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1 Introduction

Public Administration, in Dwight Waldo’s terms, has become a profession. With

that achievement, examining the methodological infrastructure of the profession

is merited. Every profession rests on an infrastructure of research and research

methods on which the profession’s practitioners base their day-to-day

activities. This essay will argue that public administration has ignored its

technical side and that given the types of problems dealt with by both academics

and practitioners, a serious upgrading of methodological skills is needed. We

hope to provide a road map, useful to both methodologists and non-

methodologists, for developing those skills.

To date, public administration has relied heavily on related disciplines for its

methodological tools. The utility of such a strategy is open to question on

several grounds. First, the disciplines we borrow from are interested in

different types of questions, and the methods they adopt are driven by those

specific questions. Political science with a few exceptions has moved away from

the consideration of questions of organization and management. A recent survey

by Wise (1998) found that of the top 25 ranked Ph.D. programs in political

science, only four permitted a doctoral student to offer a major field in public

administration. Political scientists have focused their methods on questions of

voting behavior and have developed their skills accordingly. While such methods

have some utility to scholars of public administration, especially those who do

survey research, they do not grapple with important questions of measurement and

estimation unique to public administration. Economics offers even fewer

opportunities for the transfer of methods. The discipline has moved strongly

away from empirical analysis to a focus on theory. While applied econometricians

abound and find favor except in their own discipline, the econometric approach

is driven almost completely by economic problems. As a result, it relies heavily

on strong distributional assumptions and generally downplays issues of

measurement, robustness, and visual presentation.

Second, public administration lacks the financial resources to follow the

practice of medicine and co-opt other disciplines into developing its methods.

The large medical research infrastructure provided by the National Institutes of

Health provides ample incentives for scholars in numerous disciplines to apply

their interests to questions useful to the medical profession. Public

administration, in contrast, is a stepchild. Study after study has found that

public administration research attracts little funding from major foundations or
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agencies (Perry and Kramer 1986). A recent assessment by Brintnall (1998)

confirmed this in regard to the National Science Foundation. Even by Brintnall’s

liberal definition of "public administration," the allocation of funding to the

area was minuscule.

Third, the practical side of public administration adds additional demands on

methods that make borrowing from other disciplines less promising. If one is to

use quantitative methods to prescribe policy change, then one clearly needs

better methodological skills that those used by most other social sciences. If a

political scientist makes a major error in his or her study of the 1992

election, it matters little. Clinton still wins. If a public administration

scholar commits a major error in analyzing a education program, it can have

major implications simply because it could influence public policy. Much of

welfare policy seems to be driven by the idea of welfare migration (the movement

of individuals to collect higher benefits); an idea resulting from a single

flawed study (Peterson and Rom 1989, Berry, Fording, Hanson 1999).

Fourth, if the practice side of public administration cautions against the

adoption of the best practices of political science methods, it totally rejects

the approach of economics. Economic models work well by assuming away the real

world and constructing artificial markets to correct all policy ills. The

practitioner in contrast would rather have a model that failed dismally in

theory but proved relatively accurate in the real world.

The solution, we feel, is for public administration to invest heavily in

developing its own methods. Even if it relies heavily on other fields to develop

the specific quantitative techniques used, it needs to select those techniques

based on key public administration research questions rather than those

advocated by the discipline in question. There are six key methodological

developments that we feel are essential to public administration: independent

data sources, avoiding the null hypothesis significance test, increased use of

time series analysis, the adoption of Bayesian methods, the transition from

estimation techniques to optimization techniques (SWAT), and the use of the

general linear model (GLM). We conclude by discussing the incentives needed to

further these developments and note other potential areas where breakthroughs

are possible.

2 Independent Data Archives
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Public administration differs from other fields and professions in that it lacks

a set of core data sets that comprise the basic data infrastructure for the

field. Political scientists have the National Election Studies, the Correlates

of War, easily obtained congressional and state legislative data sets;

economists have the Citicorp data set with its national time series, data from

the Bureau of Labor Statistics; demographers and sociologists have the Panel

Study on Income Dynamics, the General Social Survey, and the High School and

Beyond data sets among others.

The absence of a collection of core data sets has both disadvantages and

advantages. First, teaching research in public administration is more difficult

simply because students do not have ready access to data sets concerned with

management and administrative questions. In the social sciences, first semester

graduate students can conduct actual research projects by just using data that

can easily be accessed through the archives at the University of Michigan or

similar places.

Second, students of public administration lack a common exposure to sets of data

that would provide a notion of what core research questions might be. The result

is less interaction among researchers and, thus, greater difficulty in

generating a cumulative body of research.

While the disadvantages of a lack of core data sets are limiting, if one gets

beyond the problem, it becomes an opportunity. Unlike other social scientists,

public administration scholars are not trapped by data sets and funneled into

studying only certain questions. How the National Election Studies have

structured what is considered political science is a classic case of path

dependence in this regard. The absence of core data sets means that public

administration scholars expect to gather their own data and, thus, are more

sensitive to issues of measurement reliability and validity. The absence has

also contributed to more eclectic use of data sets including government

documents, elite interviews, archival research, and the merger of multiple data

sources in addition to survey research.

Given our long experience in working with nonstandard data sets, creating an

infrastructure of core public administration data sets should not adversely

affect the current advantages. At the same time, an archive of core data sets

would have substantial payoffs in graduate education. Class time could be
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conserved for actual analysis; instructors would be familiar with the data sets

the students were using; texts could tie problem sets directly to these data

sets; replication exercises could be used.

The idea behind public administration core data sets and an accessible archive

is to supplement currently available data not to replace them. In particular,

many government data sets need supplemented because the data were gathered with

specific (perhaps non-research) purposes in mind. In some cases, data might

actually be biased or collected only when it serves the interests of the

agencies involved. Two examples serve as illustration. In 1982 the Reagan

administration eliminated the tracking system for family planning funding. Since

that time no official data are available on number of individuals served, the

types of services offered, the number of service locations and other crucial

policy information. In 1994 after the first four years of the Milwaukee

School Choice Experiment, Governor Tommy Thompson eliminated all requirements to

collect data on students involved in the experiment, thus ending any useful

policy information that could be gained from the program.

In other cases private data sources illustrate problems with public databases.

Individuals who work in the area of abortion policy have long recognized that

abortion incidence data published by the Centers for Disease Control and

Prevention are woefully incomplete. Data collected by the Alan Guttmacher

Institute, in contrast, are far more complete and generally of more use from a

policy perspective. Unfortunately, private organizations rarely have the

resources to collect data on government programs over an extended period of

time.

