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Introduction to Generalized Linear Models

Generalized linear models expand the basic structure of the well-known linear
model to accommodate non-normal and non-interval measured outcome variables in
a single unified theoretical form. It is common in the social sciences to encounter
outcome variables that do not fit the standard assumptions of the linear model, and
as a result many distinct forms of regression have been developed: Poisson regression
for counts as outcomes, logit and probit for dichotomous explanations, exponential
models for durations, gamma models for truncated data, and more. While these forms
are commonly used and well-understood, it is not widely known among practitioners
that nearly all of these particularistic regression techniques are special forms of the
generalized linear model.

With the generalized linear model, explanatory variables are treated in exactly
the usual fashion by creating a linear systematic component, § = X which defines
the right-hand-side of the statistical model. Since the expectation of the outcome
variable, 4 = y is no longer from an interval-measured form, standard central limit
and asymptotic theory no longer applies in the same way and a “link” function is

required to define the relationship between the linear systematic component of the



data and the mean of the outcome variable, g = g(X8). If the specified link function
is simply the identity function, g(X8) = XpB, then the generalized linear model
reduces to the linear model, hence its name.

The generalized linear model is based on well-developed theory, starting with
Nelder and Wedderburn (1972) and McCullagh and Nelder (1989), which states that
any parametric form for the outcome variable that can be recharacterized (alge-
braically) into the ezponential family form leads to a link function that connects the
mean function of this parametric form to the linear systematic component. This
exponential family form is simply a standardized means of expressing various prob-
ability mass functions (PMFs, for discrete forms) and probability density functions
(PDFs, for continuous forms).

The value of the GLM approach is that a seemingly disparate set of nonlinear
regression models can be integrated into a single framework where the processes
of: specification searching, numerical estimation, residuals analysis, goodness of fit
analysis, and reporting, are all unified. Thus researchers and practitioners can learn
a singularly general procedure that fits a wide class of data types and can also be

developed to include even broader classes of assumptions than those described here.

The Exponential Family Form

The key to understanding the generalized linear model is knowing how common
probability density functions for continuous data forms and probability mass func-
tions for discrete data forms can be expressed in exponential family form; a form
that readily produces link functions and moment statistics. The exponential family

form originates with Fisher (1934, p.288-96), but it was not shown until later that



members of the exponential family have fixed dimension sufficient statistics, and pro-
duce unique maximum likelihood estimates with strong consistency and asymptotic
normality (Gill 2000, p.22).

Consider the one-parameter conditional PDF or PMF for the random variable Z
of the form: f(z|¢). It is classified as being an exponential family form if it can be

expressed as:

F(2I¢) = exp[ t(z)u(C) +log(r(2)) + log(s()) ]- (1)
interactio? additive ;)mponent
componen

given that r and ¢ are real-valued functions of z that do not depend on (, and s
and u are real-valued functions of ¢ that do not depend on z, with r(z) > 0,s({) >
0 Vz, (. The key feature is the distinctiveness of the subfunctions within the exponent.
The piece labeled interaction component must have t(z), strictly a function of z,
multiplying u((), strictly a function of . Furthermore, the additive component must
have similarly distinct, but now summed, subfunctions with regard to z and (.

The canonical form of the exponential family expression is a simplification of (1)
that reveals greater structure and gives a more concise summary of the data. This
one-to-one transformation works as follows. Make the transformations y = ¢(z) and
0 = u(() if necessary (i.e. they are not already in canonical form), and now express
(1) as:

f(yl6) = exply6 — b(0) + c(y)]. (2)

The subfunctions in (2) have specific identifiers: y is the canonical form for the data
(and typically a sufficient statistic as well), 0 is the natural canonical form for the
unknown parameter, and b(#) is often called the “cumulant function” or “normalizing
constant”. The function ¢(y) is usually not important in the estimation process.

However, b(0) plays a key role in both determination of the mean and variance



functions as well as the link function. It should also be noted that the canonical
form is invariant to random sampling, meaning that it retains its functionality for
iid (independent, identically distributed) data:
n n
f(yl0) =exp | > v —nb(0) + > _ (i) |,
i=1 i=1

and under the extension to multiple parameters through a k-length parameters vector

k

Fl0) =exp | Y (y6; — b(6))) + c(y)

j=1

As an example of this theory, we can rewrite the familiar binomial PMF:

F(yln,p) = (Z)pyu e

in exponential family form:

f(yln,p) = exp { ylog (1%;) — (—nlog(1 —p)) +k;g@] .

(6
Y0 @ c(y)

Here the subfunctions are label to correspond to the canonical form previously iden-

tified.

