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a0005 Hierarchical Linear Models

Jeff Gill
University of Florida, Gainesville, Florida, USA

Glossary

g0005 analysis of covariance model (ANCOVA) A varying inter-
cept hierarchical linear model with the second-level effect
fixed across groups.

g0010 between-unit model The component of a hierarchical linear
model that describes the variability across the groups.

g0015 context-level variables Variables defined at the second or
higher level of the hierarchical linear model.

g0020 empirical Bayes Using the observed data to estimate
terminal-level hierarchical model parameters.

g0025 exchangeability The property of a hierarchical linear model
that the joint probability distribution is not changed by
re-ordering the data values.

g0030 expectation-maximization (EM) algorithm An iterative
procedure for computing modal quantities when the data
are incomplete.

g0035 fixed effects coefficients Model coefficients that are
assumed to pertain to the entire population and therefore
do not need to be distinguished by subgroups.

g0040 hierarchy The structure of data that identifies units and
subunits in the form of nesting.

g0045 interaction term A model specification term that applies to
some mathematical composite of explanatory variables,
usually a product.

g0050 random coefficients regression model A hierarchical linear
model in which the only specified effect from the second
level is seen through error terms.

g0055 random effects coefficients Model coefficients that are
specified to differ by subgroups and are treated probabil-
istically at the next highest level of the model.

g0060 two-level model A hierarchical linear model that specifies
a group level and a single contextual level.

g0065 varying intercept model A hierarchical linear model with
only one (noninteractive) effect from the second level of the
model.

g0070 within-unit model The component of a hierarchical linear
model that describes variability confined to individual
groups.

p0005Hierarchical linear models (HLMs) are statistical speci-
fications that explicitly recognize multiple levels in data.
Because explanatory variables can be measured at differ-
ent points of aggregation, it is often important to structure
inferences that specifically identify multilevel relation-
ships. In the classic example, student achievement can
be measured at multiple levels: individually, by class,
by school, by district, by state, or nationally. This is not
just an issue of clarity and organization. If there exist
differing effects by level, then the substantive interpreta-
tion of the coefficients will be wrong if levels are ignored.
HLMs take the standard linear model specification and
remove the restriction that the estimated coefficients be
constant across individual cases by specifying levels of
additional effects to be estimated. This approach is also
called random effects modeling because the regression
coefficients are now presumed to be random quantities
according to additionally specified distributions.

s0005Essential Description of
Hierarchical Linear Models

p0010The development hierarchical linear model (HLM) starts
with a simple bivariate linear regression specification for
individual i:

Yi ¼ b0 þ b1Xi þ ei ð1Þ

which relates the outcome variable to the systematic
component and the error term. The standard conditions
for this model include the Gauss-Markov assumptions
(linear functional form, independent errors with mean
zero and constant variance, and no relationship between

H
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regressor and errors), and normality of the errors
(provided reasonable sample size): ei �N (0, s2).

p0015 Suppose, for example, that we are interested in mea-
suring university student evaluations of faculty teaching
through the standard end-of-semester survey. Then the
outcome variable, Yi, is considered the mean score for
instructor i for a given class, recorded along with the
explanatory variable, Xi, indicating years of teaching
experience. In this example setup, the intercept, b0, is
the expected score for a new instructor. Now, consider
that this analysis is temporarily taking place only in depart-
ment j. This means that Eq. (1) becomes:

Yij ¼ bj0 þ bj1Xij þ eij ð2Þ

There is no substantive change here; for the moment,
the j coefficient is just a placeholder to remind us that
we are studying only the jth department so far.

p0020 Now consider broadening the analysis to evaluate stu-
dent evaluations of teaching across the entire university by
looking at multiple departments. Although we expect
some differences, it would be rare to find that there
was no underlying commonality among the instructors.
A more realistic idea is that, although each instructor has
idiosyncratic characteristics, because he or she is teaching
at the same university at the same point in time and being
evaluated by the same student body there is a common
distribution from which b0 and b1 are drawn. Actually, it
would be unfair and inaccurate to calculate these means
across all undergraduate majors at the university. It is well
known, for instance, that sociology departments enjoy
higher mean student evaluations than chemistry depart-
ments. So, now add a second level to the model that
explicitly nests instructors within departments and
index these departments by j¼ 1 to J:

bj0 ¼ g00 þ g10Zj0 þ uj0

bj1 ¼ g01 þ g11Zj1 þ uj1

ð3Þ

where all individual level variation is assigned to
departments producing department-level residuals: uj0

and uj1. The variables at this level are called context-
level variables, and contextual specificity is the existence
of legitimately comparable groups. Here, the example
explanatory variables Zj0 and Zj1 are the average class
size for department j and the average annual research
output per faculty member in department j, respec-
tively. Note that if we were interested in performing two
nonhierarchical department-level analyses, this would
be straightforward using these two equations, provided
that the data exist. Of course, our interest here is not in
developing separate single-level models; the two-level
model is produced by inserting the department-level

specifications, Eq. (3), into the original expression for
instructor evaluations, Eq. (2). Performing this substitu-
tion and rearranging produces:

Yij ¼ g00 þ g10Zj0 þ uj0

� �
þ g01 þ g11Zj1 þ uj1

� �
Xij þ eij

¼ g00 þ g01Xij þ g10Zj0 þ g11XijZj1 þ uj1Xij þ uj0 þ eij

ð4Þ

This equation also shows that the composite error
structure, uj1Xij þ uj0 þ eij, is now clearly heteroscedastic
because it is conditioned on levels of the explanatory
variable. Unless the corresponding variance-covariance
matrix is known, and therefore incorporated as weights
in the general linear model, it must also be estimated.
Ignoring this effect and calculating with ordinary least
squares (OLS) produces consistent estimators but
incorrect standard errors because it is equivalent to
assuming zero intraclass correlation.

p0025Often the first-level expression describing the perfor-
mance of instructor i in a given department, as specified
by Eq. (2), is labeled the within-unit model because its
effects are confined to the single department; the second-
level expressions describing the performance of depart-
ment j as a whole, as specified by Eq. (3), are labeled the
between-unit model because they describe the variability
across the departments. Looking closely at Eq. (4) reveals
that there are three distinct implications of the effects of
the coefficients for the explanatory variables:

g01 gives the slope coefficient for a one-unit effect
of teacher experience in department j. This slope
varies by department.

g10 gives the slope coefficient for a one-unit change
in department class size in department j,
completely independent of individual teacher
effects in that department.

g11 gives the slope coefficient for the product
of individual teacher experience by department
and mean annual research output by department.

Because this set of variables contains both fixed and
random effects, Eq. (4) is called a mixed model.

p0030The fundamental characteristic of the multilevel data
discussed here is that some variables are measured at an
individual level and others are measured at differing levels
of aggregation. This drives the need for a model such as
Eq. (4) that classify variables and coefficients by the level
of hierarchy they affect. Interestingly, a large proportion
of HLMs in published work come from education policy
studies. This is due to natural nesting of education data
through the bureaucratic structure of these institutions.
Other applications include studies of voting, bureaucracy,
medical trials, and crime rates.

2 Hierarchical Linear Models
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s0010 Special Cases of the Hierarchical
Linear Model

p0035 There are several interesting ramifications that come from
fixing various quantities in the basic HLM. The most basic
is produced by setting the full bj1 component and the g10

term in Eq. (4) equal to zero. The result is the standard
ANOVA model with random effects:

Yij ¼ g00 þ uj0 þ eij ð5Þ

In another basic case, if the second-level model defines
a fixed-effect rather than random-effect model, (uj1,
uj0 ¼ 0), then the resulting specification is just simple
linear regression model with an interaction term
between the instructor level explanatory variable and
the department level explanatory variable:

Yij ¼ g00 þ g01Xij þ g10Zj0 þ g11XijZj1 þ eij ð6Þ

This is one of the most studied enhancements of the
basic linear form in the social sciences.

p0040 Another very basic model comes from assuming that
the second-level model introduces no new error terms
and there is also no interaction effect. Specifically, this
means that we can treat the intercept term as a composite
of a constant across the sample and a constant across only
the j groupings:

Yij ¼ g00 þ g10Zj0

� �
þ g01Xij þ eij ð7Þ

This is routinely called a varying intercept model
because the parenthetical expression is now a group-
specific intercept term. If we add the second assumption
that there is no articulated structure within the first
term, that is, (g00 þ g10Zj0) is equal to a single context-
specific aj, this is now the analysis of covariance model
(ANCOVA).