The best way to create a core set of public administration data sets is with the

establishment of a data archive where current data sets could be stored. Data

sets that are not archived are frequently lost; a prominent example is the

American Federal Executive study of 10,000 high level civil servants, 10,000

military officers, and 10,000 civilian elites conducted by W. Lloyd Warner and

colleagues (1959). Only recently was the lost 1955 Thorndike-Hagen study of

5,085 Air Force veterans found again and converted from virtually unusable 9-

track tape. Much data gathered only 10 to 15 years ago is rapidly becoming

unreadable as new data retrieval technologies are developed.
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Public administration organizations and journals need to encourage all

individuals to archive their data, preferably at the same archive. Even if the

data are not made available immediately, they could well produce some additional

knowledge at some point in the future when they are available. In addition,

having a group of public administration scholars define what might be a set of

core of variables to be gathered, either cross-sectionally or longitudinal would

be useful. As an illustration, a time series of federal government employment,

expenditure and structural data could be used by a variety of different scholars

to address key questions of public administration.

Another pervasive problem relates to generalizability and data aggregation in

public administration data sets.  All too often state and local government data

are combined (Lewis and Nice 1994), despite important and substantively relevant

differences in the two levels of government. Conversely, generalizing from a

single state to national effects is also a common pathology in the public

administration literature. Given the heterogeneity of the U.S. states (ignoring

international public administration issues for the moment), this seems

particularly unwise. In addition, it is not uncommon to see state level

inferences made from dangerously small subgroups. For example, Newman (1994)

looks at the effects of occupational segregation by sex using a sample of

Florida public administrators, but the sample contains only 29 women. The sex

ratio itself is certainly a statistically valid measure, but to infer policy

output characteristics from a sample this small is risky.

Another data problem plagues public administration. It is what Tufte (1977)

calls: "Data Dumping, or Putting Together of Statistical Compilations with a

Shovel." The problem lies in the tendency for data collections to amass simply

because the data are available. Availability and importance are easily confused

in the large quantity of data currently produced from government sources. In

addition the material called "data" by many furnishing agencies really is not.

There is an appalling tendency for analysis in the form of simple tables and

histograms to be labeled as data when they are really a product of such data.

A final data set problem bears mentioning. There are a number of studies that

use sensitive, often government archived, data to study public administration

questions. Most often these data sets are from personnel files where protection

of anonymity is legally and ethically warranted. Rather than sanitize the file

and place it in the public domain for all interested scholars; however, authors
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will frequently embargo the data. So readers of the resulting publication must

take the authors’ claims on faith. (c.f. Miller, Kerr, and Reid 1999). This

practice clearly retards the growth of empirical public administration

scholarship because it not only weakens any inferential claim made by authors,

but it also precludes any replication study.

While we have portrayed a fairly grim picture of the current state of data

archiving in public administration, we would be remiss not to point out some

successes. The Center for Urban Policy Research at Rutgers University has

archived and made freely available The State of the Nation’s Cities: A

Comprehensive Database on American Cities and Suburbs at

http://www.policy.rutgers.edu/cupr/sonc.htm. The Center for Presidential Studies

at the Bush School of Government and Public Service at Texas A&M University has

developed an ongoing project to archive presidential data for general access at

http://www-bushschool.tamu.edu/CPS/archive/index.html. A similar archive is being created

for public management at http://www-bushschool.tamu.edu/pubman/.  The University

of California, San Diego provides a very useful index of links to social science

data sets which contains a surprisingly high proportion of links to data sets of

interest to public administration researchers: http://odwin.ucsd.edu/cgi-

bin/easysearch2?search=getdata&file=/data/data.html&print=notitle&header=/header/data.header.  In

addition, federal government provision of data has improved dramatically over

the last few years (despite our previous comments). Useful federally funded

access points include the Government Information Sharing Project

(http://govinfo.kerr.orst.edu/index.html), the Federal Inter-agency Council on

Statistical Policy Fedstats site (http://www.fedstats.gov/), the Government

Information Exchange which includes the Federal Yellow Pages (http://www.info.gov/),

the Government Information Locator Service (GILS)

(http://www.access.gpo.gov/sudocs/gils/gils.html), and the very useful starting point at

Fedworld (http://www.fedworld.gov/locator.htm).

3 The Flawed Practice of Null Hypothesis Significance Testing

  (or: Stars Are Stupid)

The currently employed method of hypothesis testing employed in public

administration, and every other social science field, is logically and

interpretively flawed in the deepest possible sense (Gill 1999). Even though

this approach provides misleading conclusions from statistical results, null

hypothesis significance testing (NHST) has dominated the reporting of empirical

results in the social sciences for over fifty years. Because public
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administration methodology is a young subfield, the investment in this bankrupt

enterprise is relatively mild compared to other disciplines. We, therefore, hope

that it is abandoned before taking hold the way it has in related areas.

3.1 How the NHST Works

The ubiquitous NHST is a synthesis of the Fisher test of significance and the

Neyman-Pearson hypothesis test. In this procedure, two hypotheses are posited: a

null or restricted hypothesis (H0) competing with an alternative or research

hypothesis (H1) each describing complementary notions about some social or

administrative phenomenon. The research hypothesis is the model describing the

researcher’s assertion about some underlying aspect of the data, and

operationalizes this assertion through a statement about some parameter, β. In

the most basic case, described in every introductory text, null hypothesis

asserts that β = 0 and a complementary research hypothesis asserts that β ≠ 0.

A test statistic (T), some function of β and the data, is calculated and

compared with its known distribution under the assumption that H0 is true. The

test procedure assigns one of two decisions, D0 or D1, to all possible values in

the sample space of T, which correspond to supporting either H0 or H1

respectively. The p-value is equal to the area in the tail (or tails) of the

assumed distribution under H0 which start at the point designated by the

placement of T and continuing away from the expected value to infinity.

If a predetermined α level has been specified, then H0 is rejected for p-values

less than α, otherwise the p-value itself is reported as evidence for H1. Thus

decision D1 is made if the test statistic is sufficiently atypical given the

distribution under the assumption that H0 is true.

This NHST process is a synthesis of two highly influential but incompatible

schools of thought in modern statistics. Fisher’s (1925) procedure produces

significance levels from the data whereas Neyman and Pearson (1933a, 1933b,

1936) posit a test-oriented decision process which confirms or rejects

hypotheses at a priori specified levels. The NHST test attempts to blend these

two approaches. In Fisher hypothesis testing, no explicit complementary

hypothesis to H0 is identified. The p-value that results from the model and the

data is evaluated as the strength of the evidence for the research hypothesis.

There is no notion of the power of the test, the probability of correctly
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rejecting H0. Nor is there an overt decision in favor of H1. Conversely, Neyman-

Pearson tests identify complementary hypotheses: ΘA and ΘB in which rejection of

one implies acceptance of the other, and this rejection is based on a

predetermined α level. Thus there is an overt decision in this process.

