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What should a researcher do when statistical analysis software terminates before
completion with a message that the Hessian is not invertable? The standard textbook
advice is to respecify the model, but this is another way of saying that the researcher
should change the question being asked. Obviously, however, computer programs
should not be in the business of deciding what questions are worthy of study. Although
noninvertable Hessians are sometimes signals of poorly posed questions, nonsensical
models, or inappropriate estimators, they also frequently occur when information about
the quantities of interest exists in the data through the likelihood function. The authors
explain the problem in some detail and lay out two preliminary proposals for ways of
dealing with noninvertable Hessians without changing the question asked.
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INTRODUCTION

In social science applications of nonlinear statistical models,
researchers typically assume the accuracy of the asymptotic normal
approximation to the likelihood function or posterior distribution. For
maximum likelihood analyses, only point estimates and the variance
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at the maximum are normally seen as necessary. For Bayesian
posterior analysis, the maximum and variance provide a useful first
approximation.

Unfortunately, although the negative of the Hessian (the matrix
of second derivatives of the posterior with respect to the parameters
and named for its inventor, German mathematician Ludwig Hesse)
must be positive definite and hence invertible to compute the vari-
ance matrix, invertible Hessians do not exist for some combinations
of data sets and models, and so statistical procedures sometimes
fail for this reason before completion. Indeed, receiving a computer-
generated “Hessian not invertible” message (because of singularity
or nonpositive definiteness) rather than a set of statistical results is a
frustrating but common occurrence in applied quantitative research.
It even occurs with regularity during many Monte Carlo experiments
when the investigator is drawing data from a known statistical model.

When a Hessian is not invertible, no computational trick can make it
invertible, given the model and data chosen, since the desired inverse
does not exist. The advice given in most textbooks for this situation is
to rethink the model, respecify it, and rerun the analysis (or, in some
cases, get more data). This is important and appropriate advice in
some applications of linear regression since a noninvertible Hessian
has a clear substantive interpretation: It can only be caused by multi-
collinearity or by including more explanatory variables than observa-
tions (although even this simple case can be quite complicated; see
Searle 1971). As such, a noninvertible Hessian might indicate a sub-
stantive problem that a researcher would not otherwise be aware of.
It is also of interest in some nonlinear models, such as logistic regres-
sion, in which the conditions of noninvertability are also well known.
In nonlinear models, however, noninvertible Hessians are related to
the shape of the posterior density, but how to connect the problem to
the question being analyzed can often be extremely difficult.

In addition, for some applications, the textbook advice is discon-
certing, or even misleading, since the same model specification may
have worked in other contexts and really is the one the researcher
wants estimates from. Furthermore, one may find it troubling that
dropping variables from the specification substantially affects the
estimates of the remaining variables and therefore the interpretation of
the findings (Leamer 1973). Our point is that although a noninvertible
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Hessian means the desired variance matrix does not exist, the
likelihood function may still contain considerable information about
the questions of interest. As such, discarding data and analyses with
this valuable information, even if the information cannot be summa-
rized as usual, is an inefficient and potentially biased procedure.1 In
situations when one is running many parallel analyses (say one for
each U.S. state or population subgroup), dropping only those cases
with noninvertible Hessians, as is commonly done, can easily generate
selection bias in the conclusions drawn from the set of analyses.
And restricting all analyses to the specification that always returns an
invertible Hessian risks other biases. Similarly, Monte Carlo studies
that evaluate estimators risk severe bias if conclusions are based (as
usual) on only those iterations with invertible Hessians.

Rather than discarding information or changing the questions of
interest when the Hessian does not invert, we discuss some methods
that are sometimes able to extract information in a convenient format
from problematic likelihood functions or posterior distributions with-
out respecification.2 This has always been possible within Bayesian
analysis by using algorithms that enable one to draw directly from
the posterior of interest. However, the algorithms, such as those based
on Monte Carlo Markov chains or higher order analytical integrals,
are often more difficult to use than point estimates and asymptotic
variance approximations to which social scientists have become
accustomed, and so they have not been widely adopted.

Our goal in this work has been to develop an easy-to-use, off-
the-shelf method for dealing with nonivertable Hessians—one that
can be used by the vast majority of social scientists in real applied
empirical research. We believe we have made progress, but we do
not believe we are there yet since the methods we offer involve more
than the usual degree of care in application, and some types of models
and noninvertable Hessians will not be ameniable to the methods we
introduce. As such, although the intended audience for a more mature
version of the methods we introduce here is applied social scientists,
we presently hope to appeal primarily to other methodologists who
we hope to spur on to achieve the goal we set out. To facilitate the
path for others who might also wish to get involved in this pursuit, we
provide as clear as possible an introduction to basic issues involved
as well.
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Since the vast majority of social science is done in the frequentist
or likelihood frameworks, we try to provide methods and answers
reasonably close to what they would want. Thus, although our
approach is Bayesian, we stick where possible to noninformative, flat
priors. We therefore provide credible intervals instead of confidence
intervals, as well as posterior variances instead sampling distribution
variances, but the quantities we intend to compute should neverthe-
less be reasonably comfortable for most social scientists. In addition,
all the methods we discuss are appropriate when the Hessian actually
does invert and, in many cases, may be more appropriate than classical
approaches in those circumstances. We begin in Section 2 by pro-
viding a summary of the posterior that can be calculated, even when
the mode is uninteresting and the variance matrix nonexistent. The
road map to the rest of the article concludes that motivating section.

MEANS VERSUS MODES

When a posterior distribution contains information but the variance
matrix cannot be computed, all hope is not lost. In low-dimensional
problems, plotting the posterior is an obvious solution that can reveal
all relevant information. In a good case, this plot might reveal a
narrow plateau around the maximum or collinearity between two
relatively unimportant control variables (as represented by a ridge in
the posterior surface). Unfortunately, most social science applications
have enough parameters to make this type of visualization infeasible,
and so some summary is needed (indeed, this was the purpose of
maximum likelihood estimates, as opposed to the better justified like-
lihood theory of inference, in the first place; see King 1998).

We propose an alternative strategy. We do not follow the textbook
advice by asking the user to change the substantive question they ask
but instead ask researchers to change their statistical summary of the
posterior so that useful information can still be elicited without chang-
ing their substantive questions, statistical specification, assumptions,
data, or model. All available information from the specified model
can thus be extracted and presented, at which point one may wish
to stop or instead respecify the model on the basis of substantive
results.
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In statistical analyses, researchers collect data, specify a model, and
form the posterior. They then summarize this information, essentially
by posing a question about the posterior distribution. The question
answered by the standard maximum likelihood (or maximum post-
erior) estimates is, “What is the mode of the posterior density and the
variance around the mode?” In cases when the mode is on a plateau
or at a boundary constraint, or the posterior’s surface has ridges or
saddlepoints, the curvature will produce a noninvertible Hessian. In
these cases, the Hessian also suggests that the mode itself may not be
of use, even if a reasonable estimate of its variability were known. That
is, when the Hessian is noninvertible, the mode may not be unique
and is, in any event, not an effective summary of the full posterior
distribution. In these difficult cases, we suggest that researchers pose
a different but closely related question: “What is the mean of the
posterior density and the variance around the mean?”

When the mode and mean are both calculable, they often give
similar answers. If the likelihood is symmetric, which is guaranteed if
n is sufficiently large, the two are identical, and so switching questions
has no cost. Indeed, the vast majority of social science applications
appeal to asymptotic normal approximations for computing the stan-
dard errors and other uncertainty estimates, and for these, the mode
and the mean are equal. As such, for these analyses, our proposals
involve no change of assumptions.