The Exponential Family Form and Maximum Likelihood

In order to obtain estimates of the unknown k-dimensional @ coefficient vector,
given an observed matrix of data values: f(#|X), we can employ the standard tech-
nique of maximizing the likelihood function with regard to coefficient values to find
the “most likely” values of the @ vector (Fisher 1925, p.707-9). Asymptotic theory

assures us that for sufficiently large samples the likelihood surface is unimodal in &



dimensions for exponential family forms, so the MLE process is equivalent to finding
the k-dimensional mode.

Regarding f(X|@) as a function of @ for given observed (now fixed) data X, then
L(0|X) = f(X]0) is called a likelihood function. The maximum likelihood estimate
(MLE), 6, has the characteristic that L(@|X) > L(8|X) V 8 € ©, where © is the
admissible range of 8 given by the parametric form assumptions.

It is more convenient to work with the natural log of the likelihood function, and
this does not change any of the resulting parameter estimates because the likelihood
function and the log likelihood function have identical modal points. Using (2) with
a scale parameter added, v, the likelihood function in canonical exponential family
notation is:

_ y0—5(0)

@) +c(y, ).

(7)

Since all of the terms are expressed in the exponent of the exponential family form,

€0, ly) = og(f (416, ) = log (exp [w ~b(0)

) T c(wﬁ)])

removing this exponent through the log of the likelihood gives a very compact form.
The score function is first derivative of the log likelihood function with respect to
the parameters of interest. For the time being the scale parameter, 1, is treated
as a nuisance parameter (not of primary interest), and we estimate a scalar . The
resulting score function, denoted as £(8|4,y), is:

(01, y) = %f(Olw,y) = % yo#j)(o) +ely, )| = 61(75]

The mechanics of the maximum likelihood process involve setting £(A]1),y) equal to
zero then solving for the parameter of interest giving the MLE: 6. Furthermore,
he Likelihood Principle states that once the data are observed, all of the available

evidence for estimating @ is contained in the calculated likelihood function, £(6, ¥|y).



The value of identifying the b(f) function lies in its direct link to the mean and
variance functions. The expected value calculation of (2) with respect to the data

(Y) is in the notation of (7) is:

0

Y — 59000) | _
W ]‘0
[viwas- [ Z2 =0
Y Y
[vsway-282 [ sy =0 — B[] = b(6),
L,_/ L,_/

E[Y] 1

where the second to last step requires general regularity conditions with regard to the
bounds of integration and all exponential family distributions meet this requirement
(Gill 2000, p.23). This means that (2) gives the mean of the associated exponential
family of distributions: g = b'(6). It can also be shown (Gill 2000, p.26) that the
second derivative of b(0) is the variance function. Then multiplying this by the scale
parameter (if appropriate), and substituting back in for the canonical parameter
produces the standard variance calculation. These calculations are summarized for

the binomial PMF:

Table 1: BINOMIAL MEAN AND VARIANCE FUNCTIONS

b(0) nlog (1 + exp(h))

E[Y] = Zb(6) np
8=u(¢)

2 b(6) nexp(6) (1 + exp(9)) >

Var[Y] = a(y) 25b(0) np(1l —p)




The Generalized Linear Model Theory

Start with the standard linear model meeting the Gauss-Markov conditions:
V = XB + €
(nx1) (nxp)(px1) (nx1)

EV)= 6 - XB (9)

(nx1)  (nX1)  (nxp)(px1)
The right-hand sides of the two equations in (9) contain: X, the matrix of observed
data values, X, the “linear structure vector”, and €, the error terms. The left-hand
side contains: E(V') = 0, the vector of means: i.e. the systematic component. The
variable, V, is distributed iid normal with mean #, and constant variance o?. Now
suppose we generalize this with a new “linear predictor” based on the mean of the
outcome variable, which is no longer required to be normally distributed or even

continuous:

gpw)=n = XB .
(nx1)  (nx1)  (nxp)(px1)

It is important here that ¢g() be an invertible, smooth function of the mean vector p.

The effect of the explanatory variables is now expressed in the model only through
the link from the linear structure, X8, to the linear predictor, § = g(u), controlled
by the form of the link function, g(). This link function connects the linear predictor
to the mean of the outcome variable not directly to the expression of the outcome
variable itself, so the outcome variable can now take on a variety of non-normal
forms. The link function connects the stochastic component which describes some

response variable from a wide variety of forms to all of the standard normal theory



supporting the linear systematic component through the mean function:

9(p) =n=XB

9 (gw) =g ' (n) =g~ (XB) =p = E(Y).