Neyman and Pearson’s hypothesis test defines the significance level (α = 0.10,

0.05, 0.01,...) a priori as a function of the test (i.e. before even looking at

the data), whereas Fisher’s test of significance provides the significance level

afterwards as a function of the data. The current paradigm in the social

sciences straddles these two approaches by pretending to select α a priori, but

actually using p-values or worse yet, asterisks next to test statistics

indicating ranges of p-values ("stars"), to evaluate the strength of the

evidence. This allows inclusion of the alternate hypothesis but avoids the often

difficult search for more powerful tests.

The NHST is also an attempt to reconcile the two differing perspectives on how

the hypotheses are defined. It adopts the Neyman-Pearson convention of two

explicitly stated rival hypotheses, but one is always labeled as the null

hypothesis as in the Fisher test. In some introductory texts the null hypothesis

is presented only as a null relationship: β = 0 (i.e. no effect), whereas Fisher

really intended the null hypothesis simply as something to be nullified. The

synthesized test partially uses the Neyman-Pearson decision process except that

failing to reject the null hypothesis is incorrectly treated as a quasi-

decision: modest support for the null hypothesis assertion. There is also

confusion in the NHST about p-values and long-run probabilities. Since the p-

value, or range of p-values indicated by stars, is not set a priori, it is not

the long-run probability of making a Type I error but is typically treated as

such.

3.2 The Inverse Probability Problem

The most common interpretive problem with the NHST is a misunderstanding of the

order of the conditional probability. Many public administration academics and

practitioners incorrectly believe that the smaller the p-value is, the greater

the probability that the null hypothesis is false: that the NHST produces P

(H0|D), the probability of H0 being true given the observed data D.  In fact,

the NHST first posits H0 as true and then asks, what is the probability of

observing these or more extreme data? This is unambiguously P(D|H0). A more
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desirable test would be one that produces P(H0|D) because this would facilitate

a search for the hypothesis with the greatest probability of being true given

the observed data. Bayes law shows the difference between these two unequal

probabilities:

    P(H0)
P(H0|D) = ----- P(D|H0). (1)

    P(D)

The two quantities, P(D|H0) and P(H0|D), are equal only if P(H0) = P(D), and the

probability of this equality is exactly zero.

Jeffreys (1961) observed that using p-values as decision criteria in this way is

backward in its reasoning: "a hypothesis that may be true may be rejected

because it has not predicted observable results that have not occurred." Others

have noted "a p-value of 0.05 essentially does not provide any evidence against

the null hypothesis" (Berger, Boukai, and Wang 1997).

3.3 The Decision Problem With the NHST

Unlike most social scientists, public administrators are experts in decision

making.  Many have had formal classes in decision making so they should

understand the implications of the NHST in the decision-making process.  As

described above, we use the test statistic to make one of two decisions: D0 or

D1. In fact, only these two decisions, or actions, are allowable. So it is

technically incorrect to make statements from the NHST such as "provides modest

evidence." Despite this, many authors confuse the decision process with the

strength of evidence. That is, the NHST interpretation of hypothesis testing

confuses inference and decision making since it "does not allow for the costs of

possible wrong actions to be taken into account in any precise way" (Barnett

1973).

Worse yet, the researcher reaches one of these decisions in the NHST where the

cost of being wrong is completely exogenous to the decision process. Thus the

cost of being wrong is completely abstract at the time of the decision. A more

reasonable approach is to assign a loss function to each of the two decisions.

This is a real-valued function that explicitly provides a loss for decision i

given β* is the true parameter value: L(β*,Hi). So from this we can build a

decision rule that codifies some criteria that the researcher might have:

minimize the maximum loss, minimize squared errors, and many others. The quality
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of the decision rule is generally judged by a corresponding risk function. This

is simply the average loss across decisions by using this decision rule for a

given value of β*. So good decision rules have lower risk functions than known

alternatives.

It should be clear from this brief discussion that a major component of

hypothesis testing and decision theory is omitted from the NHST. One need not

add all of the formality implied by the last paragraph, but it is important to

realize that the NHST decision does not include the subsequent consequences.

3.4 The Model Selection Problem

Typically when a public administration model result with a NHST is reported, it

is presented as if only two models were ever considered: the null hypothesis and

the provided research hypothesis. The quality of a research finding is then

solely judged by the ability to reject the single complementary null hypothesis

with a sufficiently low p-value. However, during the development of the reported

model many differing alternate mixes of independent variables are often tested.

This is called the "illusion of theory confirmation" (Greenwald 1975, Lindsay

1995) because the NHST is presented as evidence of the exclusivity of

explanation of this single research hypothesis.  Statistics are reported in

published form from the final model specification as if many other model

specifications tried in the development never existed and that this last model

is produced from a fully controlled experiment (Leamer 1978, p.4). The NHST test

thus provides an infinitely strong bias in favor of a single research hypothesis

against an infinite number of other hypotheses (Rozeboom 1960, Lehmann 1986,

p.68, Popper 1968, p.113).

Two completely plausible and statistically significant models can lead to

entirely different conclusions about the substantive question of interest using

the exact same data (Raftery 1995). In many cases the decision criteria that led

to the final model are based at least in part on intermediate significance

levels and that the significance levels reported in the final published work

have very different interpretations than the significance levels in intermediate

models (Leamer 1978, Miller 1990, Raftery 1995). The worst example of this is

the use of stepwise regression (sometimes called "unwise regression", see King

1986), which replaces theory with a mechanical process driven exclusively by

ordered mixing of covariates according to residual sum of square minimization.

The problem with stepwise regression, besides of course the odious way in which
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it dispenses with actual theories about the phenomenon of interest, is that it

does not even necessarily reach the best conclusion as specified by its own

flawed criteria.

The process of mining through a data set trying to find statistically

significant results without a theoretical foundation is always a poor research

strategy. If there are twenty potential relationships all of which are actually

not present in a given population, then we are still likely to find, by sampling

induced chance, at least one to be statistically significant at the α = 0.05

level. As evidence to support this claim, use any statistical software package

to create a dataset with 20 completely independent random variables in columns

of length approximately 100. Now look at the correlation matrix between these 20

variables. If this process is repeated only a few times you will find that about

5% of the time a correlation coefficient tested with α = 0.05 is determined to

be significant. So it is almost guaranteed that data-mining leads to

statistically significant results which make some claim about a public

administration question subject to a Type I error with probability one. This

fallacy is like the "lottery paradox" which refers to situation in which nearly

every large lottery winner has some unusual attribute which appears to make

their prior probability of winning very low. However, this search for some

unusual attribute takes place after the person has won the lottery. So no matter

how unusual or unlikely the attribute is in the population, the probability that

this person would win is 1 since they have already won (journalists are

inevitably deceived here).