If the maximum is not unique or is on a ridge or at the boundary
of the parameter space, then the mean and its variance can be found,
but a unique mode and its variance cannot. At least in these hard
cases, when the textbook suggestion of substantive respecification is
not feasible or desirable, we propose switching from the mode to the
mean.

Using the mean and its variance seems obviously useful when the
mode or its variance does not exist, but in many cases when the two
approaches differ and both exist, the mean would be preferred to the
mode. For an extreme case, suppose the posterior for a parameter θ is
truncated normal with mean 0.5, standard deviation 10, and truncation
on the [0, 1] interval (cf. Gelman, Carlin, Stern, and Rubin 1995:114,
problem 4.8). In this case, the posterior, estimated from a sample of
data, will be a small segment of the normal curve. Except when the
unit interval captures the mode of the normal posterior (very unlikely
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given the size of the variance), the mode will almost always be a
corner solution (0 or 1). The mean posterior, in contrast, will be some
number within (0,1). In this case, it seems clear that 0 or 1 does not
make good single-number summaries of the posterior, whereas the
mean is likely to be much better.

In contrast, when the mean is not a good summary, the mode is
usually not satisfactory either. For example, the mean will not be very
helpful when the likelihood provides little information at all, in which
case the result will effectively return the prior. The mean will also
not be a very useful summary for a bimodal posterior since the point
estimate would fall between the two humps in an area of low density.
The mode would not be much better in this situation, although it does
at least reasonably characterize one part of the density.3

In general, when a point estimate makes sense, the mode is easier
to compute, but the mean is more likely to be a useful summary of the
full posterior. We believe that if the mean were as easy to compute as
the mode, few would choose the mode. Thus, we hope to reduce the
computational advantage of the mode over the mean by proposing
some procedures for computing the mean and its variance.

When the inverse of the negative Hessian exists, we compute the
mean and its variance by importance resampling. That is, we take
random draws from the exact posterior in two steps. We begin by
drawing a large number of random numbers from a normal distribu-
tion, with mean set at the vector of maximum posterior estimates and
variance set at the estimated variance matrix. Then we use a prob-
abilistic rejection algorithm to keep only those draws that are close
enough to the correct posterior. These draws can then be used directly
to study some quantity of interest, or they can be used to compute the
mean and its variance.

When the inverse of the negative Hessian does not exist, we suggest
two separate procedures to choose from. One is to create a pseudo-
variance matrix and use it, in place of the inverse, in our importance
resampling scheme. In brief, applying a generalized inverse (when
necessary, to avoid singularity) and generalized Cholesky decompo-
sition (when necessary, to guarantee positive definiteness) together
often produces a pseudo-variance matrix for the mode that is a
reasonable summary of the curvature of the posterior distribution.
(The generalized inverse is a commonly used technique in statistical
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analysis, but the generalized Cholesky has not before been used for
statistical purposes, to our knowledge.) Surprisingly, the resulting
matrix is not usually ill conditioned. In addition, although this is a
“pseudo” rather than an “approximate” variance matrix (since the
matrix that would be approximated does not exist), the calculations
change the resulting variance matrix as little as possible to achieve
positive definiteness. We then take random draws from the exact post-
erior using importance resampling as before but using two diagnostics
to correct problems with this procedure.4

A second proposal introduces a way to draw random numbers
directly from a singular (truncated) multivariate normal density and
to use these numbers in an importance sampling stage to draw from
the exact posterior.

We now first describe in substantive terms what is “wrong” with
a Hessian that is noninvertible (Section 3), describe how we create
a pseudo-variance matrix (in Section 4, with algorithmic details
and numerical examples in Appendix 10.1), and outline the con-
cept of importance resampling to compute the mean and variance
(in Section 5). We give our preliminary alternative procedure in
Section 7, as well as an empirical example (Section 6) and other
possible approaches (in Sections 7 and 8). Section 9 concludes.

WHAT IS A NONINVERTIBLE HESSIAN?

In this section, we describe the Hessian and problems with it in
intuitive statistical terms. Given a joint probability density f (y|θ),
for an n × 1 observed data vector y and unknown p × 1 para-
meter vector θ , denote the n × p matrix of first derivatives with
respect to θ as g(θ |y) = ∂ ln[f (y|θ)]/∂θ and the p × p matrix of
second derivatives as H = H(θ |y) = ∂2 ln[f (y|θ)]/∂θ∂θ ′. Then
the Hessian matrix is H, normally considered to be an estimate of
E[g(θ |y)g(θ |y)′] = E[H(θ |y)]. The maximum likelihood or maxi-
mum posterior estimate, which we denote θ̂ , is obtained by setting
g(θ |y) equal to zero and solving analytically or numerically. When
−H is positive definite in the neighborhood of θ̂ , the theory is well
known, and no problems arise in application.



8 SOCIOLOGICAL METHODS & RESEARCH

The problem described as “a noninvertible Hessian” can be
decomposed into two distinct parts. The first problem is singularity,
which means that (−H)−1 does not exist. The second is nonpositive
definiteness, which means that (−H)−1 may exist, but its contents
do not make sense as a variance matrix. (A matrix that is positive
definite is nonsingular, but nonsingularity does not imply positive
definiteness.) Statistical software normally describes both problems
as “noninvertibility” since their inversion algorithms take computa-
tional advantage of the fact that the negative of the Hessian must be
positive definite if the result is to be a variance matrix. This means
that these programs do not bother to invert nonsingular matrices (or
even to check whether they are nonsingular) unless it is established
first that they are also positive definite.

We first describe these two problems in single-parameter situations,
in which the intuition is clearest but our approach does not add much
of value (because the full posterior can easily be visualized). We then
move to more typical multiple-parameter problems, which are more
complicated but we can help more. In one dimension, the Hessian is
a single number measuring the degree to which the posterior curves
downward on either side of the maximum. When all is well, H < 0,
which indicates that the mode is indeed at the top of the hill. The vari-
ance is then the reciprocal of the negative of this degree of curvature,
−1/H, which of course is a positive number as a variance must be.

The first problem, singularity, occurs in the one-dimensional case
when the posterior is flat near the mode—so that the posterior forms
a plateau at best or a flat line over (−∞, ∞) at worst. Thus, the
curvature is zero at the mode, and the variance does not exist since 1/0
is not defined. Intuitively, this is as it should be since a flat likelihood
indicates the absence of information, in which case any point estimate
is associated with an (essentially) infinite variance (to be more precise,
1/H → ∞ as H → 0).

The second problem occurs when the “mode” identified by the
maximization algorithm is at the bottom of a valley instead of at the top
of a hill (g(θ |y) is zero in both cases), in which case the curvature will
be positive. (This is unlikely in one dimension, except for seriously
defective maximization algorithms, but the corresponding problem in
high-dimensional cases of “saddlepoints,” in which the top of the hill
for some parameters may be the bottom for others, is more common.)
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The difficulty here is that −1/H exists but is negative (or, in other
words, is not positive definite), which obviously makes no sense as a
variance.

A multidimensional variance matrix is composed of variances,
which are the diagonal elements and must be positive, and correla-
tions, which are off-diagonal elements divided by the square root of
the corresponding diagonal elements. Correlations must fall within
the [−1, 1] interval. Although invertibility is an either/or question, it
may be that information about the variance or covariances exists for
some of the parameters but not for others.

