10,000 iterations.

A few iterations after reaching 160, the effect from the ideology dimension ripples
through the conditional mechanism of the Gibbs sampler and all the dimensions become
unstable. Although this example exhibited problems early in the life of the chain, there is
no guarantee that such problems cannot emerge at any time. The important point to note is
that once problems emerged in one dimension, they did not stay confined there.

We can also learn something about convergence in this example by applying some of
the standard empirical diagnostic tools commonly used in practice. The BGR diagnostic is
based on an ANOVA comparison of multiple parallel runs of the Markov chain started
from widely dispersed positions in the sample space. First, run m > 2 chains of length 2n
from these overdispersed starting pomts and dispose of the first n. For a single parameter k
out of d in the model, we denote Gm] as the rth value (n < t < 2n) from the jth parallel
chain (1 < J < m) For the kth parameter, we calculate two quantities: the within-chain
variance, = oD DI Py 1(9” A é ) , and the between-chain variance,

=[] o
B=-"= Jm 1(9 -0 ) . From standard ANOVA theory, the marginal posterior vari-

ance is given by var(O) (1 —1/n)W + (1/n)B, and the scale reduction factor is calcu-
lated as: R = \/var(6 (0)/W. The value of R needs to be close to one to claim convergence.

The Geweke diagnostic proceeds by preselecting for the kth parameter two nonover-
lapping wmdow proportions, one early in the chain and one later in the chain: 6 of length
n; and 9 of length n,. For each window, calculate some function of interest g() which is

generally the mean. The diagnostic is given by: G = (g(e[f) - ( 9/ Y' © +2 0>

where 51(0) and s,(0) are the symmetric spectral density functions for each wmdow. Large
values show a discrepancy and therefore imply Markov chain instability.

For the Heidelberger and Welch diagnostic, define the following quantities: (1) 7 =
the length of the chain after burn-in, s € [0 : 1] = the test chain proportion,
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Fig. 1 Comparison of Bayesian tobit models.

T = ZES:TIJ 0;,= the sum of the chain values from one to the integer value just below s7,
|sT]0 = the chain mean times the integer value just below s7, and s(0) = the spectral
density of the chain (the notation |_XJ, here, denotes the integer value of X. This lets us
construct a Cramér-von Mises test statistic for sums as cumulative values scaled by the
spectral density, for any given s: Br(s) = (7| ;) — Ls710)//Ts(0). The mechanics of this
test increment the s parameter by units of 0.10 until the resulting chain either passes (e.g.,
the test statistic is within [—1.96 : 1.96] for the default oo = 0.05) or more than half of the
available iterations have been discarded and general failure is prescribed.

The regular diagnostics are somewhat disturbing for this example. Notice from Table 2
that for the model with B, = 0.02, all three of these tests show no cause for concern. The
BGR Scale Reduction Factors (using four comparison chains) all hover around one (the
value for Past Rates is slightly less than one due to rounding/truncating), the Geweke z-
scores are all well-within [—1.96 : 1.96], and the Heidelberger and Welch Cramér-von
Mises test statistics are similarly small. Unfortunately, moving By to 0.1 does not allow us
to collect many observations for the diagnostics, but running them on the last 200 of 300
total gives the results in the second part of Table 2 (it is nearly impossible to get accepted
values after this point, so the chain remains in place). First notice that the BGR tests show
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Table 2 MCMC empirical diagnostics, tobit model

BGR Geweke Heidelberger and Welch
Scale Reduction Factor (at defaults) Cramer-von Mises
By = 0.02
Constant 1.000010 —0.692213 0.1317036
Past rates 0.999808 —0.875609 0.2302676
Political culture 1.000052 —0.329635 0.0667068
Current opinion 1.000909 0.821076 0.1370106
Ideology 1.000250 0.518202 0.1112524
Murder rate 1.000436 0.417410 0.0581120
BO = 01
Constant 1.016265 1.429219 0.317495
Past rates 1.001267 —1.312726 0.2663231
Political culture 1.015474 —0.191747 0.0734364
Current opinion 1.047117 —1.869762 0.2664384
Ideology 1.003489 —0.653879 0.1268610
Murder rate 1.007958 —2.454625 0.2949386