Data mining is related to the classic "file drawer problem." In a hypothetical

world suppose that there are no relationships to be found, but there are

dedicated scientists working away and publishing their "significant" findings.

In this world the journals would be filled with studies that made Type I errors

and the scientists’ file drawers would be filled with unpublished studies that

were correct. Fortunately we live in a world where there are non-zero effects,

and there is evidence that the file drawer problem is not pervasive (Rosenthal

1979, Rosenthal and Rubin 1988).

Rosenthal and Rubin (1978) look at all 345 annual publications in psychology and

notice that the mean z-value from empirical studies was 1.22. Working backwards

they calculate that there would have to be 65,123 studies in the file drawers

for that year with a zero mean z-value in order to conclude that the published
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work was entirely due to sampling effects. Their finding is promising (provided

that psychology is representative of the social sciences in general and we

really do not have massive file cabinets) because it implies that a reasonable

number of correct decisions are made with regard to hypothesis testing and

publication.

3.5 The Probabilistic Modus Tollens Problem

The basis of the NHST rests on the logical argument of modus tollens (denying

the consequent). The basic strategy is to make an assumption, observe some real-

world event, and then check the consistency of the assumption given this

observation. The modus tollens syllogism works like this:

• If H0 is true then the data will follow an expected pattern,
• the data do not follow the expected pattern,
• therefore H0 is false.

The problem with the application of this logic to hypothesis testing is that the

certainty statements above are replaced with probabilistic statements, causing

the logic of modus tollens to fail. To see this, reword the logic above in the

following way:

• If H0 is true then the data are highly likely to follow an expected
pattern,

• the data do not follow the expected pattern,
• therefore H0 is highly unlikely.

This logic seems plausible. However, it is a fallacy to assert that obtaining

data that is atypical under a given assumption implies that the assumption is

likely false: almost a contradiction of the null hypothesis does not imply that

the null hypothesis almost false (Falk and Greenbaum 1995). For example:

• If an agency has a "glass ceiling" then it is highly unlikely to see
women as senior managers

• the agency has a female senior manager
• Therefore it is highly unlikely that the agency has a "glass ceiling".

From this simple example and the resulting absurdity it is easy to see that if

the P(Female Senior Manager|Glass Ceiling) is low (the p-value), it does not

imply that P(Glass Ceiling|Female Senior Manager) is also low. In other words,

the NHST does not protect the user from logical inconsistencies that arise from
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ill-defined, non-mutually exclusive competing sets (Cohen 1994, Pollard and

Richardson 1987).

3.6 The Significance Through Sample Size Problem

There are two important misinterpretations about the impact of sample size in

the NHST. First is the common belief that statistical significance in a large

sample study implies real world importance. A NHST based on a large dataset

almost always results in statistical significance in the form of low p-values

(Leamer 1978, Macdonald 1997, Oakes 1986, Raftery 1995). This is a concern in

public administration research since it is incorrect to infer that some

subfields have greater legitimacy just because the corresponding data sets tend

to produce smaller p-values: "a prejudice against the null" (Greenwald 1975,

p.1). For instance, contrast the expected results from a study of federal

employees in which data on tens of thousands of individuals is analyzed versus a

study of the budget of national security agencies. Clearly in the latter world,

sample sizes are vastly smaller.

The correct interpretation is that as the sample size increases we are able to

progressively distinguish smaller population effect sizes. This is the extent to

which some measured phenomenon exists in the population. Finding population

effect sizes is actually the central purpose of social science research since

any hypothesized difference can be found to be statistically significant given a

sufficiently large sample. Public administration researchers are really more

interested in the relative magnitude of effects (program success, budget

changes, legislative support, levels of representativeness, etc.), and making

merely binary decisions about the existence of an effect is not particularly

informative. However, the NHST deflects us into an obsession with the strength

of this binary decision measured through p-values.

The second misinterpretation is that for a given, observed p-value in a study

which rejects the null hypothesis, larger sample sizes imply more reliable

results. This is false because once the p-value is observed, the sample size is

already taken into account (conditioned on). Two studies that reject the null

with the same p-value are equally likely to make a Type I error even if they

have dramatically different sample sizes. This mistake actually results from a

poor understanding of Type II errors. Two studies which fail to reject the null

hypothesis and are identical in every way except sample size are different
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qualitatively: the test with the larger sample size is less likely to make a

Type II error.

To explore this misconception Rosenthal and Gaito (1963) asked 19 university

researchers to express their "degree of belief in research findings" for two

studies: one with a sample size of 10 and another with a sample size of 100, but

having the same p-value. Most of the respondents had more confidence in the

results of the test with the sample size of 100 despite the identical p-values.

Rosenthal and Gaito inferred that researchers include the sample size effect on

the probability of a Type II error as a qualitative measure of null hypothesis

significance testing. This is a dangerous qualitative measure since if the null

hypothesis is rejected, the probability of making a Type II error is zero.

In a more recent study, Wilkerson and Olson (1997) asked 52 psychology graduate

students to evaluate two tests which report p-values of 0.05 and are identical

in every way except that one has a sample size of 25 and the other has a sample

size of 250. The graduate students were asked which test had the greatest

probability of making a Type I error. Only 6 out of the 52 correctly observed

that the two tests have an identical probability of falsely rejecting the null

hypothesis.

3.7 The Arbitrariness of Alpha Problem

Fisher constructed the first significance level tables and, therefore,

personally established the conventional rejection level thresholds. The majority

of Fisher’s work was applied to agricultural experiments and biometrics.

Familiar contributions included the analysis of variance of various treatments

on plant growth: sunlight, fertilizer, and soil conditions. While there may be

some amount of fertilizer in empirical public administration research, it is

clearly not of the kind envisioned by Fisher.

On what basis do we decide that p = 0.051 is inadequate evidence for rejection

but p = 0.049 is perfectly adequate to reject? Distinctions at this level rely

upon the assumption that there is virtually no measurement error, an assumption

that no informed social scientist would ever be willing to defend. No published

work in any social science field provides a theoretical basis for these

thresholds. While it is convenient to say "one time out of twenty" or "one time

out of a hundred," but it is no less convenient to say "one time out of fifty"

or "one time out of 25" (i.e. p = 0.02 and p = 0.04). Fisher’s justification
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rests on no established scientific principle. Instead he believed that these

levels represented some standard convention in human thought. So we make

fundamental substantive conclusions in public administration research based on

an early twentieth century bio-statistician’s intuition about how people think

about probabilistic evidence?