In the multidimensional case, singularity occurs whenever the ele-
ments of H that would map to elements on the diagonal of the variance
matrix, (−H)−1, combine in such a way that the calculation cannot
be completed (because they would involve divisions by zero). Intu-
itively, singularity indicates that the variances to be calculated would
be (essentially) infinite. When (−H)−1 exists, it is a valid variance
matrix only if the result is positive definite. Nonpositive definiteness
occurs in simple cases either because the variance is negative or the
correlations are exactly −1 or 1.5

CREATING A PSEUDO-VARIANCE MATRIX

Below, we use a generalized inverse procedure to address singularity
in the −H matrix. The classic inverse A−1 of A can be defined as meet-
ing five intuitive conditions: (1) HA−1A = H, (2) A−1AA−1 = A−1,
(3) (AA−1)′ = A−1A, (4) (A−1A) = AA−1, and (5) A−1A = I (with
1-4 implied by 5). In contrast, the Moore-Penrose generalized inverse
matrix A− of A meets only the first four conditions (Moore 1920;
Penrose 1950[1955 IN REF.]). We also apply a generalized Cholesky
(detailed in Appendix 10.1) to address cases in which the inverse or
generalized inverse of (−H) is not positive definite. The generalized
inverse is primarily changing the parts of −H that get mapped to the
variances (so they are not infinities), and the generalized Cholesky
adjusts what would get mapped to the correlations (by slightly increas-
ing variances in their denominator) to keep them within (−1, 1). More
specifically, our pseudo-variance matrix is calculated as V′V, where
V = GCHOL(H−), GCHOL(·) is the generalized Cholesky, and
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H− is the generalized inverse of the Hessian matrix. The result is a
pseudo-variance matrix that is in most cases well conditioned (i.e.,
not nearly singular).6 If the Hessian is invertible, the pseudo-variance
matrix is the usual inverse of the negative Hessian.

IMPORTANCE RESAMPLING

“Sampling importance resampling” (SIR), or simply “importance
resampling,” is a simulation technique used to draw random num-
bers directly from an exact (finite sample) posterior distribution.7

The chief requirement for a successful implementation of importance
resampling is simulations from a distribution that is a reasonable
approximation to the exact posterior. If this requirement is not met,
the procedure can take too long to be practical or can miss features
of the posterior. The approximating distribution is required but need
not be normalized.

In our case (and indeed in most cases), we use the multivariate
normal distribution as our approximation in general or the multivariate
t distribution when the sample size is small. Using the normal or
t should be relatively uncontroversial since our proposal is addressed
to applications for which the asymptotic normal approximation was
assumed appropriate from the start, and for most applications, it
probably would have worked except for the failed variance matrix
calculation. This first approximation thus retains as many of the
assumptions of the original model as possible. Other distributions can
easily be used if that seems necessary.

For either the normal or t distributions, we set the mean at θ̂ , the
vector of maximum likelihood or maximum posterior estimates (i.e.,
the vector of point estimates reported by the computer program that
failed when it got to the variance calculation). For the normal, we
set the variance equal to our pseudo-variance matrix. For the t , the
pseudo-variance is adjusted by the degrees of freedom to yield the
scatter matrix.

The idea of importance resampling is to draw a large number of
simulations from the approximation distribution, decide how close
each is to the target posterior distribution, and keep those close
with higher probability than those farther away. To be more precise,
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denote θ̃ as one random draw of θ from the approximating normal
distribution and use it to compute the importance ratio, the ratio of
the posterior P(·) to the normal approximation, both evaluated at
θ̃ : P(θ̃ |y)/N(θ̃ |θ̂ , V′V). We then keep θ̃ as a random draw from the
posterior with probability proportional to this ratio. The procedure is
repeated until a sufficiently large number of simulations have been
accepted.

The simulations can be displayed with a histogram to give the full
marginal distribution of a quantity interest (see Tanner 1996; King,
Tomz, and Wittenberg 2000) or parameter of the model. By taking
the sample average and sample standard deviation of the simulations,
they can also be used to compute the mean and standard error or full-
variance matrix of the parameters, if these kinds of more parsimonious
summaries are desired. A computed variance matrix of the means
will normally be positive definite, so long as more simulations are
drawn than there are elements of the mean vector and variance matrix
(and normally, one would want at least 10 times that number). It is
possible, of course, that the resulting variance matrix will be singular,
even when based on many simulations, if the likelihood or posterior
contains exact dependencies among the parameters. But in this case,
singularity in the variance matrix (as opposed to the Hessian) poses
no problem since all that will happen is that some of the correlations
will be exactly 1 or −1, which can be very informative substantively;
standard errors, for example, will still be available.

One diagnostic often used to detect a failure of importance
resampling is when too many candidate values of θ̃ are rejected, in
which case the procedure will take an unreasonably long time; to
be useful, a better approximation would be needed. That is, a long
runtime indicates a problem, but letting it run longer is a reasonable
solution from a statistical perspective, although not necessarily from
a practical one. The danger of relying on only this procedure occurs
when the approximation distribution entirely misses a range of values
of θ that have a posterior density systematically different from the
rest. Since the normal has support over (−∞, ∞), the potential for
this problem to occur vanishes as the number of simulations grows.
Thus, one check would be to compute a very large number of simu-
lations (since the coverage will be greater) with an artificially large
variance matrix, such as the pseudo-variance matrix multiplied by
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a positive factor, which we label F . Of course, it is impossible to
cover the continuum of values that θ can take, and the procedure can
therefore miss features such as pinholes in the surface, very sharp
ridges, or other eccentricities.

Moreover, this procedure cannot be completely relied on in our
case since we know that the likelihood surface is nonstandard to some
degree. The normal approximation, after all, requires an invertible
Hessian. The key to extracting at least some information from the
Hessian via our pseudo-variance matrix is determining whether the
problems are localized or instead affect all the parameters. If they are
localized, or the problem can be reparameterized so they are localized,
then some parameters effectively have infinite standard errors or pairs
of parameters have perfect correlations. Our suggestion is to perform
two diagnostics to detect these problems and to alter the reported
standard errors or covariances accordingly.

For small numbers of parameters, using cross-sectional likeli-
hood plots of the posterior can be helpful, and trying to isolate the
noninvertibility problem in a distinct set of parameters can be very
valuable in trying to understand the problem. This, of course, is not
always possible.

To make the normal or t approximation work better, it is advis-
able to reparameterize so that the parameters are unbounded and
approximately symmetric. (This strategy will also normally make the
maximization routine work better.) For example, instead of estimat-
ing σ 2 > 0 as a variance parameter directly, it would be better to
estimate γ , where σ 2 = eγ , since γ can take on any real number.
It is also helpful to rescale the problem so that the estimated para-
meters are approximately of the same size.

EMPIRICAL EXAMPLE

We now discuss an illustration of the methods discussed, using bpublic
policy data on poverty and its potential causes, measured by the
state at the county level (Federal Information Processing Standard
[FIPS]). This example highlights a common and disturbing problem
in empirical model building. Suppose a researcher seeks to apply a
statistical model specification to multiple data sets for the purpose of
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comparison. Examples might come from comparing models across
50 U.S. states, 18 Organization for Economic Cooperation and
Development (OECD) countries, 12 Commonwealth of Independent
States (CIS) countries, or even the same unit across some time series.
If the Hessian fails to invert in even a small proportion of the cases,
then generally the researcher is forced to respecify the model for
nonsubstantive, technical reasons. Either the researcher respecifies
only the problem cases, in which case differences among the results
are contaminated by investigator-induced omitted variable bias, or
all equations are respecified in an effort to get comparable results, in
which case the statistical analyses are not of the substantive question
posed. Neither approach is satisfactory from a substantive perspective.