no problem whatsoever. This is because all the chains are simultaneously becoming
unbounded and there is no notable difference between them as they go. The Geweke
diagnostic shows several large values, the one for Murder Rate in particular. Although
Table 2 gives the Geweke values at the default window widths, varying these parameters
provided very similar statistics. Regretfully, the Heidelberger and Welch diagnostic does
not catch problems here. Manipulating the two available parameters for the second half of
the test (error “accuracy” of the posterior estimates for the parameters set at 0.1, and the
alpha level for the confidence in the sample mean of the retained iterations set at 0.05),
a less useful “halfwidth” comparison, can reveal problems. However, like Geweke, this is
not common practice among practitioners. Fortunately, in this case the eventual decline of
the truncated normal draw acceptance rate to O indicates the existence of an algorithmic
problem independently of these formal tests.

What is the lesson here? The BGR diagnostic only provides measures of similarity
between the parallel chains. Normally, this is enormously useful since well-chosen starting
points spread widely throughout the sample space that lead to chain co-location at a later
time are a reassuring phenomenon, but it does not preclude the possibility that all the
parallel chains are seduced by a nonoptimal region for the time period being considered.
Researchers working with suspect chains may consider repeating the BGR test with
additional starting points dissimilar to the original set. The Geweke test also comes with
a strong caution. The selected comparison windows are totally arbitrary, and it is possible
to imply stability on instability with some chains simply by altering this selection. Un-
fortunately, most researchers simply leave the defaults in place. The Heidelberger and
Welch diagnostic comes with similar concerns since the manner in which the s parameter
is used is not changeable in coda or boa.

6.2 Convergence Problems from Identification Error (Metropolis-Hastings)

In this section, we develop a Bayesian multinomial logit model for party choice in the
1972 Italian election. This is an interesting illustration because estimation of multinomial
logit models is more complex than standard generalized linear models, and multinomial
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consideration of nine party choices is also difficult. The data come from a postelection
national survey of 1841 Italian citizens (reduced here to 1839 due to coding issues with
two cases; there is no missing data) querying their political attitudes and obtaining de-
mographic information (ICPSR-7954). The respondents give their vote choice by party,°
which is the studied outcome variable. The explanatory variables are education level
(ordinal from 1 = never been to school to 9 = postgraduate study), marriage status
(0 = unmarried, 1 = married), sex (0 = male, 1 = female), age (reported value in years),
religiosity (ordinal with 1 = very, 2 = somewhat, 3 = little, 4 = not), and employment
(0 = no, 1 = yes). Details and frequencies are available online at http://www.icpsr.
umich.edu for study number 07954. All coefficient priors are specified as improper
uninformed forms: p(B;) = k over [~ : «].

As a reminder, a multinomial logit model with J choices is estimated with respect to
a reference category in order to be identified so that the resulting coefficient vectors,
B;, j=1...J — 1 (the reference category gets B, = 0), provide the relative effect through
the logit function of that explanatory variable on the probability that the respondent chose
a specific category rather than the reference category. So given the observed data matrix X,
the probability that respondent i chooses category j over category 1 is given by:
P(y;) = exp(XiB;)/ S7_, exp(XiB,). Estimation of the Bayesian multinomial logit com-
bines log likelihood function, £(B;,...,B,) = S_i_; 31, yilog P(y;) (Amemiya 1985,
p- 295), with prior distributions for all unknown parameters using Bayes law. This model is
implemented with a random walk Metropolis-Hastings algorithm from the MCMCpack
package in R (Martin and Quinn 2005, http://mcmcpack.wustl.edu/wiki/index.php/Main_
page).

The primary issue of concern with this example is the mixing effect on nonconver-
gence. The single source of mixing issues is that the third party category (Partito Social-
ista Italiano [PSI]) has only 13 votes in the survey providing a serious identification
problem in the model. As seen in Fig. 2, the coefficient for the impact of being in the not
religious category on voting for the third party relative to a minor party or abstaining has
poor mixing qualities (panel 1). The figure shows the traceplot for the first 10,000
iterations after a burn-in period of 1000 iterations for four coefficient dimensions. The
poor mixing for RELIGIOUSNot.3 is particularly manifest here and would have pro-
vided an incorrect view of the posterior distribution if we had stopped here (a posterior
mean of 163.71 versus the correct one of 1467.41). The chain is subsequently run up to
300,000 iterations with the last 100,000 shown. We can still see, however, that there is
significant “snaking” in the first panel indicating a stickiness in the path of the chain
(i.e., poor mixing even in the long run). Surprisingly, these last 100,000 values provide good
convergence diagnostics for all dimensions including this problematic one (see below).