3.8 The Accepting the Null Hypothesis Problem

When we fail to reject the null hypothesis, we cannot conclude that the null is

true because doing so does not rule out an infinite number of other competing

research hypotheses. The NHST is asymmetric: if the test statistic is

sufficiently atypical assuming the null hypothesis then the null hypothesis is

rejected, but if the test statistic is insufficiently atypical assuming the null

hypothesis then the null hypothesis is not accepted. This has been called a

double standard: H1 is held innocent until proven guilty, and H0 is held guilty

until proven innocent (Rozeboom 1960).

There are two problems that develop as a result of asymmetry. The first is a

misinterpretation of the asymmetry to assert that finding a non-statistically

significant difference or effect is evidence that it is equal to zero or is

nearly zero. Regarding the impact of this acceptance error Schmidt (1996, p.126)

asserts that this: "belief held by many researchers is the most devastating of

all to the research enterprise." This acceptance of the null hypothesis is

damaging because it inhibits the exploration of competing research hypotheses.

The second problem pertains to the correct interpretation of failing to reject

the null hypotheses. Failing to reject the null hypothesis essentially provides

almost no information about the state of the world. It simply means that given

the evidence at hand one cannot make an assertion about some relationship: all

you can conclude is that you cannot conclude that the null was false (Cohen

1962).

3.9 An Easy Solution for Public Administration Research: Confidence Intervals

Confidence intervals are an alternative to the NHST that provide the same

information and more. In addition, confidence intervals do not require a

contrived decision. In the simplest case a confidence interval is constructed by

taking a point estimate of some underlying population parameter, β̂, and

enveloping it with a probability structure that extends a number of standard

errors of β̂ (σβ) in both directions: [ β̂ - σβkα : β̂ + σβ kα]. The familiar
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textbook example is produced when we believe that the sampling distribution of

β̂ is gaussian-normal and therefore apply kα=0.95,2-tail = 1.96.

Confidence sets, the more general case of confidence intervals where the region

is not required to be contiguous, are estimates of some parameter β in which the

uncertainty is expressed as a range of alternate values and a probability of

coverage. Credible sets, Bayesian set estimates described below, measure the

probability that the parameter is in the interval rather than the probability

that the interval covers the true parameter. With confidence sets the set itself

is the random quantity and the unknown parameter is fixed. So we cannot state

that with any produced confidence set there is a known probability that the

unknown parameter is contained, we have to say that we are (1 - α)% confident

that this set covers the true parameter value.

Confidence intervals and the NHST present the same information: a linear

regression coefficient with a 1 - α confidence interval bounded away from zero

is functionally identical to a NHST rejecting at p ≤ α the hypothesis that the

coefficient equals zero. However, confidence intervals have a superior feature:

as the sample size increases the size of the interval decreases, correctly

expressing our increased certainty about the parameter of interest. This is

analogous to the correct interpretation of increasing statistical power in a

NHST as sample size increases. Most misunderstandings about sample size as a

quality measure in the NHST stem from a poor understanding of Type II errors.

Since there is no Type II error in confidence intervals, there is less potential

for such confusion.

Unfortunately the confidence level of the interval is subject to the same

arbitrary interpretations as α levels. Therefore confidence intervals require

the same cautions with regard to sample size interpretations and unsupported

conventions about α levels.

An interesting and unusual example and one of the earliest explicit works in

social science methodology is Sir Isaac Newton’s last manuscript, The Chronology

of Ancient Kingdom’s Amended (1728). Newton estimates the mean length of the

reign ancient kings from biblical times to his present era in order to refute a

current claim that the average interval was between 35 and 40 years. In this

analysis he determines that the "medium" range is "about eighteen or twenty
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years a-piece." What makes this result interesting is Newton’s use of an

interval estimate rather than a point estimate for the length of reigns. Stigler

(1977) shows that while Newton did not explicitly use the sampling distribution

of the mean or a maximum likelihood estimate, both of these techniques produce

intervals almost identical to Newton’s, demonstrating that he distinguished

between the distribution of the mean versus the distribution of the data.

Newton, therefore, presented his results as an interval around the mean reign in

order to convey both the measure of centrality and some uncertainty that he felt

about this measure.

Effective alternatives to the NHST exist that require only modest changes in

empirical methodology: confidence intervals, Bayesian estimation, and meta-

analysis. Confidence intervals are readily supplied by even the simplest of

statistical computing packages, and require little effort to interpret. Bayesian

estimation eliminates many of the pathologies described, albeit with a greater

setup cost (see below). Meta-analysis, looking across multiple independent

studies, offers the potential benefit of integrating and analyzing a wider scope

of work on some administrative or policy question (Gill 1999).

4 Time Series Analysis

Time series analysis is well suited to before-after program evaluation designs,

and thus has received a modest amount of use in public administration. The

adoption of new programs can be viewed as natural experiments when program

outcomes are measured for a period of time before the new program is adopted.

Lewis-Beck and Alford (1980) used interrupted time series analysis to determine

the impact of various coal mine safety laws; the results of the analysis were

then used to generate some theoretical propositions about when laws have their

intended impact. Morgan and Pelissero (1982) addressed whether or not reformed

city government structures resulted in changes in public policy outputs and

concluded that they did not. Durant, Legge, and Moussios (1998) assessed the

changes in British Telcom’s behavior after privatization using an ARIMA model to

determine if it engaged in the predicted competitive behavior. Other examples of

time series analysis include Wood and Waterman (1994), Wood and Peake (1998),

Meier (1980) and countless more.

Despite the relatively frequent use of time series, we feel that the potential

for use in public administration has barely scratched the surface. Several

interesting theoretical questions can be addressed through the use of more
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advanced time series techniques including the responsiveness of inertial

systems, the "causality" among variables, the use of pooling to overcome data

problems, and the incorporation of long run equilibrium techniques.

4.1 Inertial Systems

Both organizations and policy can be characterized as inertial systems-present

outputs are a function of past results. Organizations quite clearly are

regularized patterns of interaction that attempt to impose stability on a policy

process. Stability also appears to be valued in policy because it allows one to

avoid reinventing the wheel each year and attempt incremental changes in program

rules.

Theoretically, an inertial system is best represented by the following time

series:

Yt = α + β1Yt-1 + β2X + ε   (2)

where Y is an output vector of interest and X is either a policy intervention

vector or a matrix of relevant environmental variables.

This autoregression equation is superior to the common use of a trend line or

counter variable (see Lewis-Beck and Alford 1980) because it does not impose a

strict linear pattern on the system and it generates results that are more

likely to be consistent with organizations and policy programs.2 The impact of

any change in the system such as a new program (X) affects the system’s outputs

over a period of time rather than all at once. The coefficient β2 is the impact

of a one unit change in X on Y for the first year of the change. Because Y at

time t then also affects Y at time t + 1 and in future years, the initial change

in X continues to affect Y through the lagged dependent variable. In the second

year of the program, this impact is β2xβ1. For subsequent years, the impact

continues but at a declining rate, forming what is called a distributive lag

model (Pyndick and Rubinfeld 1991).