Our example data are 1989 county-level economic and demo-
graphic data for all 2,276 nonmetropolitan U.S. counties (“ERS
Typology”) hierarchically organized by state such that each state is
a separate unit of analysis with counties as cases. The government
(U.S. Bureau of the Census, U.S. Department of Agriculture [USDA],
state agencies) collects these data to provide policy-oriented infor-
mation about conditions leading to high levels of rural poverty. The
dichotomous outcome variable indicates whether 20 percent or more
of the county’s residents live in poverty. Our specification includes the
following explanatory variables: Govt, a dichotomous factor indi-
cating whether government activities contributed a weighted annual
average of 25 percent or more labor and proprietor income over
the three previous years; Service, a dichotomous factor indicating
whether service activities contributed a weighted annual average of
50 percent or more labor and proprietor income over the three previ-
ous years; Federal, a dichotomous factor indicating whether feder-
ally owned lands make up 30 percent or more of a county’s land area;
Transfer, a dichotomous factor indicating whether income from
transfer payments (federal, state, and local) contributed a weighted
annual average of 25 percent or more of total personal income over
the past three years; Population, the log of the county popu-
lation total for 1989; Black, the proportion of black residents in
the county; and Latino, the proportion of Latino residents in the
county.

Our key substantive question is whether the fraction black predicts
poverty levels, even after controlling for governmental efforts and the
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other control variables. Since the government supposedly has a lot to
do with poverty levels, it is important to know whether it is succeeding
in a racially fair manner or whether there is more poverty in counties
with larger fractions of African Americans, after controlling for the
other measured factors. (Whether the effect, if it exists, is due to more
blacks being in poverty or more whites and blacks in heavily black
counties being in poverty would be interesting to know but is not
material for our substantive purposes.)

We analyze these data with a logistic regression model, and so
P(Yi = 1|X) = [1 + exp(Xiβ)]−1, where Xi is a vector of all our
explanatory variables. Using this specification, 43 of the states pro-
duce invertible Hessians and therefore readily available results. Rather
than alter our theory and search for a new specification driven by
numerical and computational considerations, we apply our approach
to the remaining 7 state models. From this 43/7 dichotomy, we choose
a matched pair of similar states for discussion: one case with a (barely)
invertible Hessian with the model specification (Texas) and the other a
noninvertible (Florida) case. These states both have large rural areas,
similar demographics, and similar levels of government involvement
in the local county economies, and we would like to know whether
fraction black predicts poverty in the same way in each.

The logit model for Texas counties (n = 196) produces the results
in the first pair of columns in Table 1. The coefficient on fraction
black is very large, with a relatively small standard error, clearly
supporting the racial bias hypothesis. The second pair of columns
reestimates the model without the Federal variable (the source
of the noninvertibility in the Florida example, which we describe
below), and the results for fraction black (and the other variables)
are largely unchanged. In contrast to the modes and their standard
deviations in the first two sets of results, the final pair of columns
gives the means and their standard deviations by implementing our
importance resampling (but obviously without the need for a pseudo-
variance matrix). In Texas, the means are very close to the modes,
and the standard errors in the two cases are very close as well, and so
the importance resampling in this (invertible) case did not generate
any important differences.

We also give the Hessian matrix from this problem here, which
reveals that the Federal variable is a potentially problematic
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TABLE 1: Logit Regression Model: Nonsingular Hessian, Texas

Standard Results Minus Federal Importance Resampling

Parameter Estimate Standard Error Estimate Standard Error Estimate Standard Error

Black 15.91 3.70 16.04 3.69 15.99 3.83
Latino 8.66 1.48 8.73 1.48 8.46 1.64
Govt 1.16 0.78 1.16 0.78 1.18 0.74
Service 0.17 0.62 0.20 0.63 0.19 0.56
Federal −5.78 16.20 — — −3.41 17.19
Transfer 1.29 0.71 1.17 0.69 1.25 0.63
Population −0.39 0.22 −0.39 0.22 −0.38 0.21
Intercept −0.47 1.83 −0.46 1.85 −0.51 1.68

NOTE: Cells report percentage of cases assigned to trajectory. Data weighted by individual
weights in final year of sequence.

component of the model. Note the zeros and very small values in the
fourth row and column.

H =




0.13907100 0.00971597 0.01565632 0.00000000 0.01165964 1.27113747 0.01021141 0.03364064
0.00971597 0.00971643 0.00000000 0.00000000 0.00022741 0.09510282 0.00128841 0.00211645
0.01565632 0.00000000 0.01594209 0.00000000 0.00305369 0.14976776 0.00170421 0.00246767
0.00000000 0.00000000 0.00000000 0.00000003 0.00000000 0.00000044 −0.00000001 0.00000000
0.01165964 0.00022741 0.00305369 0.00000000 0.01166205 0.10681518 0.00136332 0.00152559
1.27113747 0.09510282 0.14976776 0.00000044 0.10681518 11.77556446 0.09904505 0.30399224
0.01021141 0.00128841 0.00170421 −0.00000001 0.00136332 0.09904505 0.00161142 0.00131032
0.03364064 0.00211645 0.00246767 0.00000000 0.00152559 0.30399224 0.00131032 0.01222711




.

To see this near singularity, Figure 1 provides a matrix of bivariate
cross-sectional contour plots for each pair of coefficients from the
Texas data, for contours at 0.05, 0.15, . . . , 0.95 where the 0.05 con-
tour line bounds approximately 0.95 of the data, holding constant all
other parameters at their maxima. (Recall that these easy-to-compute
cross-sectional likelihood plots are distinct from the more desirable
but harder-to-compute marginal distributions; parameters not shown
are held constant in the former but integrated out in the latter.) In these
Texas data, the likelihood is concave at the global maximum, although
the curvature for Federal is only slightly greater than zero. This
produces a near-ridge in the contours for each variable paired with
Federal, and although it cannot be seen in the figure, the ridge is
gently sloping around maximum value in each cross-sectional likeli-
hood plot.

The point estimates and standard errors correctly pick up the
unreliability of the Federal coefficient value by giving it a very
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Figure 1: Contourplot Matrix, Logit Model: Texas

large standard error, but, as is generally the case, the contours reveal
more information. In particular, the plot indicates that distribution
of the coefficient on Federal is quite asymmetric and indeed very
informative in the manner by which the probability density drops as
we come away from the near-ridge. The modes and their standard
errors, in the first pair of columns in Table 1, cannot reveal this addi-
tional information. In contrast, the resampling results can easily reveal
the richer information. For example, to compute the entries in the
last two columns of Table 1, we first took many random draws of the
parameters from their exact posterior distribution. If, instead of sum-
marizing this information with their means and standard deviations,
as in the table, we presented univariate or bivariate histograms of
the draws, we would reveal all the information in Figure 1. In fact, the
histograms would give the exact marginal distributions of interest (the
full posterior, with other parameters integrated out) rather than merely
the contours as shown in the figures, and so the potential information
revealed, even in this case when the Hessian is invertible, could be
substantial. We do not present the histograms in this example because
they happen to be similar to the contours in this particular data set.8
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TABLE 2: Logit Regression Model: Singular Hessian, Florida

Standard Results Minus Federal Importance Sampling

Parameter Estimate Standard Error Estimate Standard Error Estimate Standard Error

