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FIELD ESSAY

The Insignificance of
Null Hypothesis
Significance Testing

JEFF GILL, CALIFORNIA POLYTECHNIC STATE UNIVERSITY

The primary means of conveying the strength of empirical findings in political
science is the null hypothesis significance test, yet we have generally failed to notice
that this paradigm is under intense criticism in other disciplines. Led in the social
sciences by psychology, many are challenging the basic tenets of the way that nearly
all social scientists are trained to develop and test empirical hypotheses. It has been
described as a “strangle-hold” (Rozenboom 1960), “deeply flawed or else ill-used
by researchers” (Serlin and Lapsley 1993), “a terrible mistake, basically unsound,
poor scientific strategy, and one of the worst things that ever happened in the his-

The current method of hypothesis testing in the social sciences is under
intense criticism, yet most political scientists are unaware of the important
issues being raised. Criticisms focus on the construction and interpretation
of a procedure that has dominated the reporting of empirical results for
over fifty years. There is evidence that null hypothesis significance testing
as practiced in political science is deeply flawed and widely misunderstood.
This is important since most empirical work argues the value of findings
through the use of the null hypothesis significance test. In this article I
review the history of the null hypothesis significance testing paradigm in
the social sciences and discuss major problems, some of which are logical
inconsistencies while others are more interpretive in nature. 1 suggest alter-
native techniques to convey effectively the importance of data-analytic
findings. These recommendations are illustrated with examples using
empirical political science publications.

Note: The author thanks Micah Altman, Gary King, Nick Theobald, Richard Tucker, and three
anonymous referees for helpful and substantive comments. The original version of this essay
was developed during Don Rubin’s Graduate Seminar, Department of Statistics, Harvard Uni-

versity, 1997-1998.
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tory of psychology” (Meehl 1978), “an instance of the kind of essential mindless-
ness in the conduct of research” (Bakan 1960), “badly misused for a long time”
(Cohen 1994), and that it has “systematically retarded the growth of cumulative
knowledge” (Schmidt 1996). Or even more bluntly: “The significance test as it is
currently used in the social sciences just does not work” (Hunter 1997).

Statisticians have long been aware of the limitations of null hypothesis signif-
icance testing as currently practiced in political science research. Jeffreys (1961)
observed that using p-values as decision criteria is backward in its reasoning: “a
hypothesis that may be true may be rejected because it has not predicted observ-
able results that have not occurred.” Another common criticism notes that this
interpretation of hypothesis testing confuses inference and decision making since
it “does not allow for the costs of possible wrong actions to be taken into account
in any precise way” (Barnett 1973). The perspective of many statisticians toward
null hypothesis significance testing is typified by the statement: “a P-value of 0.05
essentially does not provide any evidence against the null hypothesis (Berger,
Boukai, and Wang 1997), and the observation that the null versus research hypoth-
esis is really an “artificial dichotomy” (Gelman et al. 1995). Berger and Sellke
(1987) show that evidence against the null given by correctly interpreting the pos-
terior distribution or corresponding likelihood function “can differ by an order of
magnitude.”

Political methodology has reemerged as an active and vibrant subfield devel-
oping important new methods and perspectives. However, the focus has not been
on reviewing or reevaluating foundational issues, and there has been no discussion
of the validity of the null hypothesis significance test as currently practiced in polit-
ical science despite its pervasiveness. Noting this absence over quite some years, 1
discuss the history of the current hypothesis-testing paradigm, give evidence of
some very serious misinterpretations of the approach, and present alternative pro-
cedures and interpretations.

Since political science is an overwhelmingly empirical discipline, the interpre-
tation of these empirical results affect the interpretation of substantive conclusions.
So a discussion about hypothesis-testing methodology is really a discussion about
substantive political science issues. Thus the motivation for this review is not
strictly methodological, nor is it confined to only a few data-analytic literatures.

THE CURRENT PARADIGM: NULL HYPOTHESIS SIGNIFICANCE TESTING

The current, nearly omnipresent, approach to hypothesis testing in all of the
social sciences is a synthesis of the Fisher test of significance and the Neyman-Pear-
son hypothesis test. In this “modern” procedure, two hypotheses are posited: a null
or restricted hypothesis (H,) which competes with an alternative or research
hypothesis (H,;) describing two complementary notions about some phenomenon.
The research hypothesis is the probability model which describes the author’s belief
about some underlying aspect of the data and operationalizes this belief through a
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= FIGURE 1
NULL HYPOTHESIS SIGNIFICANCE TESTING ILLUSTRATED
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parameter: 6. In the simplest case,' described in every introductory text, a null
hypothesis asserts that 8 = 0 and a complementary research hypothesis asserts that
0=0.

A test statistic (T), some function of 8 and the data, is calculated and compared
with its known distribution under the assumption that H, is true. Commonly used
test statistics are sample means X, chi-square statistics (x?), and t-statistics in
linear (OLS) regression analysis. The test procedure assigns one of two decisions
(Do, D)) to all possible values in the sample space of T, which correspond to sup-
porting either H or H, respectively. The p-value (“associated probability”) is equal
to the area in the tail (or tails) of the assumed distribution under H, which starts
at the point designated by the placement of T on the horizontal axis and continues
to infinity. If a predetermined « level has been specified, then H, is rejected for p-
values less than a, otherwise the p-value itself is reported.? Thus decision D, is
made if the test statistic is sufficiently atypical given the distribution under Hy. This
process is illustrated for a one-tail test at o = 0.05 in Figure 1.

HisTORICAL DEVELOPMENT

The current null hypothesis significance test is a synthesis of two highly influ-
ential but incompatible schools of thought in modern statistics. Fisher developed

' More generally, the test evaluates a parameter vector: © = {6, 6,, . . ., 8,.}, and the null hypoth-
esis places restrictions on some subset (€ < m) of the theta vector such as: 8; = k;8; + k; with con-
stants ky and k;.

? Formally, the sample space of T is segmented into two complementary regions (Sy, S1) whereby
the probability that T falls in Sy, causing decision Dy, is either one minus a predetermined null
hypothesis cumulative distribution function (CDF) level: the probability of getting this or some
more extreme value given a specified parametric form such as normal, F t, etc. (a = size of the test,
Neyman and Pearson), or the cumulative distribution function level corresponding to the value of
the test statistic under H is reported (p-value =5f PHO (T = t)dt, Fisher).

1
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a procedure that produces significance levels from the data whereas Neyman and
Pearson posit an intentionally rigid decision process which seeks to confirm or
reject specified a priori hypotheses. The null hypothesis significance testing proce-
dure is not influenced by the third major intellectual stream of the time: Bayesian-
ism, except as a reaction against this approach.