Interestingly, the anticipated effect on other dimensions is visible for three example
paths in the remaining panels of Fig. 2. The horizontal bars in all four panels show 90%
highest posterior density interval thresholds. What is clear, to varying degrees, is that while
the early period of the three chains has close to the same posterior mean (—1.25 versus
—1.30, 1.12 versus 1.23, —0.21 versus 0.17, accordingly), but noticeably different ranges
of travel. So while the long-term effect on the other parameters dissipates to 0, stopping the
chain earlier would have been detrimental even to dimensions seemingly unconcerned

The listed parties are Partito Comunista Italiano (PCI), Socialist Party of Proletarian Unity (PSIUP), Partito
Socialista Italiano (PSI), Partito Socialista Democratico Italiano (PSDI), Partito Republicano Italiano (PRI),
Democrazia Cristiana (DC), Partito Liberale Italiano (PLI), and Movimento Sociale Italiano (MSI). The “Other”
category is a collapsing of indicated votes for minor parties where only 0-3 of the survey respondents indicated
a positive vote choice.
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Fig. 2 Traceplots and 90% HPD lines, Italy election model.

with the problems from the PSI party choice. Furthermore, rerunning the model but
moving this party into the “other” category alleviates the mixing problem.

The formal diagnostic tests are difficult and incomplete for this example. Restricting
ourselves to the four parameters of interest above, the BGR test fails in all cases using boa
or coda. Worse yet, boa and coda have difficulty even reporting values for Geweke and
Heidelberger and Welch. For Geweke, coda was able to report two parameter values but
crashed on the other two, whereas boa crashed on all four. Note that the two Geweke
values reported in Table 3 are extremely large. For Heidelberger and Welch, boa crashed
on all four, and coda was able to report only one parameter test, which surprisingly passes.
Obviously, it is better here to fail to report test values than to erroneously imply conver-
gence. Still, it is disappointing to not have more information about the reasons for the
software behavior, although we know that the available time period here is insufficient for
these two diagnostics based on time-series principles. Clearly, though, the contents of
Table 3 point towards nonconvergence.
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Table 3 MCMC empirical diagnostics, Italy election model

BGR Geweke Heidelberger and Welch
Scale Reduction Factor (at defaults) Cramer-von Mises
RELIGIOUSNot.3 2.552787 — —
RELIGIOUSNot.1 3.601752 11.45 —
RELIGIOUSLittle.8 2.792330 — 0.07870
RELIGIOUSSomewhat. 1 4.524198 30.94 —

7 Recommendations

The paradox here is that we really care about joint posterior convergence but end
up analytically looking strictly at marginal posterior convergence. That is, almost every
diagnostic, formal or graphic, evaluates convergence one dimension at a time (the BGR
diagnostic does have an omnibus statistic, the Multivariate Potential Scale Reduction
Factor, but this is rarely reported by authors). The key problem is that marginal conver-
gence, partial or complete, is not the same thing as joint convergence. So the question
remains what should a conscientious practitioner do to maximize their confidence about
convergence? Can we define some sense of the “best practices” here that will increase
reader confidence in MCMC results?

One strategy is to be thoughtful about starting values for the Markov chain. If the
maximum likelihood estimation is used as a starting point for the Markov chain, then
one can be more certain beginning at an area of high posterior density. Robert and Casella
(2004, p. 461) note that in cases where the target distribution is approximately known, it is
possible to start the chain as if it were already in stationary regime since this point belongs
to a region of high probability. Gelman and Rubin (1992, p. 459) suggest using the EM
algorithm to find posterior modes noting that EM should be started from several different
points if multimodality is suspected. Another, more commonly ignored, value is the
random seed. Generally, it is easy to vary this value for different runs, and WinBUGS
gives a simple pull-down menu for this purpose. One interesting feature of WinBUGS is
that when the same model is rerun with the same seed, the exact same chain values are
produced.