Black 5.86 ??? 5.58 5.34 5.56 2.66
Latino 4.08 ??? 3.21 8.10 3.97 2.73
Govt −1.53 ??? −1.59 1.24 −1.49 1.04
Service −2.93 ??? −2.56 1.69 −2.99 1.34
Federal −21.35 ??? −20.19 ∞
Transfer 2.98 ??? 2.33 1.29 2.98 1.23
Population −1.43 ??? −0.82 0.72 −1.38 0.47
Intercept 12.27 ??? 6.45 6.73 11.85 4.11

We ran the same specification for Florida (33 counties), providing
the maximum likelihood parameter estimates in Table 2 and the
following Hessian, which is noninvertible (and represented in the
table with question marks for the standard errors):

H =




0.13680004 0.04629599 0.01980602 0.00000001 0.05765988 1.32529504 0.02213744 0.00631444
0.04629599 0.04629442 0.00000000 −0.00000004 0.03134646 0.45049457 0.00749867 0.00114495
0.01980602 0.00000000 0.01980564 0.00000000 0.01895061 0.19671280 0.00234865 0.00041155
0.00000001 −0.00000004 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000002
0.05765988 0.03134646 0.01895061 0.00000000 0.05765900 0.57420212 0.00817570 0.00114276
1.32529504 0.45049457 0.19671280 0.00000000 0.57420212 12.89475788 0.21458995 0.06208332
0.02213744 0.00749867 0.00234865 0.00000000 0.00817570 0.21458995 0.00466134 0.00085111
0.00631444 0.00114495 0.00041155 0.00000002 0.00114276 0.06208332 0.00085111 0.00088991




.

Consider first Figure 2, which provides a matrix of the bivariate
cross-sectional contour plots for each pair of coefficients for the
Florida data, again with contours at 0.1, 0.2, . . . , 0.9. As with the case
of Texas, the problematic cross-sectional likelihood is for Federal,
but in this case, the modes are not unique and so the Hessian matrix is
not invertible. Except for this variable, the likelihoods are very well
behaved. If we were forced to abandon the specification at this point,
this is exactly the information that would be permanently lost. This
is especially problematic when contrasted with the Texas case, for
which the contours do not look a lot more informative.

A good data analyst using classical procedures with our data might
reason as follows. The Texas data clearly suggest racial bias, but no
results are available with the same specification in Florida. If we
follow the textbook advice and respecify by dropping Federal and
rerunning, we get the results in the second pair of columns in Table 2.
The results for Black reveal a coefficient for Florida that is only a
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Figure 2: Contour Plot Matrix, Importance Sampling Model: Florida

third of the size as it was in Texas and only slightly larger than its
standard error. The contrast is striking: Substantial racial bias in Texas
and no evidence of such in Florida. Unfortunately, with classical
methods, it is impossible to tell whether these interesting and
divergent substantive results in Florida are due to omitted variable
bias rather than political and economic differences between the states.

So what to do? One reasonable approach is to assume that the
(unobservable) bias that resulted from omitting Federal in the
Florida specification would be of the same degree and direction as
the (observable) bias that would occur by omitting the variable in the
Texas data. The advantage of this assumption is that we can easily
estimate the bias in Texas by omitting Federal. We do this in the
second pair of columns in Table 1. Those results suggest that there is
no bias introduced since the results are nearly unchanged from the first
two columns. Although this is a reasonable procedure (which most
analysts have probably tried at one time or another), it is of course
based on the unverifiable assumption that the biases are the same in
the two states. In the present data, this assumption is false, as we
now show.
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We now recover some of the information lost in the Florida case
by first applying our generalized inverse and generalized Cholesky
procedures to the singular Hessian to create a pseudo-variance matrix.
We then perform importance resampling using the multivariate
normal, with the mode and pseudo-variance matrix, as the first approx-
imation. We use a t distribution with three degrees of freedom as the
approximation distribution to be conservative since we know from
graphical evidence that one of the marginal distributions is problem-
atic. The last two columns of Table 2 give the means and standard devi-
ations of the marginal posterior for each parameter. We report ∞ for
the standard error of Federal to emphasize the lack of information.
Although the way the data and model were summarized contained
no useful information about this parameter, the specification did
control for Federal, and so any potentially useful information about
the other parameters and their standard errors are revealed with our
procedure without the potential for omitted variable bias that would
occur by dropping the variable entirely.

The results seem informative. They show that the effect of Black
is indeed smaller in Florida than Texas, but the standard error for
Florida is now almost a third of the size of the coefficient. Thus, the
racial bias is clearly large in both states, although larger in Texas than
Florida. This result thus precisely reverses the conclusion from the
biased procedure of dropping the problematic Federal variable.
Of course, without the generalized inverse/generalized Cholesky
technique, there would be no results to evaluate for Florida at all.

All statistical results depend on assumptions, and most depend on
a model of some kind. As a result, scholars are aware that classic sta-
tistical hypothesis tests and confidence intervals are all conditional on
the veracity of the statistical model and so underestimate the degree
of uncertainty they should have about their results. (Bayesian model
averaging is one technique designed to also include some aspects
of specification uncertainty.) That is, intervals and tests normally
thus reflect sampling uncertainty but not specification uncertainty.
Researchers may be less familiar with summarization uncertainty—
the uncertainties that result from potentially inadequate summaries
of the posterior distribution with small, low-dimensional statis-
tics. However, this additional source of uncertainty can sometimes
be substantial, particularly for the increasingly common complex
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nonlinear models. These include the risks of local minima, numerical
instabilities, and non-unimodal posterior densities that are poorly
summarized by point estimates.

For those doing empirical analyses that run into noninvertable
Hessians, the additional summarization uncertainties involved in
using the procedures we developed in this article and used in this
section must also be recognized. Thus, although the standard errors
did not systematically increase from the second to the last pair of
columns in Table 1 and actually decreased in all cases in Table 2, the
genuine level of uncertainty a researcher should have in these statistics
must be considered a good deal higher than the numbers presented. We
have tried to provide some graphical diagnostics to help reduce these
uncertainties, but the preliminary nature of the methods should keep
researchers on guard. Of course, the uncertainties a researcher should
have in results that almost certainly have bias, such as by answering
a question other than the one asked, would probably be higher still.

AN ALTERNATIVE PROCEDURE:
DRAWING FROM THE SINGULAR NORMAL

We now describe a second procedure for drawing the random numbers
from a different approximating density: the truncated singular normal.
The basic idea is to try to draw directly from the singular multivariate
density with a noninvertible Hessian. We think that the generalized
Cholesky procedure will work better if the underlying model is iden-
tified, but numerical problems lead to apparent nonidentification. In
contrast, we suspect that that this procedure will perform better when
the underlying model would have a noninvertible Hessian even if we
were able to run it on a computer with infinite precision. We offer no
way to distinguish these two situations, but fortunately, it is relatively
easy to run both.

To set up the procedure, again consider a Hessian matrix of second
derivatives, H, along with a k × 1 associated vector of maximum
likelihood estimates, θ̂ . The matrix (−H)−1 does not exist due to
either nonpositive definiteness or singularity (r ≤ k). Suppose one
can set some reasonable bounds on the posterior distribution of each
of the k coefficient estimates in θ̂ . These bounds may be set according
to empirical observation with similar models, as a Bayes-like prior
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assertion. Thus, we assume that θ ∈ [g, h], where g is a k × 1 vector
of lower bounds and h is a k × 1 vector of upper bounds.