Fisher Test of Significance

Fisher (1925a, 1934, 1955) posited a single hypothesis, H, with a known dis-
tribution of the test statistic T. As the test statistic moves away from its conditional
expected value, E(T | Hy), H, becomes progressively less plausible (less likely to
occur by chance). The relationship between T and the level of significance pro-
duced by the test is established by the density outside the threshold established by
T (one- or two-tailed), going away from the density region containing the expected
value of T given H,. The outside density is the p-value, also called the achieved sig-
nificance level. Fisher hypothesis testing is summarized by the following steps:

1. Identify the null hypothesis.

2. Determine the appropriate test statistic and its distribution under the
assumption that the null hypothesis is true.

3. Calculate the test statistic from the data.

4. Determine the achieved significance level that corresponds to the test sta-
tistic using the distribution under the assumption that the null is true.

5. Reject Hy if the achieved significance level is sufficiently small. Otherwise
reach no conclusion.

This construct naturally leads to the question of what p-value is sufficiently
small as to warrant rejection of the null hypothesis. Although Fisher wrote in later
years that this threshold should be established by the context of the problem® his
influential work is full of phrases such as: “The value for Q is therefore significant
on the higher standard (1 percent) and that for N, at the lower standard (5 percent)”
(1971: 152-53). Furthermore, this determination of significance levels at 0.01 or
0.05 was made by Fisher in the context of agricultural and biological experiments.

Neyman and Pearson Hypothesis Testing

Neyman and Pearson (1928a, 1928b, 1933b, 1936a) reject Fisher’s idea that
only the null hypothesis needs to be tested. They argue that a more useful proce-

> This was partly defensive on Fisher’s part as rigid significance threshold’s are more conducive to
Neyman-Pearson hypothesis testing: “In an acceptance procedure, on the other hand, acceptance
is irreversible, whether the evidence for it was strong or weak. It is the result of applying mechan-
ically rules laid down in advance; no thought is given to the particular case, and the tester’s state of
mind, or his capacity for learning, is inoperative” (Fisher 1955: 73-74).
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dure is to propose two complementary hypotheses: ©, and O (or a class of Oy;),
which need not be labeled “null” or “alternative” but often are purely for conven-
ience. Furthermore, Neyman and Pearson (1933b) point out that one can posit a
hypothesis and consecutively test multiple admissible alternatives against this
hypothesis. Since there are now two competing hypotheses in any one test,
Neyman and Pearson can define an a priori selected a, the probability of falsely
rejecting ©, under the assumption that Hy is true, and 3, the probability of failing
to reject O, when H is false. By convention, the first mistake is called a Type I
error, and the second mistake is called a Type II error. Note that o and {8 are prob-
abilities conditional on two mutually exclusive events: a is conditional on the null
hypothesis being true, and $ is conditional on the null hypothesis being false. A
more useful quantity than 8 is 1 — 8, which Neyman and Pearson (1933a, 1936a)
call the power of the test: the long-run probability of accurately rejecting a false null
hypothesis given a point alternative hypothesis.

In this construct it is desirable to develop the test which has the highest power
for a given a priori a. To accomplish this goal, the researcher considers the fixed
sample size, the desired significance level, and the research hypothesis, then
employs the test with the greatest power. Neyman and Pearson’s famous lemma
(1936b) shows that under certain conditions* there exists a “uniformly most pow-
erful” test which has the greatest possible probability of rejecting a false null
hypothesis in favor of a point alternative hypothesis, compared to other tests.

To contrast the Neyman-Pearson approach with Fisher’ test of significance,
note how different the following steps are from Fisher:

1. Identify a hypothesis of interest, ©p, and a complementary hypothesis, ©,.

2. Determine the appropriate test statistic and its distribution under the
assumption that 6, is true.

3. Specify a significance level (o), and determine the corresponding critical
value of the test statistic under the assumption that ©, is true.

4. Calculate the test statistic from the data.

5. Reject ©4 and accept Oy if the test statistic is further than the critical value

+ A sufficient condition is that the probability density tested has a monotone likelihood ratio. Sup-
pose we have family of probability density functions h(t8) in which the random variable t is con-
ditional on some unknown 6 value to be tested. This family has a monotone likelihood ratio if for
every 0; > 0,, then:

RACeC )

h(tl6,)

is a non-decreasing function of the random variable t. Suppose further that we perform a test such
as Hy: 0, =< 6, versus H;: 8, > 6, (8, a known constant), where t is a sufficient statistic for 8), and
h(t|6,) has a monotone likelihood ratio. The Karlin-Rubin Theorem (1956) states that if we set o
= P(t > t;) and reject H, for an observed t > ty (ty a known constant), then this test has the most
power relative to any other possible test of Hy with this a level (Casella and Berger 1900: 366-70;
Lehmann 1986: 78).
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from the expected value of the test statistic (calculated under the assump-
tion that ©, is true). Otherwise accept O,.

The Neyman-Pearson approach is important in the context of decision theory
where the decision in the final step above is assigned a risk function computed as
the expected loss from making an error.

Producing the Synthesis

The null hypothesis significance test attempts to blend the two approaches
described above producing the “synthesis.” With Fisher hypothesis testing, no
explicit complementary hypothesis to Hy, is identified, and the p-value that results
from the model and the data is evaluated as the strength of the evidence for the
research hypothesis. Therefore there is no notion of the power of the test nor of
accepting alternate hypotheses in the final interpretation. Conversely, Neyman-
Pearson tests identify complementary hypotheses: O, and Oj in which rejection of
one implies acceptance® of the other and this rejection is based on a predetermined
o level.

Neyman and Pearson’s hypothesis test defines the significance level a priori as
a function of the test (i.e., before even looking at the data), whereas Fisher’ test of
significance defines the significance level afterwards as a function of the data. The
current paradigm in the social sciences straddles these two approaches by pre-
tending to select a a priori, but actually using p-values (or asterisks next to test sta-
tistics indicating ranges of p-values) to evaluate the strength of the evidence. This
allows inclusion of the alternate hypothesis but removes the search for a more
powerful test.