The three most practical and convenient convergence diagnostics are Brooks, Gelman
and Rubin; Geweke; and Heidelberger and Welch. These are easily understood tools that
are offered in menu-drive form in the R packages coda and boa. Other tools either require
coding by the practitioner or have been shown to possess nonoptimal properties. The
general advice here is to run all these diagnostics with long chains and close inspections.

Of these three, BGR requires the most experience and sophistication to use correctly.
This is because the diagnostic requires overdispersed starting points for running multiple
chain in order to make within- and between-variance comparisons. Here “overdispersed”
means spread out through the sample space sufficiently widely apart that their relative
distances exceed the major range of the density. In small dimensions this is not a difficult
or time-consuming enterprise, although it may require some analytical knowledge of the
marginal posterior forms or the application of the EM algorithm or a grid search to find
areas of high density. However, with high dimensional posterior forms, this can be
a daunting task, and in practice, it is often eased by either guessing the range or randomly
assigning starting points. Simply guessing what counts as overdispersion can be deleteri-
ous and may dramatically alter the results. Using randomly selected starting points for the
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separate chain values is better if done with caution and repeated several times. An advan-
tage, though, is that normally BGR does not require long runs of the Markov chain to see
useful convergence information, so repeated analyses with different sets of starting points
is not overly taxing.

Consider again a Metropolis-Hastings algorithm stopped at time ¢ where the BGR test
provides Scale Reduction Factors that differ by dimension: dimensions 1 : e have values
near 1, but e + 1 : d are considerably larger. From this we would surmise that
| £(0F) — m(0%) || =35, VO* € Q°, and || £(8]) — n(07)] > 5, VO € Q™. This situa-
tion should trigger concern about mixing, which can easily be checked by adding code
to accumulate acceptance decisions (MCMCpack reports this to the user by default). Very
small acceptance rates, say below 1%, are an indication that this problem may be seriously
affecting the algorithm. Since Gibbs sampling moves on every iteration, such partial
results from the BGR diagnostic have a different interpretation. For dimensions where
the posterior form is relatively flat and featureless, there is much less of an inclination for
the multiple chains to converge to the same area. So with Gibbs sampling, this behavior
may indicate a poorly specified model.

As seen in the examples, both Geweke and Heidelberger and Welch rely on running the
Markov chain for a relatively long period of time in order to view possibly different eras.
Thus, by comparing early periods to late periods, a distributional test can be performed to
make assertions about changing chain behavior with simple summary statistics. So this is
an intuitive approach, even though it requires relatively longer runs than BGR. The biggest
concern with the Geweke diagnostics is that the results can vary with differing window
selections and bin sizes, producing different views of overall convergence. Cautious
researchers should change these values (again, simply a menu-driven process in coda
and boa) several times and watch for any evidence of nonconvergence in any of the
dimensions.

How can the time-series nature of the Geweke and Heidelberger and Welch diagnostics
help when they indicate partial convergence. With both tools we are comparing different
eras of the chain, and with Metropolis-Hastings it may be the case that the acceptance
rates differ dramatically by period. With minor coding we can turn on accumulation of
acceptance decisions over these periods. This is not directly available in WinBUGS, JAGS,
or MCMCpack, but implementations coded by the research in C, R, or some other pro-
gramming language can be modified to record such information. For example, at the
Geweke defaults, if the [0.4 : 0.5] era has significantly lower values of a(0,0') or accep-
tance decisions than the [0.5 : 1.0] era, it would explain large test statistics for some
dimensions. In the case of Gibbs sampling, this provides less prescriptive information
but may indicate the existence of wide, flat posterior areas in some dimensions as noted
above with BGR.