The goal now is to draw samples from the distribution of θ̂ : θ̂ ∼
N(θ , (−H)−1) ∝ e−T/2, truncated to be within [g, h], and where
T = (θ̂ − θ)′H(θ̂ − θ). Note that the normal density does include
an expression for the variance-covariance matrix—only the inverse
(the negative of the Hessian), which exists and we have. We thus
decompose T as follows:

T = (θ̂ − θ)′H(θ̂ − θ)

T = (θ̂ − θ)′U′LU(θ̂ − θ), (7.1)

where U′LU is the spectral decomposition of H. Thus, rank(H) =
r ≤ k, H has r eigenvalues (which we denote d1, . . . , dr), U is k × k

and orthogonal (and hence (U)−1 = U′), and L = diag(L1, 0), where
L1 = diag(d1, . . . , dr). Thus, the L matrix is a diagonal matrix with
r leading values of eigenvalues and n − r trailing zero values.

We now make the transformation A = U(θ̂ − [h + g]/2), the den-
sity for which would normally be A ∼ N(U(θ −[h+g]/2), (−L)−1).
This transformation centers the distribution of A at the middle of the
bounds, and since L is diagonal, it factors into the product of inde-
pendent densities. But this expression has two problems: (a) (−L)−1

does not always exist, and (b) A has complicated multivariate support
(a hypercube not necessarily parallel with the axes of the elements
of A), which is difficult to draw random numbers from. We now
address these two problems.

First, in place of L, we use L∗, defined such that L∗
i = Li if Li > 0

and L∗
i equals some small positive value otherwise (and where the sub-

script refers to the row and column of the diagonal element). Except
for the specification of the support of A that we consider next, this
transforms the density into

A ∼ N(U′θ , (−L∗)−1)

=
∏

i

N(Ui(θi − [hi + gi]/2, −1/L∗
i ), (7.2)

Second, instead of trying to draw directly from the support of A,
we draw from a truncated density with support that is easy to compute
and encompasses the support of A (but is larger than it), transform
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back via θ̂ = U′A + (h + g)/2, and accept the draw only if θ̂ falls
within its (easy-to-verify) support, [g, h]. The encompassing support
we use for each element in the vector A is the hypercube [−Q, Q],
where the scalar Q is the maximum Euclidean distance from θ to any
of the 2k corners of the hyperrectangle defined by the bounds. Since
by definition θ ∈ [g, h], we should normally avoid the sometimes
common pitfall of rejection sampling—having to do an infeasible
number of draws from A to accept each draw of θ̂ .

The principle of rejection sampling is satisfied here—that we can
sample from any space (in our case, using support for A larger than
its support) so long as it fully encompasses the target space and the
accept/reject algorithm operates appropriately. If −H were positive
definite, this algorithm would return random draws from a truncated
normal distribution. When −H is not positive definite, it returns draws
from a singular normal, truncated as indicated.

So now we have draws of θ̂ from a singular normal distribution. We
then repeat the procedure m, which serves as draws from the envelop-
ing distribution that is used in the importance sampling procedure.
That is, we take these simulations of θ̂ and accept or reject accord-
ing to the importance ratio. We keep going until we have enough
simulated values.

OTHER APPROACHES

The problem of computational misspecification is well studied in
statistics, particularly in the case of the linear model. McCullagh and
Nelder (1989) discuss this problem in the context of generalized lin-
ear models in which specifications that introduce overlapping sub-
spaces due to redundant information in the factors produce intrinsic
aliasing. This occurs when a linear combination of the factors reduces
to fewer terms than the number of specified parameters. McCullagh
and Nelder solve the aliasing problem by introducing “suitable
constraints,” which are linear restrictions that increase the dimension
of the subspace created by the specified factors. A problem with this
approach is that the “suitable constraints” are necessarily an arbitrary
and possibly atheoretical imposition. In addition, it is often difficult
to determine a minimally affecting yet sufficient set of constraints.
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McCullagh and Nelder (1989) also identify extrinsic aliasing,
which produces the same modeling problem but as a result of data
values. The subspace is reduced below the number of factors because
of redundant case-level information in the data. This is only a problem,
however, in very low-sample problems atypical of political science
applications.

Another well-known approach to this problem in linear modeling
is ridge regression. Ridge regression essentially trades the multi-
collinearity problem for introduced bias. Suppose that the X′X
matrix is singular or nearly singular. Then specify the smallest scalar
possible, ζ , that can be added to the characteristic roots of X′X to
make this matrix nonsingular. The linear estimator is now defined as

β̂(θ) = (X′X + ζ I)−1X′y.

There are two well-known problems with this approach. First, the
coefficient estimate is, by definition, biased, and there currently
exists no theoretical approach that guarantees some minimum degree
of bias. Some approaches have been suggested that provide rea-
sonably small values of ζ based on graphical methods (Hoerl and
Kennard 1970a, 1970b), empirical Bayes (Efron and Morris 1972;
Amemiya 1985), or generalized ridge estimators based on deci-
sion theoretical considerations (James and Stein 1961; Berger 1976;
Strawderman 1978). Second, because ζ is calculated with respect to
the smallest eigenvalue of X′X, it must be added to every diagonal
of the matrix: X′X + ζ I. So, by definition, the matrix is changed
more than necessary (cf. Appendix 10.1). For a very informative
discussion (and one that seems to have mortally wounded ridge regres-
sion), see Smith and Campbell (1980) along with the comments
that follow.

Another alternative was proposed by Rao and Mitra (1971). Define
δθ as an unknown correction that has an invertible Hessian. Then
(ignoring higher order terms in a Taylor series expansion of δθ ),
f (x|θ) = H(θ)δθ . Since H(θ) is singular, a solution is available
only by the generalized inverse, δθ = H(θ)−f (x|θ). When there
exists a parametric function of θ that is estimable and whose first
derivative is in the column space of H(θ), then there exists a unique,
maximum likelihood estimate of this function, φ(θ̂), with asymptotic
variance-covariance matrix φ(θ̂)H(θ 0)

−φ(θ̂). The difficulty with this
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procedure, of course, is finding a substantively reasonable version of
φ(θ̂). Rao and Mitra’s point is nevertheless quite useful since it points
out that any generalized inverse has a first derivative in the column
space of H(θ).

An additional approach is to apply bootstrapping to the regres-
sion procedure to produce empirical estimates of the coefficients that
can then be used to obtain subsequent values for the standard errors.
The basic procedure (Davidson and MacKinnon 1993:330-31; Efron
and Tibshirani 1993:111-12) is to bootstrap from the residuals of a
model in which coefficients estimates are obtained but the associated
measures of uncertainty are unavailable or unreliable. The steps for
the linear model are as follows (Freedman 1981): (1) for the model
y = Xβ + ε, obtain β̂ and the centered residuals ε∗; (2) sample size
n with replacement m times from ε∗ and calculate m replicates of
the outcome variable by y∗ = Xβ̂ + ε∗; (3) regress the m iterates of
the y∗ vector on X to obtain m iterates of β̂; and (4) summarize the
coefficient estimates with the mean and standard deviation of these
bootstrap samples. The generalized linear model case is only slightly
more involved since it is necessary to incorporate the link function,
and the (Pearson) residuals need to be adjusted (see Shao and Tu
1995:341-43).