The synthesized test also attempts to reconcile the two differing perspectives on
how the hypotheses are defined. It adopts the Neyman-Pearson convention of two
explicitly stated rival hypotheses, but one is always labeled as the null hypothesis as
in the Fisher test. In some introductory texts the null hypothesis is presented only
as a null relationship: 8 = 0 (no effect), whereas Fisher intended the null hypothesis
simply as something to be “nullified.” The synthesized test partially uses the
Neyman-Pearson decision process except that failing to reject the null hypothesis is
treated as a quasi-decision: “modest” support for the null hypothesis assertion.
There is also confusion in the synthesized test about p-values and long-run proba-
bilities. Since the p-value, or range of p-values indicated by stars, is not set a priori,
it is not the long-run probability of making a Type I error but is typically treated as
such. The synthesized test thus straddles the Fisher interpretation of p-values from
the data and the Neyman-Pearson notion of error probabilities from the test.®

5 Some people are surprised, but Neyman and Pearson actually do use the word “accept,” see 1933b.

¢ It is very interesting to note that with the synthesized modern hypothesis test there is no claim of
authorship. The acrimony, both intellectual and personal, between Fisher and Neyman & Pearson
is legendary and continued until Fisher’s death. So it is curious that no one was willing to claim
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Many problems with the current paradigm result from the mixture of these
two essentially incompatible approaches (Gigerenzer et al. 1989, Gigerenzer 1993,
Gigerenzer and Murray 1987, MacDonald 1997). While both approaches seek to
establish that some observed relationship is attributable to effects distinct from
sampling error, there are important differences as noted above. Neither Fisher nor
Neyman and Pearson would have been satisfied with the synthesis.Fisher objected to
preselection of the significance level as well as the mandatory two-outcome deci-
sion process. Neyman and Pearson disagreed with interpreting p-values (or worse
yet, ranges of p-values indicated by “stars”) as the probability of Type I errors since
they do not constitute a long-range probability of rejection. Neyman and Pearson
also considered the interpretation of data-derived p-values to be subjective and
futile (Neyman and Pearson 1933b: footnote 1).

CRITICISMS OF THE NULL HYPOTHESIS SIGNIFICANCE TEST

In this section I summarize some of the most important criticisms levied
against null hypothesis significance testing. While this set of criticisms is not
intended to be exhaustive, it includes most of those directly relevant to the current
practice of hypothesis testing in political science. Some of these problems are
simply common misinterpretations, while others are specific flaws in the logic of
the synthesis.

Probabilistic Modus Tollens

The basis of the null hypothesis significance test rests on the logical argument
of modus tollens (denying the consequent). The basic strategy is to make an
assumption, observe some real-world event, and then check the consistency of the
assumption given this observation. The syllogism works like this:

If A then B If Hy, is true then the data will follow an expected pattern
Not B observed The data do not follow the expected pattern
Therefore not A Therefore Hy is false.

The problem with the application of this logic to hypothesis testing is that the cer-
tainty statements above are replaced with probabilistic statements, causing the logic
of modus tollens to fail. To see this, reword the logic above in the following way:

If A then B is highly likely If Hy) is true then the data are highly likely to follow
an expected pattern

Not B observed The data do not follow the expected pattern

Therefore A is highly unlikely | Therefore Hy is highly unlikely.

responsibility for a potentially bridging approach and it appeared in the textbooks anonymously
(Gigerenzer 1987: 21). The timidity of these authors led them to try and accommodate both per-
spectives by denying that there were substantive differences.
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Initially, this logic seems plausible. However, it is a fallacy to assert that obtaining
data that is atypical under a given assumption implies that the assumption is likely
false: almost a contradiction of the null hypothesis does not imply that the null
hypothesis is almost false (Falk and Greenbaum 1955). For example (Cohen 1994;
Pollard and Richardson 1987):

If A then B is highly likely If a person is an American then it is highly unlikely
she is a member of Congress

Not B observed The person is a member of Congress

Therefore A is highly unlikely | Therefore it is highly unlikely she is an American.

From this simple little example and the resulting absurdity it is easy to see that if
the P(Congress|American) is low (the p-value), it does not imply that P(American|
Congress) is also low.

The Inverse Probability Problem

A common interpretive problem with null hypothesis significance testing is a
misunderstanding of the order of the conditional probability. This problem was first
discussed in political science by King (1989: 16-18) and this discussion extends his
remarks by describing it more technically. Many people have a belief, which stems
directly from Fishers perspective, that the smaller the p-value, the greater the proba-
bility that the null hypothesis is false (Carver 1978, Cohen 1994, Meehl 1990). This
incorrect interpretation is that the null hypothesis significance test produces P(H,|D):
the probability of H;, being true given the observed data D. But the null hypothesis
significance test first posits Hy as true then asks what is the probability of observing
these or more extreme data. This is clearly P(DIH,). In fact, a more desirable test
would be one that produces P(H,D) because then we could simply search for the
hypothesis with the greatest probability of being true given some observed data.
Bayes law clarifies the difference between these two unequal probabilities:

P (H°)) P(DIHy).

P(H()'D) =

The two quantities, P(D|H,) and P(Hy|D), are equal only if P(H,) = P(D), and
there is absolutely no theoretical justification supporting such an equality.

The fact that we gain little direct insight about P(Hy|D) from the null hypoth-
esis significance test alone is illustrated with a simple example. Hypothetically
assume that 2 percent (P(M) = 0.02) of the population of the United States are
members of some right wing militia group (a fact some members attempt to hide,
and will therefore not typically admit to an interviewer). A survey is 95 percent
accurate on positive classification (P(CIM) = 0.95), and 97 percent accurate on neg-
ative classification (P(C¢|M¢) = 0.97), where C indicates positive classification and
M indicates militia membership). What is the probability that, given the survey
analysis indicates that the person is a member of a right wing militia, the person
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really is a member? First we derive the unconditional probability of classifying a
respondent as a militia member:

P(C) = P(CN M) + P(C N M)
= P(CIM)P(M) + [1 — P(Cc|M9)]P(M©)
=(0.95)(0.02) + (0.03)(0.98) = 0.05

Now we can use this unconditional to apply'Bayes law:

pviO) = 2™ by = 292 (0.95) = 0.38,
P 0.05

O

The highlighted difference is that the probability of correctly classifying an
individual as a militia member given the person is a militia member is 0.95, yet the
probability that an individual is a militia member given the person is positively
classified is 0.38. Mistakenly inversing the conditional probability from the null
hypothesis significance test from P(D|H,) to P(Hy|D) can produce similarly dra-
matic differences.

Maximum likelihood estimation (Fisher 1925b") finesses the inverse probabil-
ity problem by substituting the unbounded notion of likelihood for the bounded
definition of probability by treating the ratio:

P(6)

D)= 2
f(D) PO)

as an unknown function of the data independent of P(D|0, Hy), and exploiting:
L(6ID, Hy) « P(DI, Hy). The likelihood function, L(8|D, Hy), is similar to the
desired but unavailable inverse probability, P(8|D, Hy), in that it facilitates testing
alternate values of 6, to find a most probable value: 8. The likelihood function dif-
fers from the inverse probability in that it is necessarily a relative function since f(D)
is unknown.