The distributive lag formulation, we feel, is consistent with our theories of

organization. Small initial changes can over time result in fairly large long

run impacts. The Social Security reform debates are contemporary illustrations
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of how very small initial savings can generate substantial long run results for

a policy system. The distributive lag also implies that exogenous impacts (the X

variables) must compete with standard operating procedures and bureaucratic

routines to influence the organization’s policy outputs.

The autoregressive model creates some addition methodological problems that need

to be addressed. With a lagged dependent variable both the traditional Durbin-

Watson test and the Box-Ljung Test for serial correlation are biased (Maddala

1992). The appropriate test is the LaGrange Multiplier test based on the Gauss-

Newton regression (Davidson and McKinnon 1993). One regresses the residuals from

the equation on all independent variables plus multiple lags of the residuals

(substituting zeros in for missing values created by the lagging procedure). The

R-square of this equation is multiplied by the number of cases to obtain the

test statistic which is chi-square distributed with the degrees of freedom equal

to the number of lagged residuals. The test is a joint test that is sensitive to

both serial correlation and moving average problems. The LaGrange Multiplier

test is appropriate whether or not the dependent variable is lagged so it should

be the general test for serial correlation in any time series.

4.2 "Causality"

Many time series questions in public administration are questions of causality-

do representative bureaucracies generate different policies, or do organizations

with different policies also decide to become representative bureaucracies? Does

school system bureaucracy cause poor performance among students, or does poor

performance among students cause a school system to add programs and thus

bureaucracy (Smith and Meier 1995)? Cause as used in public administration and

social science has a precise meaning that reflects the famed "chicken and egg

problem" of which came first (Thurman and Fisher 1988). By causality we

generally mean that when X changes Y will subsequently change but when Y

changes, X will not change in any predictable way. Causality is thus, a temporal

ordering that can be assessed statistically.

The simplest way to determine a "causal" linkage is with several cases that are

measured at two different times. Using the above illustration, let us assume a

group of 100 school districts with measures of student performance and

bureaucracy for two different years. The logic of the test is that if

                                                                                                                                                                                      
2 For an example of this approach using the management of organizations and networks, see O’Toole and Meier (1999).
For a policy related approach using the area of agricultural credit, see Meier, Polinard, and Wrinkle (1999).
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bureaucracy causes student performance to drop that bureaucracy at time 1 will

be negatively correlated with student performance at time 2 (as performance

comes into congruence with bureaucracy) when one controls for the level of

student performance at time 1. At the same time, bureaucracy because it is not

caused by student performance will change randomly from time 1 to time 2 with

respect to student performance. Student performance at time 1, therefore, will

be uncorrelated with bureaucracy at time 2 when controlling for bureaucracy at

time 1. The following equations set up this panel test of causality:

Yt = α + β1Xt-1 + β2Yt-1 + ε (3)

Xt = α + β3Xt-1 + β4Yt-1 + ε (4)

A hypothesis of Y causes X is tested by a significant coefficient for Y in

equation (4). A hypothesis that X causes Y is tested by a significant

coefficient for X in equation (3). Of course, variables can be reciprocally

related, and both hypotheses can be supported (or both rejected). For

illustrations of the technique see Meier and Smith (1994) relating

representative bureaucracies to political representation or Smith and Meier

(1995) relating public school performance to private school enrollments.

Panel analysis assumes that the causal period, that is the time that it takes X

to affect Y, is equal to the time from t - 1 to t. The technique also assumes

that one lag is sufficient to incorporate all the pass history of a variable.

The former assumption can be assessed by extending the time lag (if the question

is whether or not the lag is long enough); the latter assumption can be directly

dealt with by using either Granger (1969) causality tests or vector

autoregression.

Granger causality tests involve two time series of data with sufficient points

to allow analysis (N > 30). Rather than assuming a single lag of a variable is

significant, Granger causality incorporates multiple lags. The logic behind

Granger causality is that if X causes Y, then one can predict Y with multiple

lags of X even when multiple lags of Y are included in the equation.

Statistically one estimates equation (5), the restricted equation, and equation

(6), the unrestricted equation, as follows:

Yt = α + ∑βjXj + ε (5)
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Yt = α + ∑βjXj + ∑βiXi + ε (6)

The appropriate test is a joint f-test to determine if all the coefficients for

the X variables are equal to zero (and thus add nothing to the level of

prediction). The test for whether or not Y causes X is done analogously by

setting up a similar set of equations. A full discussion of Granger Causality

can be found in Freeman (1983); for an application in public administration,

Wood (1992) uses Granger causality tests to sort out the various possible

relationship in environmental regulatory enforcement.

If Granger causality can be thought of as a bivariate test of causality, that is

a test between two time series, then vector autoregression (VAR) is merely the

multivariate analogue to Granger causality. Granger causality can indeed

produced spurious results if key variables are omitted from the test (see Meier

and Smith 1994). Vector autoregression allows for the additional variables to be

included as blocks of variables in the unrestricted equation. Each block is

assessed as a block to determine if it should be included in the system of

equations. A good illustration of the use of VAR is Krause (1996) who examined

securities regulation by assessing the linkages between Congressional

preferences, Presidential preferences, and agency behavior. Krause (1996) finds

that agency behavior exerts a great deal of influence on both Congress and the

Presidency, a finding that challenges much of the literature spawned by the

empirical principal-agent approach.

4.3 Pooled Analysis

Pooled time series is often an option when the analyst has some data over time

but not necessarily enough data to run a full time series. It is also used for

relatively long time series when one thinks that the processes are similar in

different environments (e.g., the impact of welfare policies in various Western

democracies). Pooled data sets allow the to analyst assess more total cases and

thus circumvent problems such as collinearity and too few data points relative

to the parameters that need to be estimated.

Because pooled time series analysis requires attention to serial correlation,

heteroscedasticity and cross-correlations (Stimson 1985, Hsaio 1986), it is

relatively difficult to do correctly. Data must be organized correctly and this

organization will vary depending on the software being used. Without correct

organization, all the diagnostics used to assess data problems are at best
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misleading and most likely wrong. Preprogrammed software is available. 67$7$

and SAS both have relatively adequate pooled packages for panels that have more

cross sections than time points (what are affectionately know as wide but

shallow pools). For pools that have more time points than cross sections (narrow

but deep pools), (YLHZV has an excellent package; 6$6 also has a program but it

is unsupported and may generate misleading results (Beck and Katz 1996).