Applying this bootstrap procedure to our Florida data in which the
coefficient estimates are produced and the Hessian fails, we obtain the
standard error vector: [9.41, 9.08, 1.4, 2.35, 25.83, 1.43,11.86, 6.32]
(in the same order as Table 2). These are essentially the same stan-
dard errors as those in the model dropping Federal, except that
the uncertainty for Population is much higher. This bootstrapping
procedure does not work well in non-iid settings (it assumes that the
error between y and Xβ̂ is independent of X), and it is possible that
spatial correlation that is likely to be present in FIPS-level population
data is responsible for this one discrepency. An alternative bootstrap-
ping procedure, the paired bootstrap, generates m samples of size n

directly from (yj , xj ) together to produce y∗, X∗ and then generates
β̂ values. While the paired bootstrap is less sensitive to non-iid data,
it can produce simulated data sets (the y∗, X∗) that are very different
from the original data (Hinkley 1988).

By far, the most common way of recovering from computational
problems resulting from collinearity is respecification. Virtually
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every basic and intermediate text on linear and nonlinear regression
techniques gives this advice. The respecification process can vary
from ad hoc trial error strategies to more sophisticated approaches
based on principal components analysis (Greene 1993:271-73). While
these approaches often “work,” they force the user to change their
research question due to technical concerns. As the example in
Section 6 shows, we should not be forced to alter our thinking about
a research question as a result of computational issues.

CONCLUDING REMARKS

In this article, we seek to rescue analyses with noninvertable Hessians
that might otherwise be left in the trash bin. Although the likeli-
hood estimated may have certain problems associated with it, the data
in these problems may still contain revealing information about the
question at hand. We therefore help researchers avoid giving up the
question they posed originally and instead extract at least some of
the remaining available information. The methods we offer that are
intended to accomplish these tasks are hardly infallable. As such, con-
siderable care should go into using them, and much further research
needs to be conducted to help extract the additional information
available and to understand in precisely what circumstances the ideas
in this article can be applied.

Finally, we note that an opportunity exists for advancement in the
field of linear algebra that could help work in ours. In particular, we
apply the generalized inverse and the generalized Cholesky sequen-
tially because theoretical developments in the two areas have been
developed separately and apparently independently. We conjecture
that theoretical, or at least computational, efficiencies can be found
by combining the two procedures. In addition, it may also be possible
to produce an even better result by using the information that the
Hessian is not merely a symmetric matrix but that it was formed as a
matrix of second derivatives. We thus encourage future linear algebra
researchers to find a way to begin with a Hessian matrix and to pro-
duce the “nearest” possible well-conditioned, positive-definite (and
hence nonsingular) pseudo-variance matrix. This procedure would
have many important applications.
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APPENDIXES

THE GENERALIZED CHOLESKY

We now describe the classic Cholesky decomposition and recent
generalizations designed to handle non-positive-definite matrices. A
matrix C is positive definite if, for any x vector except x = 0,
x′Cx > 0, or in other word,s if C has all positive eigenvalues.
Symmetric positive-definite matrices are nonsingular, have only
positive numbers on the diagonal, and have positive determinants for
all principle-leading submatrices. The Cholesky matrix is defined as
V in the decomposition C = V′V. We thus construct our pseudo-
variance matrix as V′V, where V = GCHOL(H−), GCHOL(·) is the
generalized Cholesky described below, and H− is the Moore-Penrose
generalized inverse of the Hessian matrix.

The Classic Algorithm

The classic Cholesky algorithm assumes a positive-definite matrix
and symmetric variance matrix (C). It then proceeds via the following
decomposition:

C
(k×k)

= L
(k×k)

D
(k×k)

L′
(k×k)

. (10.1)

The basic Cholesky procedure is a one-pass algorithm that generates
two output matrices that can then be combined for the desired “square
root” matrix. The algorithm moves down the main diagonal of the
input matrix determining diagonal values of D and triangular values of
L from the current column of C and previously calculated components
of L and C. Thus, the procedure is necessarily sensitive to values in
the original matrix and previously calculated values in the D and L
matrices. There are k stages in the algorithm corresponding to the
k-dimensionality of the input matrix. The j th step (1 ≤ j ≤ k) is
characterized by two operations:

Dj,j = Cj,j −
j−1∑
	=1

L2
j,	D	,	, and (10.2)

Li,j =
[

Ci,j −
j−1∑
	=1

Lj,	Li,	D	,	

]
/Dj,j , i = j + 1, . . . , k, (10.3)
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where D is a positive diagonal matrix so that upon the completion
of the algorithm, the square root of it is multiplied by L to give the
Cholesky decomposition. From this algorithm, it is easy to see why the
Cholesky algorithm cannot tolerate singular or non-positive-definite
input matrices. Singular matrices cause a divide-by-zero problem in
(10.3), and non-positive-definite matrices cause the sum in (10.2) to
be greater than Cj,j , thus causing negative diagonal values. Further-
more, these problems exist in other variations of the Cholesky algo-
rithm, including those based on svd and qr decomposition. Arbitrary
fixes have been tried to preserve the mathematical requirements of
the algorithm, but they do not produce a useful result (Fiacco and
McCormick 1968; Gill, Golub, Murray, and Saunders[SANDERS IN
REF.] 1974; Matthews and Davies 1971).

The Gill/Murray Cholesky Factorization

Gill and Murray (1974) introduced and Gill, Murray, and Wright
(1981) refined an algorithm to find a nonnegative diagonal matrix, E,
such that C + E is positive definite and the diagonal values of E are
as small as possible. This could easily be done by taking the greatest
negative eigenvalue of C, λ1, and assigning E = −(λ1 + ε)I , where
ε is some small positive increment. However, this approach (imple-
mented in various computer programs, such as the Gauss “maxlik”
module) produces E values that are much larger than required, and
therefore the C + E matrix is much less like C than it could be.

To see Gill et al.’s (1981) approach, we rewrite the Cholesky algo-
rithm provided as (10.2) and (10.3) in matrix notation. The j th sub-
matrix of its application at the j th step is

Cj =
[
cj,j c′

j

cj Cj+1

]
, (10.4)

where cj,j is the j th pivot diagonal; c′
j is the row vector to the right

of cj,j , which is the transpose of the cj column vector beneath cj,j ;
and Cj+1 is the (j + 1)th submatrix. The j th row of the L matrix
is calculated by Lj,j = √

cj,j , and L(j+1):k,j = c(j+1):k,j /Lj,j . The
(j + 1)th submatrix is then updated by

C∗
j+1 = Cj+1 − cjc′

j

L2
j,j

. (10.5)



28 SOCIOLOGICAL METHODS & RESEARCH

Suppose that at each iteration, we defined Lj,j = √
cj,j + δj , where δj

is a small positive integer sufficiently large so that Cj+1 > cjc′/L2
j,j .

This would obviously ensure that each of the j iterations does
not produce a negative diagonal value or divide-by-zero operation.
However, the size of δj is difficult to determine and involves trade-
offs between satisfaction with the current iteration and satisfac-
tion with future iterations. If δj is picked such that the new j th
diagonal is just barely bigger than zero, then subsequent diagonal
values are greatly increased through the operation of (10.5). Con-
versely we do not want to be adding large δj values on any given
iteration.

Gill et al. (1981) note the effect of the cj vector on subsequent
iterations and suggest that minimizing the summed effect of δj is
equivalent to minimizing the effect of the vector maximum norm of
cj , ‖cj‖∞ at each iteration. This is done at the j th step by making δj

the smallest nonnegative value satisfying

‖cj‖∞β−2 − cj,j � δj

where β = max




max(diag(C))

max(notdiag(C))
√

k2 − 1

εm

(10.6)

where εm is the smallest positive number that can be represented
on the computer used to implement the algorithm (normally called
the machine epsilon). This algorithm always produces a factoriza-
tion and has the advantage of not modifying already positive-definite
C matrices. However, the bounds in (10.6) have been shown to be
nonoptimal and thus provide C + E that is further from C than
necessary.