If we are interested in obtaining the maximum likelihood estimate of the
unconstrained parameter vector 8, given a parametric family of models, we need
only maximize the function L(6|D, H,) with regard to the 6 values. The result is the
0 that is most likely to have generated the data given H, expressed through a spe-
cific parametric form.? This process thus produces the most likely value of 8 rela-
tive to other possible values in the sample space of .

7 Although Fisher undoubtedly developed the modern use of maximum likelihood estimation, its
origins are generally credited to Gauss. See Stigler (1986: 141) or Brenner-Golomb (1993: 299) for
interesting discussions.

¢ Note that this form of the null hypothesis is much more lenient than other forms discussed. The
null hypothesis in the context of maximum likelihood estimation refers to the restricted model in
the denominator of the likelihood ratio test.

655



Political Research Quarterly

Bayesian analysis addresses the inverse probability problem by making distri-
butional assumptions about the unconditional distribution of the parameter vector,
6, prior to observing the data, D. This provides a means of integrating out 8 to solve
for the previously unknown P(D, H):

P(D,Hy) = [ P(DI6, Hy) P(8, Hy)do
6O

With this construct, the conditional (posterior) distribution of 8 is:

P(8, Hy)
POID, Hy)) = ———
(8D, Hy) PO, Hy)

This is also expressed in a more intuitive manner like the maximum likelihood
formulation that essentially states that the posterior distribution is proportional
only to the likelihood times the prior distribution: P(8|D, Hy) o P(D|6, Hy) P(6, Hy).
The primary advantage of the Bayesian approach (the maximum likelihood esti-
mate is equal to the Bayesian posterior mode with the appropriate uniform prior,
and they are asymptotically equal given any proper prior®), is that in a fairly
tractable way we get a posterior distribution for 6, where the information in the data
progressively subsumes a prior assumption as the sample size increases. A Bayesian
posterior does not lead to an arbitrary decision about rejection. Instead the poste-
rior distribution of 8 explicitly supplies probabilities of interest such as P(8; > 0).

P(DI, Hy).

Model Selection

Typically when a political science model with a null hypothesis significance
test is reported it is presented as if only two models were ever considered or ever
deserved to be considered: the null hypothesis and the provided research hypoth-
esis. The quality of a research finding is then solely judged on the ability to reject
the complementary null hypothesis with a sufficiently low p-value. However,
during the development of the reported model many differing alternate mixes of
independent variables are tested. This is an “illusion of theory confirmation”
(Greenwald 1975, Lindsay 1995) because the null hypothesis significance test is
presented as evidence of the exclusivity of explanation of this single research
hypothesis. Summary statistics are reported from the nt equation as if the other
n — 1 never existed and this last model is produced from a fully controlled experi-
ment (Leamer 1978: 4). The null hypothesis significance test thus provides an infi-

° Despite this fact, there remains a division between Frequentists and Bayesians particularly in small
sample problems where the asymptotic equivalence is not applicable. A common Frequentist crit-
icism of the Bayesian approach is that subjective priors have great impact on the posterior distri-
bution for problems with small sample sizes. There is a developing literature on Robust Bayes
analysis that seeks to mitigate this problem by developing estimators that are relatively insensitive
to a wide range of prior distributions (Berger 1984).
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nitely strong bias in favor of a single research hypothesis against a huge amount of
other reasonable hypotheses: all other distributional alternatives are assumed to
have probability zero (Rozeboom 1960, Lehmann 1986: 68, Popper 1968: 113).

Two entirely reasonable and statistically significant, competing models can
lead to substantively different conclusions using the exact same data (Raftery
1995). In many cases the decision criteria that led to the final model are based at
least in part on intermediate significance levels and that the significance levels
reported in the final published work have very different interpretations than the
significance levels in intermediate models (Leamer 1978, Miller 1990, Raftery
1995). For example suppose that the p-value for some coefficient, X;, in the final
model is 0.01. However, in at least one model rejected by the researcher the sig-
nificance of X; was 0.4 in the presence of another variable, X,, omitted from the
final model. Since X, has an effect on X, but is not itself included in the reported
test of significance, the p-value for X has a substantively different interpretation in
the two contexts.

Significance Through Sample Size

There are two misinterpretations about the role of sample size in null hypoth-
esis significance testing. First is the belief that statistical significance in a large
sample study implies real world importance. Many have observed that a null
hypothesis significance test based on a large sample size almost always results in
statistical significance (Leamer 1978, Macdonald 1997, Oakes 1986, Raftery
1995).* This is a concern in political science research since we do not want to infer
that some subfields have greater legitimacy just because the corresponding data sets
tend to produce smaller p-values: “a prejudice against the null” (Greenwald 1975:
1). Contrast survey research in American politics where studies routinely use data
sets with thousands of cases such as the American National Election Study and the
General Social Survey with comparative politics where small sample sizes are often
the only resource available (Fearon 1991: 194, Lijphart 1971: 685). Researchers
studying small sample events such as revolutions or major wars face substantial
prejudice against their empirical findings when alpha levels appropriate to large
sample survey research are applied.

The correct interpretation is that as the sample size increases we are able to dis-
tinguish smaller population-effect sizes progressively. Effect size is the extent to
which some measured phenomenon exists in the population. Finding population-

1 1t should also be noted that this statement says nothing at all about data quality. Large sample sizes
based on convenience samples, those produced from non-random or arbitrary selection criteria,
and those selected on the dependent variable provide particularly dubious results. Simply increas-
ing sample size by these means to achieve statistical significance is an ill-advised strategy and
almost certain to lead to incorrect results.

Western and Jackman (1994: 413) describe this problem rather nicely: “. . . frequentist inference
answers a question that comparative researchers are not typically asking.”
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effect sizes is actually the central purpose of political science research since any dif-
ference can be found to be statistically significant given enough data. Political sci-
entists are more interested in the relative magnitude of effects (incumbency advan-
tage, tendency for war, probability of voting, cultural influences, etc.), and making
only binary decisions about the existence of an effect is not particularly informa-
tive. However, the null hypothesis significance test deflects us into an obsession
with the strength of this binary decision measured through p-values.

The second misinterpretation is that for a given p-value in a study which
rejects the null hypothesis, larger sample sizes imply more reliable results. This is
false: two studies that reject the null with the same p-value are equally likely to
make a Type I error even if they have dramatically different sample sizes. This mis-
take results from a poor understanding of Type II errors. Unlike the case above, two
studies which fail to reject the null hypothesis and are identical in every way except
sample size are different qualitatively. The test with the larger sample size is less
likely to make a Type II error since the sample size is always in the denominator of
the equation for statistical significance. To show why this is true Figure 2 displays
two tests for: Hy: p = 0 versus Hy: p > 0, with sample sizes of 9 and 12 respectively
and the true distribution normal (3, 3). The shaded region is the area under the
true sampling distribution of X to the left of the area determined by setting & = 0.05
under a false assumption that Hy, is true. Thus the shaded region is the probability
we would fail to reject the false H, (i.e. B = P(Type II error)). It is clear from Figure
2 that the probability of a Type II error is much lower for the test with a larger
sample size, even though the probability of a Type I error is identical. This distinction
is not well known. The area under the true sampling distribution of X in either
panel of Figure 2 not shaded is equal to 1 —  — P(Type I error), which is the power
of the test. It follows from above that the second test with larger sample size has
greater power.