p0045 Sometimes it is possible to take some specific para-
meter in the model and fix it at a known level. Thus, if
substantive information at hand indicates that there is no
variability to one of the g terms, it is appropriate to fix it in
the model. It is also possible design a combination strategy
such as to fix the slope coefficient (bj1 ¼ g10 þ g11Zj1) and
let the intercept coefficient remain a random effect, or to
fix the intercept coefficient (bj0 ¼ g00 þ g10Zj0) and let the
slope remain a random effect.

p0050 Another common variation is to assume that Zj0 ¼ 0
and Zj1 ¼ 0, but retain the uj0 error term:

Yij ¼ g00 þ g01Xij þ uj1Xij þ uj0 þ eij ð8Þ

This model asserts that the j categorization is not
important for determining the expected effect on Yij, but
that there is an additional source of error from the
categories. Hence, specifying the model with only one
source of error is to miss a heteroscedastic effect.
A specification of this type is typically called a random
coefficients regression model.

p0055Another related variation is to assume that the effect of
the within-unit explanatory variable (years of teaching in
our example) is uniform across departments. This is
equivalent to setting g11XijZj1 ¼ 0, producing:

Yij ¼ g00 þ g01Xij þ g10Zj0 þ uj1Xij þ uj0 þ eij ð9Þ

where sometimes uj1Xij is also set to zero. The common
name for this specification is the additive variance
components model.

s0015The General Structure of the
Hierarchical Linear Model

p0060The previously developed model is actually a substantial
simplification in that typical models in social science
research contain many more explanatory variables at
both the within-unit level and the between-unit levels.
It is therefore necessary to generalize HLM to incorpo-
rate more specification flexibility. First we recast Eq. (4) in
matrix terms, such that the dimensional assumptions will
be generalized to accommodate more useful specifica-
tions. We define a new bj vector according to:

bj ¼
bj0

bj1

" #
¼

1 Zj0 0 0

0 0 1 Zj1

" # g00

g10

g01

g11

2
6664

3
7775þ

uj0

uj1

" #

ð10Þ

which is just the vectorized version of Eq. (3). There-
fore, it is possible to express Eq. (4) in the very concise
form:

Yij ¼ b0
j 1 Xij

� �0 þ eij ð11Þ

This extra formalism is really not worth the effort for
a model of this size; its real utility is demonstrated
when there are more explanatory variables at the
contextual level. Define k0 and k1 to be the number of
explanatory variables defined at the second level for bj0

and bj1, respectively. Thus far we have had the
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restrictions: k0 ¼ 2 and k1 ¼ 2; but we can now general-
ize this dimension:

The dimension of the matrix of Z variables is now
(2� k0 þ k1) and the length of the g vector is k0 þ k1, for
any specified values of ki that are allowed to differ. It is
common, and computationally convenient, to assume that
the error vector, uj, is multivariate normally distributed
around zero with a given or estimated variance-covar-
iance matrix. Note that the row specifications in the Z
matrix always begin with a 1 for the constant, which
specifies a level-one constant in the first row and a level-
one restricted explanatory variable in the second row.

p0065 It is important to observe that because the constant in
this model is part of the specification, the indices run to
k0 	 1 and k1 	 1 to obtain the dimensions k0 and k1. Also,
when there was only one Z variable specified in the second
level of the model, it was sufficient to index simply by the
subscripts j and either 0 or 1, as in the first and second
equations of (3). However, now that there are an arbitrary
number for each second-level equation they must be
further indexed by the third value—here, 1 to k0 	 1 or
1 to k1 	 1. Note that each group is no longer required to
contain the same mix of second-level explanatory vari-
ables. This turns out to be useful in specifying many vary-
ing model specifications.

p0070 It is possible that there are also more first-level vari-
ables in the model (it is likely, in fact). To accommodate
this, we must further generalize the defined matrix struc-
tures. Define the Z‘ vector as

Z‘ ¼ 1 Zj‘1 Zj‘2 
 
 
 Zj‘ k‘	1ð Þ
� �

ð13Þ

for ‘¼ 1 to L coefficients in the first-level model,
including the constant. Therefore the Z matrix is now
a (L�L) diagonal matrix according to:

Z ¼

Z1 0 0 . . . 0

0 Z2 0 . . . 0

0 0 Z3 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . ZL

2
66666664

3
77777775

ð14Þ

where each diagonal value is a Z‘ vector. This can also
be fully written out as an irregular ‘-diagonalized matrix,
but it would be more cumbersome than the given form.
Given the new for of the Z matrix, it is necessary to
respecify the g vector as follows:

g ¼

g0

g1

..