Several examples of pooled time series exist in the relevant literature. Keiser

and Meier (1996) used a pooled model to examine the impact on several federal

laws on state-level child support collection policies. Keiser and Soss (1998)

used a similar technique to probe the determinants of discretionary welfare

decisions. Hedge, Menzel and Williams (1988) have examined surface mining

regulation at the state level using data for several years for the approximately

20 states that operate their own regulatory programs (as opposed to those that

permit the federal government to regulate surface mining).

4.4 Stationarity and Cointegration: Much Ado About Nothing?

A relatively common problem in time series analysis is that the data series is

not stationary. A stationary series is one that has a constant mean and variance

over time. Series that are trending or contain dramatic breaks are generally

nonstationary series. The basic problem caused by stationarity is that two

variables that are uncorrelated but both nonstationary (integrated is another

term) are susceptible to spurious correlation (Granger and Newbold 1976). De

Boef and Granato (1999) provide simulation results to show that the common 0.05

level of significance is rejected as much as 50 percent of the time with two

stationary but unrelated series.

The solution to nonstationary data is to difference the data (subtract last

year’s value from this year’s) until the data are stationary.3 Differencing data

creates its own problems. Over-differencing (differencing when it is not needed)

can induce a moving average problem in the data. Differencing also limits the

analyst to examining short term impacts, that is, change in X this year and its

impact on the change in Y this year. Many programs and policy, as noted above,

have substantial long run dynamics; such processes can be modeled with

                                                       
3 There are numerous tests for stationarity. Unfortunately, all of the tests have weaknesses so that some judgment is
required to conclude that a series is stationary.
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differenced data but only introducing relatively complex terms (e.g., polynomial

distributed lags).

Cointegration is a method that examines both long run and short run processes

for any data that are integrated at the same level (that is, need to be

differenced the same number of times). The methodology of cointegration is not

complex (see Clarke and Stewart 1994 for an example), but work in political

science has consistently misapplied the technique in an atheoretical manner. In

economic theory, cointegration exists only when two series are in long run

equilibrium (e.g., supply and demand must be in long run equilibrium). Political

science lacks theories that predict long run equilibrium for most of the cases

where cointegration has been applied (see Ostrom and Smith 1992, Beck 1992,

Williams 1992, Durr 1993). Public administration, however, could well have

processes that are theoretically cointegrated. In states with balanced budget

amendments, expenditures and revenues must be in long run equilibrium. Within a

given policy area with authority shared between the federal and state

governments, a long run equilibrium is also possible. If theory development

progresses to where it demands the estimating of relationships that are in long

run equilibrium, then the techniques of cointegration are available. Until

theory demands the technique, however, cointegration might well simply be much

ado about nothing (see Maddala 1992, Li and Maddala 1996).

5 Likelihood and Bayesian Methods

The practice of developing empirical models in public administration research is

often very straightforward.  Frequently this involves no more than specifying a

linear model or developing some crosstabs.  Sometimes, however, a more complex

structure is needed to model some social or administrative phenomenon.

Therefore we often develop parameterized non-linear models in which we want an

estimate of unknown quantities and a measure of reliability of that estimate: in

short the values that have maximum probability of being true given the observed

data.  Unfortunately the NHST and its inverse probability problem get in the way

here.  This problem was discussed in Section 3.2, but no solution was given.  In

this section we provide two ways to make inferences that avoid the inverse

probability problem.

Suppose we consider the collected data as fixed to us. Suppose further that the

parametric form of the proposed model is a component of the hypothesis. Neither

of these statements are in the least bit controversial because at some point in
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the analysis we must decide to condition on the existing data, and except for

exploratory studies, we have to make some statement about the probability

structure that produced the data (even in non-parametric approaches there are

such assumptions made). Likelihood and Bayesian methods are similar in that they

start with these two suppositions and develop estimates of the unknown

parameters in the parametric model.

5.1 Maximum Likelihood

Maximum likelihood estimation finesses the inverse probability problem discussed

in Section 3.2 by substituting the unbounded notion of likelihood for the

bounded definition of probability. This is done by starting with Bayes Law:

      P(β,H0)
P(β|D,H0) = ------- P(D|β,H0) (7)

      P(D,H0)

where β is the unknown parameter of interest, D is the collected data, and H0 is

the null hypothesis including the assumed specification of the parametric form

of the data. The key is to treat P(β,H0)/P(D,H0) as an unknown function of the

data independent of P(D|β,H0). This allows us to use: L(β|D,H0) ∝ P(D|β,H0).

Since the data are now fixed and the hypotheses stated, we get different values

of the likelihood function only by inserting different values of the unknown

parameter, β.

The likelihood function, L(β|D,H0), is similar to the desired but unavailable

inverse probability, P(D|β,H0), in that it facilitates testing alternate values

of β, to find a most probable value: β̂.  Because the likelihood function is no

longer bounded by zero and one, it is now important only relative to other

likelihood functions based on differing values of β.

Interest is generally in obtaining the "maximum likelihood" estimate of β. This

is the value of the unconstrained (here) and unknown parameter, β, which

provides the maximum value of the likelihood function, L(β|D,H0). This value of

β, denoted  β̂, is the most likely to have generated the data given H0 expressed

through a specific parametric form relative to other possible values in the

sample space of β.



25

Maximum likelihood estimation was introduced to modern statistics by Fisher

(1925), but its origins are generally credited to Gauss (see Stigler (1986,

p.141) or Brenner-Golomb (1993, p.299) for interesting discussions). It can

safely be said that maximum likelihood estimate is the workhorse of twentieth

century statistics. Excellent mathematical statistics discussions can be found

in Casella and Berger (1990, Chapter 7), Rohatgi (1976, Chapter 8), Hogg and

Craig (1978, Chapter 6), and Stuart and Ord (1994, Chapter 8). Basic econometric

texts generally cover maximum likelihood estimation in some detail: Greene

(1999, Chapter 4), Gujarati (1995, Chapter 4), Maddala (1992, Chapter 3), Judge

et al. (1982, Chapter 6). Advanced econometric texts with excellent technical

discussions include Amemiya (1985, Chapter 4), and Schmidt (1976, Chapter 3).

5.2 Bayes

The Bayesian approach addresses the NHST inverse probability problem discussed

in Section 3.2 by making distributional assumptions about the unconditional

distribution of the parameter, β, prior to observing the data, P(β|H0). This

sometimes called a "subjective probability" because it comes from the

researcher’s prior knowledge or estimate before looking at the data.  Often

there are strong theoretical justifications for this prior probability such as

information from previous studies, suppositions in the relevant literature, and

the researchers own expertise.  Although public administration scholars rarely

use Bayesian methods, the ability to incorporate expertise through the priors

makes it a method that should be used frequent in the area.