The Arbitrariness of Alpha

Fisher constructed the first significance tables and was therefore influential
with regard to establishing rejection thresholds.”? Since computers were rare and
expensive during the adolescence of the null hypothesis significance test, the arbi-

12 The firmly established significance thresholds of 0.01 and 0.05 come directly from the importance
and influence of Fishers work. The tenth edition of Statistical Methods for Research Workers (1946)
includes a comprehensive listing of Fisher’s published and unpublished work from 1912 to 1945.
Of the 143 papers and books there are 74 works in biology and agronomy, 61 on statistical theory,
4 on climatology, 2 on playing cards, 1 on harmonics, and a presidential address. It is clear from
the distribution of Fishers interests that biological and agricultural experiments were the dominant
applications of his ideas. Even if we assume that 0.01 and 0.05 are the ideal thresholds for high
and moderate significance for experiments in biometry and biometrics (a very suspect assump-
tion), there is absolutely no theoretical justification for wholesale importation into completely
unrelated fields such as political science.
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trary significance levels in published tables were very convenient to researchers.
These tables cannot give every possible value in the range of a test statistic, so par-
ticular discrete values had to be provided by convention. Therefore, a contributing
factor in the enshrinement of 0.05, 0.01, and 0.001 is the ease with which tables
for common distributions can be presented. However, this logic no longer applies
as computers are pervasive in research and teaching environments.

On what basis do we decide that p = 0.051 is unacceptable but p = 0.049 is
cause for rejoicing? Such a distinction relies on the assumption that there is virtu-
ally no measurement error, an assumption very few social scientists are willing to
defend. There is no published work in political science that provides a theoretical
basis for these thresholds. It is convenient to say “one time out of twenty” or “one
time out of a hundred,” but it is no less convenient to say “one time out of fifty” or
“one time out of twenty-five” (i.e., p = 0.02 and p = 0.04). Fishers justification rests
on no scientific principle other than the belief that these levels represented some
standard convention in human thought: “It is usual and convenient for experi-
menters to take 5 percent as a standard level of significance. . .” (1934: 15). Rosnow
and Rosenthal (1989) note the arbitrariness with great flair: . . . surely God loves
.06 nearly as much as .05.”
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Replication Fallacy

One of the most heinous misinterpretations of null hypothesis significance
testing is the belief that one minus the p-value is the probability of replication (pro-
ducing significant results in repeated iterations of the same study). This is equiva-
lent to the two misconceptions: P(Hy) = a and P(H;) = 1 — o.. The term “replica-
tion fallacy” was coined by Falk and Greenbaum (1995) from their observation that
many researchers believe that a low p-value such as p = 0.05 implies that 95 out of
100 replications will be statistically significant. The error is obvious when one
recalls that p = P(D|H,) and is thus a function of a single data set producing a single
test statistic. What really interests us in terms of replication is the distribution of this
test statistic in repeated trials.

The probability of replication given a false null is actually the power of the test
(Cohen 1992, 1977, Schmidt 1996; Sedlmeier and Gigerenzer 1989). This can be
seen by revisiting Figure 2. The distribution on the right-hand side of the diagram
(in either panel) is the true distribution of the test statistic over multiple replica-
tions. Recall that the shaded region is the probability that we would fail to reject
the false distribution under the null hypothesis centered at zero. This region is the
area under the true distribution but determined by the line that begins the alpha
region under the false null hypothesis distribution. Values of the test statistic that
fall along the x-axis to the right of the shaded region are those with which we
would correctly reject the false null hypothesis. Therefore the unshaded region
under the correct distribution is the probability of replicating statistically significant
results, 1 — B (i.e., the power), given of course a false null hypothesis.

Asymmetry and Accepting the Null Hypothesis

We teach graduate students to be very careful when describing the occurrence
of not rejecting the null hypothesis. This is because failing to reject the null
hypothesis does not rule out an infinite number of other competing research
hypotheses. Null hypothesis significance testing is asymmetric: if the test statistic is
sufficiently atypical given the null hypothesis then the null hypothesis is rejected,
but if the test statistic is insufficiently atypical given the null hypothesis then the
null hypothesis is not accepted. This is a double standard: H is held innocent until
proven guilty and H, is held guilty until proven innocent (Rozeboom 1960).

Despite the fact that it is very dangerous implicitly or expressly to accept the
conclusion from a non-rejected null hypothesis, instances are common. Eight of
the twenty articles in the American Political Science Review, Volume 91 (1997), that
used a null hypothesis significance test drew substantive conclusions from a fail to
reject decision (40 percent). The American Journal of Political Science, Volume 41
(1997), contains 54 manuscripts, that either explicitly stated a hypothesis test, pro-
vided p-values, or furnished “stars,” and 25 of these drew substantive conclusions
from a failure to reject the null (46 percent). The same analysis for Political Research
Quarterly, Volume 50 (1997), reveals 14 of 37 possible that made this error (38
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percent). The Journal of Politics, Volume 59 (1997), has 18 out of 37 possible that
made the error (51 percent).

There are two problems that develop as a result of asymmetry. The first is a
misinterpretation of the asymmetry to assert that finding a non-statistically signifi-
cant difference or effect is evidence that it is equal to zero or nearly zero. Regard-
ing the impact of this acceptance error Schmidt (1996: 126) asserts that this: “belief
held by many researchers is the most devastating of all to the research enterprise.”
This acceptance of the null hypothesis is damaging because it inhibits the explo-
ration of competing research hypotheses. The second problem pertains to the cor-
rect interpretation of failing to reject the null hypotheses. Failing to reject the null
hypothesis essentially provides almost no information about the state of the world.
It simply means that given the evidence at hand one cannot make an assertion
about some relationship: all you can conclude is that you cant conclude that the
null was false (Cohen 1962).

Cross-Validation Studies

Replication of published work is an increasingly important part of scholarship
in political science (King 1995, Meier 1997). Unless the replication study confirms
the original findings (the type of replications that are unlikely to be published), the
quality of a replication analysis can never be judged without understanding the
power and effect size of the replication test.