.

gL

2
66664

3
77775 ð15Þ

where each g‘ is a column vector whose length is
determined by the k‘ dimension specification. Putting
these new structures together gives:

bj ¼ Zgþ u ð16Þ

and:

Yij ¼ b0
j ½ 1 Xij1 Xij2 . . . XijL �0 þ eij ð17Þ

Thus, the HLM in this form allows any number of first-
and second-level explanatory variables, as well as
differing combinations across contextual levels. Note
also that there is no restriction that number of individual
units, nj, be equal across the contexts (although this can
make the estimation process more involved).

p0075The final basic way that the HLM can be made more
general is to add further levels of hierarchy with respect to
levels. That is, it is possible to specify a third level in
exactly the way that the second level was added by para-
meterizing the g terms according to:

gpq ¼ d0q þ d1qWpq þ vpq

where the p subscript indicates a second level of
contexts (p¼ 1, . . . , P), and the q subscript indexes the
number of equations (q¼ 1, . . . , Q) specified at this
level (analogous to k at the lower level). In this
specification, Wpq is a third-level measured explanatory
variable and vpq is the level-associated error term.

bj ¼
bj0

bj1

" #
¼

1 Zj01 Zj02 
 
 
 Zj0 k0	1ð Þ 0 0 0 
 
 
 0

0 0 0 
 
 
 0 1 Zj11 Zj12 
 
 
 Zj1 k1	1ð Þ

" #

g00

g10

..

.

g k0	1ð Þ0

g01

g11

..

.

g k1	1ð Þ1

2
66666666666666664

3
77777777777777775

þ
uj0

uj1

" #
ð12Þ
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Obviously, the specifications can be made very complex
at this level.

p0080 The other principle approach to modeling a third level
is to specify a Bayesian prior distribution for the g coeffi-
cients. These priors are typically assigned normal distri-
butions, but this is not a restriction and many others have
been used. As a consequence of linearity, the normal
property then ripples down the hierarchy, making estima-
tion relatively easy. This model, then, specifies hierarchies
of linear hyperpriors, each of which has its own prior plus
an associated matrix of explanatory variables, and only
nodes at the highest level of the hierarchy have fixed
hyperprior values.

s0020 Estimation of the Hierarchical
Linear Model

p0085 No matter how complex the right-hand side of the HLM
equation becomes, the left-hand side always consists of
Yij, which is assumed to be normal, with mean equal to the
systematic component of the model and variance from the
collected error terms. If it were known that the error
structure in the model was uncorrelated to explanatory
variables, then it would easy to estimate the coefficients
with standard maximum likelihood or least squares
approaches. Actually we know that, in general, the
form of the errors is conditional on the levels of the expla-
natory variables because in Eq. (4) there is the term, uj1Xij.
In addition, there are increasing numbers of dependen-
cies as the model becomes progressively more complex
and realistic.

p0090 If we knew for certain the form of the relationship
between the regressors and errors, then it could be
expressed through a weighting matrix and general least
squares would provide consistent estimates of the coeffi-
cients and their standard errors. Unfortunately, this infor-
mation is rarely available. The classic alternative is to
specify a likelihood function and employ a maximum like-
lihood estimation of the full set of unknown parameters,
including variances using Fisher scoring. This is often
a cumbersome process, so many software implementa-
tions work with the profile likelihood—first estimating
the higher order variance terms and only then fixing
them in the likelihood function equation for the lower-
level parameters. This tends to underestimate the
magnitude of the higher-order variance terms because
uncertainty is ignored in the first step, leading to over-
confident model results. An improved process is to
employ restricted maximum likelihood (REML) by inte-
grating out the fixed-effects terms in the calculation of the
profile likelihood and, after obtaining the lower-level
parameter estimates, recalculating the higher-order
variance terms conditional on these. However, the best

method is the quasi-Bayesian procedure, empirical Bayes/
maximum likelihood (EB/ML). A fundamental principle
of Bayesianism is that unknown parameters are treated as
random variables possessing their own distributions
which can be estimated as a consequence of applying
Bayes’s law. By analogy, we can consider the unknown
HLM estimates as having their own distributions, condi-
tioned on unknown quantities from the higher level of the
model. Rather than stipulating explicit priors for the para-
meters, as a Bayesian would do, it is possible to use a prior
suggested by the data, called empirical Bayes.