Furthermore, this linkage is provided by the form of the mean function from the
exponential family subfunction: b(0).
For example, with the binomial PMF we saw that b(8) = nlog (1 + exp(#)), and

0 = log (%). Re-expressing this in link function notation is just n = g(u) =

exp(8)
1+exp(0) -

log (ﬁ), or we could give the inverse link, y = g~1(n) =
The generalization of the linear model as described now has the following com-

ponents:

I. Stochastic Component: Y is the random or stochastic component which
remains distributed iid according to a specific exponential family distribution

with mean p.

IT. Systematic Component: n = Xf is the systematic component with an asso-

ciated Gauss-Markov normal basis.

ITII. Link Function: the stochastic component and the systematic component are
linked by a function of  which is taken from the inverse the of the canonical

link, b(6).

IV. Residuals: Although the residuals can be expressed in the same manner as
in the standard linear model, observed outcome variable value minus predicted
outcome variable value, a more useful quantity is the deviance residual described

below.



Estimating Generalized Linear Models

Unlike the standard linear model, estimating generalized linear models is not
done with a closed-form analytical expression (ie. B = (X'X) 'Xy). Instead the
maximum likelihood estimate of the unknown parameter is found with a weighted
numerical process that repeatedly increases the likelihood with improved weights on
each cycle: iterative weighted least squares (IWLS). This process, first proposed by
Nelder and Wedderburn (1972, p.372-4) and first implemented in the GLIM software
package, works for any GLM based on an exponential family form (and for some
others). Currently, all professional-level statistic computing implementations now
employ IWLS to numerically find maximum likelihood estimates for generalized linear
models.

The overall strategy is to apply Newton-Raphson with Fisher Scoring to the
normal equations, which is equivalent to iteratively applied, weighted least squares
(and hence easy). Define the current (or starting) point of the linear predictor by:

o = XI:BO
(nx1)  (nxp)(px1)
with fitted value fi, from g=*(#),). Form the “adjusted dependent variable” according

to:

R 0 .
Zg = 1o +<8_’7 )(y—#o)
(nx1)  (nx1) Mg, (nx1)
diag(nxmn)

which is a linearized form of the link function applied to the data. As an example of

this derivative function, the binomial form looks like:

n=tos () = T - a-w



Now form the quadratic weight matriz, which is the variance of z:

2
wy! =<@ ) o(p)
: B[J o diag(n:z)

diag(nxmn)
diag(nxn)

where v(p) is the variance function: a%b' (@) = b"(8). Also note that this process is
necessarily iterative because both z and w depend on the current fitted value, .

The general scheme can now be summarized in the three steps:

I. Construct z, w. Regress z on the covariates with weights to get a new interim
estimate:

B =(X' wy X)X w2
(px1) (Pxn)(nxn)(nxp) (Pxn)(nxn)(nx1)

II. Use the coeflicient vector estimate to update the linear predictor:
1 =XB

III. Iterate: z1,w; = Bo, Mo
Zo, Wy — ﬂ37ﬁ3

Z3,W3 — ﬂ47n4

Under very general conditions, satisfied by the exponential family of distribu-
tions, the iterative weighted least squares procedure finds the mode of the likelihood
function, thus producing the maximum likelihood estimate of the unknown coeffi-
cient vector, B Furthermore, the matrix produced by: 62(X’Q2X)~! converges in

probability to the variance matrix of B as desired.

10



Residuals and Deviances

One significant advantage of the generalized linear model the freedom it provides
from the standard Gauss-Markov assumption that the residuals have mean zero and
constant variance. Unfortunately this freedom comes with the price of interpreting
more complex stochastic structures. The response residual vector, Rresponse = Y —
X B, calculated for linear models can be updated to include the GLM link function,
Rresponse =Y — g 1(XB), but this does not then provide the nice distribution theory
we get from the standard linear model.

A more useful, but related, idea for generalized linear models is the deviance
function. This is built in a similar fashion to the likelihood ratio statistic, comparing
the log likelihood from a proposed model specification to the maximum log likelihood
possible through the saturated model (n data points, n specified parameters, using
the exact same data and link function). The resulting difference is multiplied by
two and called the summed deviance (Nelder and Wedderburn 1972, p.374-6). The
goodness of fit intuition is derived from the idea that this sum constitutes the summed
contrast of individual likelihood contributions with the native data contributions to
the saturated model. The point here is to compare the log likelihood for the proposed
model:

n A R
) =3V e
to the same log likelihood function with identical data and the same link function,

except that it now with n coefficients for the n data points, i.e. the saturated model

log likelihood function:

() =Y y"(—jf”) T ey, ).
=1

11



The latter is the highest possible value for the log likelihood function achievable with

the given data. The deviance function is then given by:

oy—azj ¢w—a¢w}n§ﬂméé (b®) — b(0)] aly) "