Suppose we are interested in replicating a study in which the original author
finds that a test statistic is sufficiently far from zero, given the observed variance, to
conclude that this is evidence to infer the existence of some political effect. Sup-
pose further that the effect size is really one: the true distribution of this test statis-
tic is normal (1, 1), and therefore the author has reached the correct conclusion.
We don't necessarily know that the author is correct or we would not bother doing
the replication study. Our null hypothesis in the replication study is that the test
statistic is normally distributed around zero so there is no corresponding political
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effect in the population. These assumptions provide substantial simplification, but
no real loss of generality.

Figure 3 shows the rejection region (shaded) for the test statistic determined
by the p = 0 null hypothesis and a = 0.05, but the vertical line is extended up to
the true distribution with p = 1. This indicates that the power of this test is only
0.26. So 74 percent of the replication studies that attempt to show that the effect is
zero, using a = 0.05, will make the incorrect decision and assert that there is no
evidence to show a statistically significant effect.

RECOMMENDATIONS

This section presents several alternatives to the null hypothesis significance
test used by researchers in many scientific literatures. These techniques provide the
means to report evidence of empirically observable effects without the associated
problems described previously. Other effective interpretive and explanatory proce-
dures not described here include: predicted values, expected values, first differ-
ences (King et al. 1998), graphical summaries (Cleveland 1993; Gill and Thurber
1999; Jacoby 1997), and simulation evidence (Gelman et al. 1995; Ripley 1987,
Tanner 1996).

In general, misunderstanding the inverse probability problem is the primary
cause for believing that a smaller p-value is greater evidence that the null hypoth-
esis is false and subsequently adopting the flawed logic of the null hypothesis sig-
nificance test. So the primary challenge is to interpret the implications of the
observable P(D|H,) on the unobservable P(Hy|D).

Confidence Intervals

Confidence intervals are an alternative to null hypothesis significance testing
that provide the same information and more, without requiring a decision (Casella
and Berger 1990: 406; Lehmann 1986: 89). Confidence sets (not necessarily con-
tiguous), confidence intervals, and credible sets (Bayesian set estimates) are simply
estimates of some parameter  in which the uncertainty is expressed as a range of
alternate values and a probability of coverage.”® In one sense confidence intervals
and null hypothesis significance tests present the same information: a linear regres-
sion coefficient with a 1 — a confidence interval bounded away from zero is func-
tionally identical to a null hypothesis significance test rejecting at p s o the hypoth-
esis that the coefficient equals zero.

13 Bayesian credible sets measure the probability that the parameter is in the interval rather than the
probability that the interval covers the true parameter. Thus credible sets are superior in terms of
their intuitive appeal. Conversely, with confidence sets the set itself is the random quantity and
the unknown parameter is fixed. So we cannot state that with any produced confidence set there
is a known probability that the unknown parameter is contained, we have to say that we are
(1 — o) percent confident that this set covers the true parameter value.
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Confidence intervals have a great virtue: as the sample size increases the size
of the interval decreases, correctly expressing our increased certainty about the
parameter of interest. This is analogous to the correct interpretation of increasing
power in a null hypothesis significance test as sample size increases. Most misun-
derstandings about sample size as a quality measure in null hypothesis significance
testing stem from a poor understanding of Type 11 errors. Since there is no Type 11
error in confidence intervals, there is less potential for such confusion.

Unfortunately the confidence level of the interval is subject to the same arbi-
trary interpretations as o levels. Therefore confidence intervals require the same
cautions with regard to sample size interpretations and unsupported conventions
about o levels.

An even more basic and condensed form reporting of the confidence set is a
table of parameter estimates with their associated standard errors omitting p-values
and confidence intervals. This format provides readers with an immediate indica-
tion of location and uncertainty free from a format that leads to the problems
reviewed previously. However, simply reporting parameter estimates and standard
errors is a relatively unstructured presentation of results. One possible strategy is
to divide each coefficient into one of three groups based on location and uncer-
tainty in order to convey reliability with regard to distributional assumptions:

1. Highly reliable estimates with an interpretation that would likely over-
whelm a wide range of reasonable distributional assumptions.

II.  Highly suspect estimates which are either very unreliable based on the
magnitude of their standard error, or with an interpretation that is likely
to change with different distributional assumptions.

1II. Estimates that fit neither of the previous two descriptions and for which
we remain in doubt.

This typology places a loose structure on the results, but does not require the para-
metric assumptions and flawed decisions that create many of the problems described
previously. The grouping is loosely derived from Neyman and Pearson’s notion that
the region of acceptance can be divided into subregions (1933b: Section I).

Example: Confidence Intervals and Leamer Bounds in a
Discrete-Time Survival Analysis of Unionization

Since reported coefficients are sensitive to model specification, it is desirable
to have some reporting mechanism for conveying the range that coefficients take in
the unreported developmental models. Leamer (1983) proposes reporting extreme
bounds for coefficient values during the specification search. A recent use of this
approach is found in Western (1995). He argues that a decline in unionization
during the 1980s is due to factors such as negative international economic condi-
tions, passivity, fewer resources for the unions, and a diminished position in indi-
vidual economies. To provide evidence Western develops a simple hazard-rate
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SURVIVAL ANALYSIS, PREDICTING YEAR UNION DECLINE:
18 OECD COUNTRIES, 1973-1989

Quasi-Likelihood

99% Estimated

Explanatory Std. Confidence Leamer Power
Variable Coef. Error Interval Bounds (o =0.01)
Highly Reliable Estimates

Constant -2.42 0.78 [4.43:-041]  (-5.24:-0.98) 0.70

Year 1.41 0.22 [ 0.84: 1.98] (0.24: 14D 0.90

Economic Openness 0.12 0.04 [ 0.02: 0.22] ( 0.04: 0.12) 0.70

Unemployment 1.18 0.39 [ 0.34: 2.03] (0.89: 1.18) 0.85

Union Density (lagged) -0.23 0.04 [-0.33:-0.13]  (-0.23:-0.11) 0.99

Decentralization 2.77 0.64 [ 1.11: 4.43] (0.33: 2.77) 0.97

Left Government —4.41 0.86 [-6.64:-2.18] (-4.41:-1.71) 0.99
Highly Suspect Estimates

Strike Activity (X 10%) 0.11 2.75 [-6.97: 7.19] (-1.50: 2.15) 0.01

Indeterminant Estimates
(none)

regression model of union decline using unionization data from 18 Organization
for Economic Cooperation and Development (OECD) countries (1973 to 1989). A
subset of Western’ results are presented in Table 1 where the typologies suggested
above are implemented. Table 1 also includes empirically estimated power using
a = 0.01, and the assumption that null hypothesis implies a similarly shaped mar-
ginal likelihood except centered at zero. Figure 2 displayed the calculation of
power when there was perfect knowledge about the distribution of the test statis-
tic under the null hypothesis and the research hypothesis. If the researcher is rea-
sonably confident that the dispersion of the test statistic would not take on a sub-
stantially different form than that seen in the observed data, then this power
estimate can be useful (Cohen 1977).