p0095The expectation-maximization (EM) algorithm is
essential to this estimation process and therefore warrants
some description. EM is a flexible and often-used method
for incomplete data problems; it is used to fill in missing
information, given a specified model. The notion of what
is ‘‘missing’’ is general here; it can be unknown para-
meters, missing data, or both. There are two basic
steps. First, we assign temporary data that represent
a reasonable guess to the missing data (expectation). Sec-
ond, we proceed with maximum likelihood estimation of
the parameters as if there now existed a complete-data
problem (maximization). The algorithm is iterative in the
sense that it is now possible to use these parameter esti-
mates to update the assignment of the temporary data
values with better guesses, and repeat the process. It
can be shown that the EM algorithm gives a series of
parameter estimates that are monotonically increasing
on the likelihood metric and are guaranteed to converge
to a unique maximum point under very general and non-
restrictive regularity conditions. The utility here is that the
HLM with linear specifications and normal assumptions is
a particularly well-behaved application of EM.

p0100Detailed summaries of the EB/ML computational pro-
cedure for obtaining coefficient estimates and measures
of reliability can be found elsewhere. The basic strategy is
to obtain estimates of the variance terms using the EM
algorithm and the joint likelihood function for the coeffi-
cients and the variances, plug these estimates into the top
hierarchy of the model, perform maximum likelihood cal-
culations as if these were the correct weightings, and
update the estimate of the coefficients by using the
mean of the subsequent posterior. This is a very general
description of the procedure; there are many nuances that
depend on the particular form of the model and config-
uration of the data.

s0025Critical Advantages of the
Hierarchical Linear Model

p0105HLMs are a compromise between two opposite
approaches to clustering. On one side, it is possible to
simply pool all the observations and calculate an estimate
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of the coefficients of interest as if the between-group
effects did not matter. Conversely, it is also possible to
aggregate the data by the groups and calculate the coeffi-
cient estimates on these aggregations as if they were the
primary object of interest. The first approach ignores
between-group variation and the second approach
ignores within-group variation. It is possible that either
of these approaches is entirely appropriate and reliable
inferences can be obtained. Of course, if there actually are
important differences by groupings, then neither will be
correct. HLMs provide a method for producing models
that explicitly recognize this distinction by incorporating
the nesting of the data into the model specification.

p0110 HLMs also have several specific methodological
advantages over standard linear models:


 Hierarchical models are ideal tools for identifying
and measuring structural relationships that fall at
different levels of the data generating procedure.


 Hierarchical models have virtually no limit to
the dimension of their hierarchy.


 Hierarchical models directly express the
exchangeability of units.


 Nonhierarchical models applied to multilevel
data typically underestimate the variance.


 Hierarchical models facilitate the testing of
hypotheses across different levels of analysis.


 Nonhierarchical models can be nested within
hierarchical models, allowing a likelihood or
Bayes factor test of the validity of the proposed
hierarchical structure.

p0115 Although these reasons are compelling, it is only rela-
tively recently that hierarchical models have been actively
pursued in the social sciences. This is parallel (and
related) to the attachment social scientists have for the
linear model in general. What precipitated the change was
the dramatic improvement in statistical computing that
provided solutions to previously intractable problems.
These stochastic simulation tools include the EM algo-
rithm; Markov chain Monte Carlo techniques (MCMC),
such as the Metropolis-Hastings algorithm; and the Gibbs

sampler, whereby an iterative chain of consecutive com-
putationally generated values is set up carefully enough
and run long enough to produce empirical estimates of
integral quantities of interest from later chain values.
Although these approaches are typically associated with
Bayesian modeling, such iteration techniques are not lim-
ited to Bayesian or even hierarchical applications. They
do, however, greatly help naturally occurring computa-
tional problems in these settings.
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