The Schnabel/Eskow Cholesky Factorization

Schnabel and Eskow (1990) improve on the C + E procedure of
Gill and Murray (1974) by applying the Gerschgorin circle theorem to
reduce the infinity norm of the E matrix. The strategy is to calculate δj

values that reduce the overall difference between C and C+E. Their
approach is based on the following theorem (stated in the context of
our problem).
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THEOREM 10.1. Suppose C ∈ R
k with eigenvalues λ1, . . . , λk.

Define the ith Gerschgorin bound as

Gi(lower,upper) =


Ci,i −

n∑
j=1
j �=i

|Ci,j |, Ci,i +
n∑

j=1
j �=i

|Ci,j |


 .

Then, λi ∈ [
G1 ∪ G2 ∪ · · · ∪ Gk

] ∀λ1≤i≤k.

But we know that λ1 is the largest negative amount that must be
corrected, so this simplifies to the following decision rule:

δj = max
(
εm, max

i
(Gi(lower))

)
. (10.7)

In addition, we do not want any δj to be less than δj−1 since this would
cause subsequent submatrices to have unnecessarily large eigenval-
ues, and so a smaller quantity is subtracted in (10.5). Adding this
condition to (10.7) and protecting the algorithm from problems asso-
ciated with machine epsilon produces the following determination of
the additional amount in Lj,j = √

cj,j + δj :

δj = max(εm, −Cj,j + max(‖aj‖, (εm) 1
3 max(diag(C))), Ej−1,j−1).

(10.8)

The algorithm follows the same steps as that of Gill and Murray
(1974) except that the determination of δj is done by (10.8). The
Gerschgorin bounds, however, provide an order of magnitude
improvement in ‖E‖∞. We refer to this Cholesky algorithm based on
Gerschgorin bounds as the generalized Cholesky since it improves
the common procedure, accommodates a more general class of input
matrices, and represents the “state of the art” with regard to mini-
mizing ‖E‖∞.

A Review of Importance Sampling

Importance sampling is a general technique that uses ratios of
densities from repeated draws to estimate integrals and to obtain
marginal distributions. For example, suppose we wished to obtain
the marginal distribution for some parameter θ1 from a joint distri-
bution: f (θ1, θ2|X). If we knew the parametric form for this joint
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distribution, it is often straightforward to analytically integrate out the
second parameter over its support, as shown in basic mathematical
statistics texts: f (θ1|X)=∫

f (θ1, θ2|X)dθ2. However, in a great many
circumstances, this is not possible, and numerical approximations are
required. Suppose we could posit a normalized conditional posterior
approximation density of θ2 : f̂ (θ2|θ1, X), which can often be given
a normal or t form. The trick that this approximation allows is that
an expected value formulation can be substituted for the integral and
repeated draws used for numerical averaging. Specifically, the form
for the marginal distribution is developed as

f (θ1|X) =
∫

f (θ1, θ2|X)dθ2

=
∫

f (θ1, θ2|X)

f̂ (θ2|θ1, X)
f̂ (θ2|θ1, X)dθ2

= Eθ2

[
f (θ1, θ2|X)

f̂ (θ2|θ1, X)

]
. (10.9)

The fraction f (θ1,θ2|X)

f̂ (θ2|θ1,X)
is called the importance weight and deter-

mines the probability of accepting sampled values of θ2. This setup
allows the following rather simple procedure to obtain the estimate
of f (θ1|X).

1. Divide the support of θ1 into a grid with the desired level of granularity
determined by k :θ(1)

1 , θ
(2)
1 , . . . , θ

(k)
1 .

2. For each of the θ
(i)
1 values along the k-length grid, determine the

density estimate at that point by performing the following steps:

(a) Simulate N values of θ̂2 from f̂ (θ2|θ(i)
1 , X).

(b) Calculate f (θ
(i)
1 , θ̂2n|X)/f̂ (θ̂2n|θ(i)

1 , X) for i = 1 to N .
(c) Use (10.9) to obtain f (θ

(i)
1 |X) by taking the means of the N ratios

just calculated.

The user can fix the level of accuracy of this estimate by changing
the granularity of the grid and the number of draws per position on that
grid. Obviously, this procedure can also be used to perform numerical
integration, provided a suitable normalized approximation function
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Figure 3: Importance Sampling Illustration

can be found. This makes importance sampling a very useful tool in
applied mathematics.

Importance sampling is depicted in Figure 3, where two points
along the support of the posterior density are indicated. At the first
point, the approximation density and the posterior density provide
identical values, so this point is accepted with probability 1. The
second point is accepted with probability equal to the ratio A/(A+B)

(i.e., the quality of the approximation).

NOTES

1. In one of the best econometric textbooks, Davidson and MacKinnon (1993:185-86) write,
“There are basically two options: Get more data, or estimate a less demanding model . . . . If it
is not feasible to obtain more data, then one must accept the fact that the data one has contain
a limited amount of information and must simplify the model accordingly. Trying to estimate
models that are too complicated is one of the most common mistakes among inexperienced
applied econometricians.” We provide an alternative to simplifying or changing the model, but
the wisdom of Davidson and MacKinnon’s advice is worth emphasizing in that our approach
is only appropriate when the more complicated model is indeed of interest.

2. For simplicity, we refer to the objective function as the posterior distribution from here
on, although most of our applications will involve flat priors, in which case, of course, the
posterior is equivalent to a likelihood function.

3. In the case of multimodal posterior forms, π(θ |X), the most informative reporting tool, is
the Bayesian highest posterior density (HPD) interval. The 100(1 −α) percent HPD interval is
the region of the parameter support for the coefficient θ that meets the following criteria: C =
{θ : π(θ |X) ≥ k}, where k is the largest number ensuring that 1 − α = ∫

θ :π(θ |X)>k
π(θ |x)dθ .

This region can be noncontiguous for multimodal forms since it describes the highest probability
area of the support, regardless of location.
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4. This part of our method is what most separates it from previous procedures in the literature
that sought to find a working solution based on the generalized inverse alone (Marquardt 1970;
Riley 1955; Searle 1971).

5. In general, (−H)−1 is positive definite if, for any nonzero p×1 vector x, x′(−H)−1x > 0.
6. The generalized inverse/generalized Cholesky approach is related to the quasi-Newton

DFP (Davidon-Fletcher-Powell) method. The difference is that DFP uses iterative differences
to converge on an estimate of the negative inverse of a non-positive-definite Hessian (Greene
1993:350), but its purpose is computational rather than statistical, and so the importance sam-
pling step is omitted as well.

7. See Rubin (1987:192-94), Tanner (1996), Gelman et al. (1995), and Wei and Tanner
(1990). For applications, see King (1997) and King, Honaker, Joseph, and Scheve (1998).

8. Although logit is known to have a globally concave likelihood surface in theory, actual
estimates need not be strictly concave due to numerical imprecision. In the present data,
the fact that the Hessian is just barely invertible makes it sensitive to numerical impreci-
sion, and as it turns out, there are at least two local maxima on the marginal likelihood for
Federal. The statistical package Gauss found a solution at −11.69 and the package R at
−5.78 (reported). This discrepancy is typical of software solutions to poorly behaved like-
lihood functions as algorithmic differences in the applied numerical procedures have differ-
ent intermediate step locations. The solution difference is not particularly troubling as no
reasonable analyst would place faith in either coefficient estimate, given the large reported
standard error.
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