Although the coefficient for Left Government looks highly reliable, it is worth
noting that it varied considerably during the model specification process. This
should not be construed as making this variable less trustworthy in the final speci-
fication. Instead it should reasonably be considered a topic for further investigation.
Conversely, the bounds for Economic Openness are very small providing confidence
for the reliability of this coefficient across model specification. Also note that the
only highly suspect coefficient estimate, Strike Activity, had Leamer extreme bounds
which straddle zero, thus lending additional support for the classification.

Bayesian Analysis

Bayesianism is clearly in the midst of a renaissance period. Fueled by dramatic
improvements in computing techniques, the field is flourishing as many previously
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intractable problems are now realistically solvable. As a result, Bayesian applications
have found their way into most social science fields.

In Bayesian analysis, inferences about unknown model parameters are not
expressed as point estimates with the standard accompanying measure of variance.
Instead statistical information about the unknown parameters is summarized in
probability statements such as quantiles of the posterior distribution, the probabil-
ity of occupying some region of the sample space, the posterior predictive distribu-
tion, and Bayesian forms of confidence intervals: the credible set and the highest
posterior density region. Thus the dominant way of thinking is to consider that the
parameter has some underlying distribution which should be described.

In the Bayesian setup the unnormalized posterior distribution for the unknown
coefficients is calculated by: P(8|D, Hy) « P(D|0, H,) P(8|H,). This means that the
desired probability statement is a product of the likelihood function and some prior
belief about the distribution of 8|H,. The proportionality is used instead of equality
because the P(D, H,) term in Bayes law does not depend on 6 and can therefore be
dropped.

While the Bayesian assignment of a prior distribution for the unknown param-
eters strikes many as subjective, there are often strong arguments for particular
forms of the prior: little or vague knowledge often justifies a diffuse or even uniform
prior, certain probability models logically lead to particular forms of the prior, and
the prior allows researchers to include additional information collected a priori
(Gelman et al. 1995; Box and Tiao 1973; Press 1989; Berger 1985; Jeffreys 1961).
A common defense of the “subjective priors” criticism is the observation that corre-
sponding frequentist models are equally subjective: the choice of admissible
hypotheses, the selected significance level, determination of an adequate sample
size, and the adequacy of the test statistic (Howson and Urbach 1993).

Explicit hypothesis testing can also be performed in the Bayesian construct.
Suppose O4 and Ojp represent two competing hypotheses about the state of some
unknown parameter, 8, which together form a partition of the sample space: © = 6,
U Oj. To begin, prior probabilities are assigned to each of the two outcomes: m, =
p® € ©,) and 7z = p(8 € Op). This allows us to calculate the competing posterior
distributions from the two priors and the likelihood function: p, = p(8 € ©,4ID, Hy)
and pg = p(8 € OgID, Hy). It is common to define the prior odds, /g, and the
posterior odds, pa/pg, as evidence for H, versus Hg. A much more useful quantity,
however, is (1 4/1)/(p4/pg) Which is called the Bayes Factor. The Bayes Factor is usu-
ally interpreted as odds favoring H, versus Hg given the observed data. For this
reason it leads naturally to the Bayesian analog of hypothesis testing.

Example: The 1982 Election Victory of the Spanish Socidlist Party

Bernardo (1984) develops a precinct level Bayesian hierarchical model of vote
choice for the Spanish election of 1982 in which the Socialist party obtained con-

trol of the government for the first time since the Civil War. The author defines n;
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HPD REGIONS: PREDICTED PERCENTAGES OF 1982 VOTES BY PARTY

Party

Valencia Province Socialist ~ Conservative Center Center-Left  Communist
4 Weeks Before Election  [39.0:48.9] [12.6:19.4] [7.9:13.2] [4.0: 7.8] [5.1:9.2]
1 Week Before Election [47.3:54.2] [13.3:24.9] [5.0:11.8] [7.0:11.9] [4.0:6.7]
First 100 Votes from

20 Polls [49.0:57.7]  [23.5:31.2] [2.3: 4.6] [1.1: 2.9] [4.0:6.2]
Total Vote from 20 Polls  [50.1:56.8]  [26.6:32.6] [3.3: 4.6] [1.8: 2.7] [3.7:5.6]
Actual Province Results 53.5 29.4 4.4 23 53

as the number of voters in the i precinct voting for the jt party. The data from the
m precincts surveyed ({ny j, n, j, . . ., ny, }, j = 1 to 5 major political parties) are
assumed to be from an underlying multinomial distribution with unknown param-
eters 8; representing the probability of a vote for the j party in the i precinct with
the constraints that these values are non-negative and sum to one. Bernardo spec-
ifies a uniform prior distribution on the 6; values and this leads naturally to a
Dirichlet form (a multivariate generalization of the beta) of the posterior.

A substantively interesting aspect of the methodology is the scheduling of data
collection and analysis. Data are collected in the province of Valencia at four points
in time: by a survey four weeks before the election (n = 1000), by a survey one
week before the election (n = 1000), by using the first 100 valid votes from 20 rep-
resentative polling stations, and by using all valid votes from these same polling sta-
tions after the polls are closed. Data collection was performed with the full coop-
eration of the Spanish government and the results were immediately provided to
the national media.

Bernardo presents the Bayesian estimates of predicted vote proportion by party
as 0.90 highest posterior density regions. Highest posterior density (HPD) regions
are essentially confidence intervals which cover the 100 (1 — &) percent of the pos-
terior distribution with the highest probability regardless of whether or not the area
is contiguous (although they are in this example). These results are summarized in
Table 2.

One interesting result from this analysis is that the 0.90 HPD regions shrink
as the election nears and better polling data are received. This reflects the growing
certainty about the estimates as data quality improves. In addition, the estimates
from actual polling data are remarkably accurate for the two parties receiving the
largest vote share. Note that the uniform prior does not constrain the final, highly
non-uniform, posterior distribution.

The simple example provided here demonstrates that Bayesian data analysis is
essentially free from the previously described problems with the null hypothesis
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significance test. Inferences are communicated to the reader without decisions, p-
values, and confused conditional probability statements. The Bayesian approach
also interprets sample size increases in a more desirable manner: larger sample sizes
reduce the importance of prior information rather than guarantee a low but mean-
ingless p-value.

Meta-Analysis

Meta-analysis offers the attractive proposition that the accumulation of knowl-
edge on some research question can be compared and combined in a single proce-
dure. These techniques look at how much of the variance in a set of studies is
attributable to individual uncertainties such as sample variability and measurement
error, and how much variability is truly the result of some real effect. The literature
on this tool is notably young, starting with Cooper (1984); Glass (1976); Glass,
McGaw, and Smith (1981); Hunter and Schmidt (1990); Schmidt and Hunter
(1977); and Wolf (1986).