This statistic is asymptotically x? with n— k degrees of freedom (although high levels
of discrete granularity in the outcome variable can make this a poor distributional
assumption for datasets that are not so large). Fortunately, these deviance functions
are commonly tabulated for many exponential family forms, and therefore do not

require analytical calculation. In the binomial case the deviance function is:

D(m,p) =2 [yilog (%) + (ns — yi)log (Z: :zZ)] :

where the saturated log likelihood achieves the highest possible value for fitting p; =

Yi/ .
We can also look at the individual deviance contributions in an analogous way
to linear model residuals. The single point deviance function is just the deviance

function for the y}h point:
d(6,y:) = —2 [4:0 —0) — (b6 — b@)] aly) "

A deviance residual at the y; point is built upon this by:

(yi — i)

d@,y;
i V1O

RDeviance =

where (|Z’ Zlf is just a sign-preserving function.
2

Example: Multinomial Response Models

Consider a slight generalization of the running binomial example where instead

of two possible events defining the outcome variable, there are now k events. The

12



outcome for an individual ¢ is given as a k — 1 length vector of all zeros except for
a single one identifying the positive response: y; = [y1,Yi2, - - -, Yik—1)], or all zeros
for an individual selecting the left-out reference category. It should be clear that this
reduces to a binomial outcome for £ = 2.

The objective is now to estimate the k — 1 length of categorical probabilities for
a sample size of n, p = g~1(n) = ® = [y, 7o,..., M 1], from the dataset consisting
of the n x (k — 1) outcome matrix y and the n X p matrix of p covariates X including
a leading column of 1’s. The PMF for this setup is now multinomial where the
estimates are provided with a logit (but sometimes a probit) link function, giving for

each of k — 1 categories, the probability that the i** individual picks category r:

exp(XiB,)
1+ Y] exp(XB,)

where B, is the coefficient vector for the r** category.

Ply; = r[X) =

The data used are from the 1977 General Social Survey, and are a specific 3-
category multinomial example analyzed by a number of authors. These are sum-
marized in Table 2. Since there are only three categories in this application, the

multinomial PMF for the ** individual is given by:

n. — g — .
f(}’z|nz;7rz) = : 'ﬂ'zyil yz2(1 —mi] — 7ri2)n Yi1—Yi2

yzl'yﬂ (n —Yi1 — yZZ)

and the likelihood is formed by the product across the sample. Is this an exponential
family form such that we can treat this as a GLM problem? This PMF can be

re-expressed as:

13



Table 2: HAPPINESS AND SCHOOLING BY SEX, 1977 GSS

Years of Schooling

Self-Reported Status <12 12 13-16 17+

Male Not happy 40 21 14 3
Pretty happy 131 116 112 27
Very happy 82 61 55 27
Female Not happy 62 26 12 3
Pretty happy 155 156 95 15
Very happy 87 127 76 15
!
Yii Yi2 T2
i|ng, m;) = ex , JJog | ———
(yilni,m) p[(( " )( (s ) vos (= _m))J
! 0;
— (—log(1 —m; — 7I'i2))>ni + log ( - = ,)]
~ ~ - yirlyiol(n — yi1 — yi2)!
b(8;) h ~ d
(y)

where n; is a weighting for the i*? case. This is clearly an exponential form, albeit now
with a two-dimensional structure for y; and ;. The two-dimensional link function

that results from this form is simply:

i T2
i = g(mi1, Tia) <0g<1—7ri1—7ri2)’ Og<1—7ri1_7ri2>)

We can therefore interpret the results in the following way for a single respondent:

P(event 1) i1
o8 [P(reference category)] ©8 [1 — i1 — W2 b1

log[( P(event 2) )]:log[ mio ]:X%

P(reference category 1—m; — w4

14



The estimated results for this model are contained in Table 3. What we observe
from these results is that there is no evidence of gender effect (counter to other
studies), and there is strong evidence of increased happiness for the three categories
relative to the reference category of <12 years of school. Interesting, the Very Happy
to Not Happy distinction increases with education, but the Pretty Happy to Not
Happy distinction does not. The deviance residual is 8.68, indicating a good fit for 6
degrees of freedom (not in the tail of a x? distribution), and therefore an improvement

over the saturated model.

Table 3: THREE-CATEGORY MULTINOMIAL MODEL RESULTS

Intercept Female 12 13-16 17+

Pretty Happy 1.129 -0.181  0.736  1.036 0.882
(0.148)  (0.168) (0.196) (0.238)  (0.453)
Very Happy  0.474 0.055 0.878  1.114 1.451

(0.161)  (0.177) (0.206) (0.249)  (0.455)
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