While discussing these diagnostics, it is critical to make one important point about the
required strength of evidence that is provided. It would be highly unrealistic to require that
every diagnostic pass every dimension, particularly with a large number of dimensions.
Such reasoning would ignore the fact that these diagnostics make use of formal hypothesis
tests and thus will incorrectly reject the null of stationarity for some dimensions at the
prechosen level. Suppose we had hundreds or thousands of parameters under consider-
ation, even in complete convergence 5% of the Geweke z-statistics will be greater than
1.96 in absolute value. This is obviously less critical in model specifications with many
fewer explanatory variables, but the intention here is to recommend cautious inspection by
multiple means rather than dogmatic application of the single-dimension formal tests with
a 100% pass criteria.
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Graphical diagnostics require special caution. Perhaps the worst case is the traceplot in
WinBUGS because it dynamically resizes the y axis of the plot as it runs thus giving the
illusion of chain stability under all but the most extreme circumstances. Users of this
software should consider the dynamic traceplot (labeled as just “traceplot” in the analysis
window) as merely an amusement. The “history” button provides a full graph of the chain
path, and more usefully coda and boa provide flexible implementations. One more caveat
applies to the use of traceplots. Occasionally, one sees traceplots in published or unpub-
lished work where the starting points are included and these starting points are far from the
main area of the stationary distribution for that marginal posterior. The net effect is to
make the chain appear very stable due to scale effects in the graph, even when there is
substantial snaking or alternating between modes. This effect can also be seen on running
mean/cumsum graphs.

Another graphical summary to worry about, although much more benignly, is the
smoothed density graph provided by all relevant packages and easily programmed on
one’s own. These are not formal tests of convergence in any sense but can reveal some
sense of marginal instability. Since the smoothing parameter is set by the user, or more
likely left at a default, a marginal posterior can appear more smooth than it should be.
Furthermore, overly smooth specifications can hide multimodal features that may be sub-
stantively important.

An unappreciated approach that adds to one’s confidence is the idea of performing an
“insurance run.” The notion here is to add an additional step after the analysis and
therefore after one has done everything possible to provide convincing evidence of con-
vergence. While the researcher moves on to writing up the results and discussing the
findings, run one extremely long chain (perhaps in the background, depending on com-
puting platform). This is where thinning the chain (only saving every 10th iteration or so)
is useful for storage purposes. After a few days or longer, the chain can be checked, and if
the results do not comport with the previous findings, then this is cause for alarm. Expe-
rience shows that really is just a means of providing extra confidence for those who were
careful in the ways described above.

The mixing rate is another concern that bears on convergence. Poor mixing does not
necessarily mean that there exist fundamental model or algorithmic problems but it does
slow progress towards convergence and then full exploration of the posterior. Since all
Markov chains in applied settings are run in finite time, slow mixing can lead to inference
problems. Tests for mixing can be quite complex and time consuming, so most wary
practitioners compare the range of chain visits in each dimension to the known distribu-
tional support for that dimension. This is certainly an ad hoc approach but one that
provides useful information. For the Metropolis-Hastings algorithm, one easy diagnostic
is to look at the acceptance rate of new destinations. Generally, something between 20%
and 50% is a sign of healthy mixing properties (more specific guidance is given in Gelman,
Roberts, and Gilks 1996). A creative strategy for checking mixing in general is to manip-
ulate the Geweke diagnostic to check small intervals rather than the large sweeping
percentages normally used. If chain averages are not different across small ranges of
hundreds or more, then there is evidence of stickiness. More elaborate procedures
for improving Markov chain mixing (generally called “acceleration algorithms”) in-
clude simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983), simulated tempering
(Marinari and Parisi 1992; Geyer and Thompson 1995), and related dynamic variants (Gill
and Casella 2004), blocking where parameters are updated in groups (Liu 1994, Roberts
and Sahu 1997), and collapsing where parameters values are generated partial margin-
alizations (Gill 2007, chap. 12). Chen, Shao, and Ibrahim (2000, p. 43-52) give detailed
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descriptions of grouped move, multigrid Monte Carlo sampling, and covariance-adjusted
MCMC, all to speed mixing.