As with any other statistical procedure, meta-analysis has assumptions, and is
therefore inappropriate under certain circumstances (Chow 1996: chap. 5). Meta-
analysis assumes that the compared studies are all independent of each other and
that variables are measured approximately the same way. No two studies will be
identical, but the goal of meta-analysis is to calculate some commonality of effects
from different studies. This is a strength because effect sizes that are large across a
wide range of research designs have substantial supporting evidence. This is also a
weakness because not finding a large meta-effect size can be caused by hetero-
geneity across individual models.

Meta-analysis can be performed for virtually any reported test statistic, but
effect size has been a particularly popular choice because of its intuitive interpreta-
tion and relationship to the power of the individual studies.* The basic procedure
develops an aggregated effect size and variance from separate studies accounting for
sampling error and measurement error in the original estimates. In the simplest
case, meta-analysis seeks to distinguish sampling error variance and the observed
effect size variance to estimate the variance of the population effect size.

Example: Meta-Analysis of Federal Healthcare Reform Surveys

Consider an example in which five different surveys are conducted by five dif-
ferent polling organizations to gauge support for a federal program to guarantee
affordable healthcare for all U.S. citizens. In each case respondents are asked
whether they support this level of federal involvement in the healthcare industry.

' The test for effect sizes and correlation coefficients is the same since switching from one to the
other is trivial:

4 andd-—2

Vs \/l—r’.

r=
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SAMPLE EFFECT SIZES FOR FIVE STUDIES

Study Sample Size: n; Observed Effect Size: dg;
1 450 0.03*
2 500 0.09*
3 370 0.01
4 400 0.24
5 630 0.26*

N =2350, *p <0.05

From an OLS regression model that includes a coefficient for this question, differ-
ent effect sizes are determined, with varying levels of significance using the null
hypothesis significance test.

Suppose for the sake of simplicity we ignore adjustments for measurement
error and other heterogeneities. The goal is to obtain a meta-effect size, d, and its
corresponding variance which has two components: the average weighted
observed variance from the studies, VAR(d,), and the sampling error variance,
VAR(s). From Table 3 the mean sample size is 1 = 470 for the k = 5 studies. Thus
the average weighted observed effect size and its variance are:

1

M=

a,-

. nd,; =0.137

N
1k ;
VARW@) = - 3 (n(d =) = 00111

The sampling error variance, VAR(s), is a difficult quantity to compute directly. For-
tunately it can be approximated (Hunter and Schmidt 1990):

vARGs) =( "—'11_—;—) (%-(u% ) - 0.0086

The estimated variance of the population effect size is the observed effect size vari-
ance minus the sampling error variance: VAR(d) = VAR(d,) — VAR(s) = 0.0025, and
the standard error of the population effect is then SE(d) = 0.05. This allows the
construction of common confidence intervals for the effect size:

Clogs, 2.a1° 0-137 % 1.96(0.05) = [0.0391 : 0.2349]
Clogo, 2ar 0-137 £ 2.575(0.05) = [0.0084 : 0.2657].

Note that each interval is bounded away from zero even though two of the five
studies concluded that there exists no evidence to support a non-zero effect size (i.e.
non-significance). This example shows how meta-analysis utilizes information from
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a set of studies, but is not required to agree with the conclusions of any particular
study. While many obvious simplifications were assumed in this example, the basic
philosophy of meta-analysis in actual practice follows this logic. Hunter and Schrmidt
(1990) carefully review complications that can occur in practice such as heterogene-
ity of measurement error, sampling error, ranges on the variables, imperfect scale and
variable construction, data problems across studies, and bias in correlations.

CONCLUSION

The basic problem with the null hypothesis significance test in political science
is that it often does not tell political scientists what they think it is telling them. Most
of the problems discussed here are interpretive in that they highlight misconceptions
about the results of the procedure. From the current presentation of null hypothe-
sis significance testing in published work it is very easy to confuse statistical signif-
icance with theoretical or substantive importance. It is also possible to have data
which tells us something about an important political question, but which does not
pass an arbitrary significance level threshold. In this circumstance, one would still
want to know that there is empirical evidence of some phenomenon of interest.
There is nothing mathematically wrong with p-values in these circumstances: they
are simply not sufficient statistics for actual theoretical importance.

The interpretive problems described are not well known in political science.
However, most of these have been discussed individually in statistics for some time.
For instance as far back as 1959, Sterling (p. 30) considered the “publication bias”
introduced by a fixation with p-values in the social sciences:

There is some evidence that in fields where statistical tests of significance are
commonly used, research which yields nonsignificant results is not published.
Such research being unknown to other investigators may be repeated inde-
pendently until eventually by chance a significant result occurs—an “error of
the first kind”—and is published. Significant results published in these fields
are seldom verified by independent replication. The possibility thus arises that
the literature of such a field consists in substantial part of false conclusions
resulting from errors of the first kind in statistical tests of significance.

Political science is highly empirical in its orientation, and therefore the device
which declares particular results as substantial, or interesting, or worth publishing
is a critical topic for discussion. Hopefully the null hypothesis significance test has
not damaged accumulation of conclusions in the discipline to the degree in which
Sterling predicts.

It is important to know that there exist effective alternatives which require only
modest changes in empirical methodology: confidence intervals, Bayesian estima-
tion, and meta-analysis. Confidence intervals are readily supplied by even the sim-
plest of statistical computing packages, and require little effort to interpret.
Bayesian estimation eliminates many of the pathologies described, albeit with a
greater setup cost. Meta-analysis is sometimes a complex process, but it offers the
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potential benefit of integrating and analyzing a wider scope of work on some polit-
ical question.

So why is the null hypothesis significance test pervasive in political science?
One reason is that it creates the illusion of objectivity by seemingly juxtaposing
alternatives in an equivalent manner. Through naming conventions and procedural
habits there is an implied fairness that does not really exist in making decisions
about strengh of evidence. Furthermore, researchers fear publication rejection
when there are an insufficient number of “stars” depicted in their tables. This prob-
lem is particularly damaging because it perpetuates the myth that more stars imply
greater non-conditional strength of evidence, which is clearly wrong. There is also
an impression among many political scientists that a testing process which is so
pervasive and so long-lived cannot be seriously flawed. Destroying the misconcep-
tion that the null hypothesis significance test is inherently sound because of its
widespread and enduring use is the primary mission of this essay. We need at least
to be aware that the undeniable longevity and popularity of the null hypothesis sig-
nificance test are not a result of methodological integrity.
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