Perhaps the most common and practical way to alleviate mixing problems is to repar-
ameterize model variables. This works because poor mixing is often caused by high
correlations between these terms and can be detected through graphical diagnostics and
checking parameter correlation matrix (Hobert, Robert, and Goutis 1997), and there is
evidence that the Gibbs sampler is especially sensitive to parameter correlation (Gilks and
Roberts 1996). Although such approaches depend heavily on the particular model and data
at hand and thus very general recommendations do not make sense, two strategies dom-
inate. First, one should try reparameterizations that make each model component as in-
dependent of the others as possible. Common reparameterization tricks here are specific
parametric forms, for example, y; = 0; + 6,, v = 0; — 0, and possibly quadratics,
centering the covariates X = X; — X and centering by “sweeping” all the parameter means
into a single term (Vines and Gilks 1994). Also, Robert and Casella (2004, p. 398-399)
show two particular examples where reparameterization and subsequent imposition of
identity constraints improves the mixing of the Gibbs sampler. Second, since specific
boundings of the parameters tend to slow down mixing, consider transformations onto
the entire real line (for continuous-measured parameters). The workhorse here is log
transformation, but other forms are often reasonable (Gilks and Roberts 1996).

Finally, data augmentation (Tanner and Wong 1987) can help with mixing properties
even though it most often posited as a means of dealing with missing data in Bayesian
models (Liu 2001, p. 135-8). In particular, see Carlin and Polson (1991); Albert and Chib
(1993); Rosenthal (1993); Lui, Wong, and Kong (1994); and Swendsen and Wang (1987)
and more recently Imai and van Dyk (2005) and Gelman et al. (2006). The basic idea
behind data augmentation in the context here is that if an MCMC algorithm to marginalize
7(0 | X) is mixing slowly, then it is sometimes possible to find another convenient random
variable Y such that the algorithm operates more efficiently through sampling from
n(0,Y | X) by alternating between n(0|Y,X) and n(Y|0,X). Chib (1992) explains
how this can be quite simple and elegant when Y is a latent feature in the model speci-
fication. Meng and van Dyk (1999) and van Dyk and Meng (2001) extend this idea with
conditional and marginal versions of data augmentation and take advantage of unidentifiable
parameters to improve the rate of convergence.

8 Conclusion

In an era when just about anyone can run MCMC in WinBUGS, MCMCpack, or other
convenient software, it is important to think seriously about how we assess convergence.
It is not hard to imagine a number of well-intentioned researchers who become lulled into
a false sense of security by the mechanical nature of standard empirical diagnostics. In an
experiment, Cowles, Roberts, and Rosenthal (1999) ran 300 parallel chains for 1000
iterations starting already in stationarity with a simple statistical model, and still obtained
conflicting guidance from a common diagnostic (Geweke with different options tried)
about how long the burn-in period should be (4—49). Gill (2007, chap. 12) shows further
that the different commonly used diagnostics can provide conflicting results relative to
each other, even about the same parameters.

We need to think more about what the standard empirical diagnostics are or are not
telling us when there is slow mixing and only partial evidence. We have shown here that
the performance across multiple dimensions is far from independent, and therefore we
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ignore nonconvergence in some dimensions at our own peril (although it differs in effect
by algorithm and model). Furthermore, the subchains that appear to have converged could
be simply exploring a false attraction imposed by nonstationarity. This, of course, is
related to mixing which was discussed here as well. Another linkage between mixing
and convergence was noted by Brooks and Roberts (1998, p. 320). “In particular, for slow
mixing Markov chains, convergence diagnostics are likely to be unreliable since their
conclusions will be based upon output from only a small region of the state space.”

It is surprising that no serious attention has been given to considering the implication
for partial convergence, although a related problem in statistical physics has been consid-
ered (Manita [1997] looks at multiple particles moving Markovian, but assumes complete
independence making the results not applicable to the statistical problems encountered
routinely used with MCMC in applied statistics). Therefore, it is hoped that this discussion
points practitioners of MCMC, a growing group in political science, towards more caution
and therefore better statistical inferences.

Finally, this paper is neither intended as a polemic against extensive use of MCMC
in political science nor to imply that things often go awry. In fact, most chains readily
converge with typical models and provide strong evidence that they have done so. We
know a lot about the traversal of mode-finding algorithms in maximum likelihood esti-
mation settings, including the things that could wrong. The purpose here is merely to
provide a similar level of knowledge and comfort about this newer estimation process.
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