Assigning a prior probability on the unknown parameters is very useful because

it provides a means of integrating out β to solve for the previously unknown P

(D|H0) in (7):

P(D,H0) = �β∈β

P(D|β,H0)P(β,H0)dβ.  (8)

This allows us to avoid the inverse probability problem because we now have a

value for the denominator in (7).  With this construct, the conditional

(posterior) distribution of β is proportional to the likelihood times the prior:

P(β|D,H0) ∝ P(D|β,H0)P(β|H0)  (9)



26

since the data are assumed fixed and therefore have no relevant distribution:

P(D,H0). The Bayesian data analysis approach is focused around getting this

estimate of the distribution of the unknown parameter value "post" to the data.

Bayesians are not concerned with getting a specific point estimate of β because

it is assumed to have a distribution (the posterior calculated above) rather

than being fixed but unknown. The Bayesian focus is on describing the shape and

characteristics of this posterior distribution of β, which under moderate

assumptions and sufficient data is gaussian. Reporting results is typically in

the form of probability intervals (credible sets and highest posterior density

regions), quantiles of the posterior, and descriptions of probabilities of

interest such as P (βi > 0).

The maximum likelihood estimate is equal to the Bayesian posterior mode with the

appropriate uniform prior, and they are asymptotically equal given any proper

(sums or integrates to one) prior. In many cases the choice of a prior is not

especially important since as the sample size increases, the likelihood subsumes

the prior. While the Bayesian assignment of a prior distribution for the unknown

parameters can be seen as arbitrary, there are often strong arguments for

particular forms of the prior: little or vague knowledge often justifies a

diffuse or even uniform prior, certain probability models logically lead to

particular forms of the prior, and the prior allows researchers to include

additional information collected a priori.

5.3 Bayes Factor

Hypothesis testing can also be performed in the Bayesian setup. Suppose Θa and

Θb represent two competing hypotheses about the state of some unknown parameter,

β, which together form a partition of the sample space: Θ = Θa ∪ Θb;

Θa ∩ Θb = φ. To begin, prior probabilities are assigned to each of the two

outcomes: πa = P(β ∈ Θa) and πb = P(β ∈ Θb). This allows us to calculate the

competing posterior distributions from the two priors and the likelihood

function: pa = P(β ∈ Θa|D,Ha) and pb= P(β ∈ Θb|Hb). It is common to define the

prior odds, πa/πb, and the posterior odds, pa/pb, as evidence for Ha versus Hb. A

much more useful quantity, however, is (πa/πb)/(pa/pb) which is called the Bayes

Factor. The Bayes Factor is usually interpreted as odds favoring Ha versus Hb

given the observed data. For this reason it leads naturally to the Bayesian

analog of hypothesis testing between the two alternatives.
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Classic references for Bayesian approaches include Box and Tao (1973), Press

(1989), Jeffreys (1961), and Good (1950). More recent works on Bayesian models

are Bernardo and Smith (1994), Pollard (1986), Lee (1989), and Jaynes 1996).

Recent advances in Bayesian statistical computing, Markov Chain Monte Carlo

(MCMC), have precipitated a dramatic increase in the application of Bayesian

data analysis. Previously it was relatively easy to develop a model

specification in which the resulting posterior distribution was either very

difficult to obtain or completely intractable. However, new simulation

techniques, primarily the Gibbs sampler and the Metropolis-Hastings algorithm,

make it possible to numerically describe posterior densities from simulation

evidence. These techniques, the most common forms of Markov Chain Monte Carlo

(MCMC) procedures, as well as other statistical computing estimation techniques

such as EM (Expectation-Maximization), Data Augmentation, and Monte Carlo

methods in general, are revolutionizing the practice of statistics. For good

book-length starting points on MCMC, see Gelman et al. (1995), Carlin and Lewis

(1996), Gamerman (1997), Tanner (1996), and Gilks et al. (1996).

6 Substantively Weighted Analytical Techniques (SWAT)

The motivation of SWAT techniques is that not all public management cases are of

equal interest to either scholars or practitioners. Practitioners might be

interested in agencies that perform better than average given the constraints

the agency faces, or in agencies that avoid failure in the face of complex tasks

and uncooperative environments. The way to incorporate these practitioner

concerns into useful research is use the discrepancy between model predicted

performance and actual performance as an interesting measure unto itself.

In its most basic form, substantively weighted least squares(SWLS), SWAT uses a

jack-knifed residual of 0.7 as a threshold of high performance (See Gill (1997)

on generalizing this parameter). Rather than down weighting these extreme cases

as robust regression analysis might do, in SWAT these cases are overweighted (or

when investigating other subgroups down-weighted) to determine how these optimal

performing agencies differ from the average agency. The SWLS form of SWAT is

iterative in that one down-weights the average agencies in a series of

regressions by increments of 0.1 until the average cases are counted as equal to

only 0.1 high performing case. The changes found in these regressions should

indicate the unique management elements that distinguish an excellent agency

from a typical one.
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The 0.7 threshold will generally designate about 20 percent of the cases as high

performing with typical public administration data. The number of cases is a

tradeoff. The fewer the number that are designated, the more the outcome will be

the result of one or two cases which may or may not be generalizable. The

analyst wants sufficient cases to be able to say that the relationships hold in

a lot of agencies but not so many cases that we generalize to the mediocre

cases.

From a statistical point of view, SWAT assumes that the regression coefficients

vary across agencies. One of the differences between an excellent agency and a

poor agency is that the excellent one gets far more output for a given level of

input. That difference will show up in the weighted regressions when compared to

the standard linear model regressions.

SWLS and other SWAT techniques do not estimate population parameters; that is,

there is no longer a population to make inferences about. SWLS slopes should be

thought of as indicators of how some agencies are different. The coefficients

are qualitative indicators of roughly how much more (or less) the high

performing bureaucracies get from their individual inputs. In this sense the

resulting SWAT coefficients, which are displayed exactly like the standard

linear model, are estimates of some hypothetical population of interest from

which there are not enough easily identified cases.

The advantages of SWAT should not convince scholars to abandon ordinary least

squares or regression diagnostics. These are obviously valuable research skills.

Ordinary least squares and robust regression are the preferred technique to

generalize from a sample to a population. They demonstrate how things are. SWLS

or other SWAT techniques cannot be used to estimate relationships for a group of

agencies; it is a technique used for performance isolation and recommendation.

It is a qualitative technique that demonstrates how things might be.

Why is this approach useful? First consider the problem of defining high

performing cases without a specific methodology (or what might be thought of as

the “best practices” approach). Clearly highly advantaged cases benefit from the

corresponding levels of explanatory variables. Therefore it is difficult to

assert that a high performing case is doing well given a specific mix of levels

without looking at the corresponding residual. Conversely, a highly
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disadvantaged case may be performing extremely well relative to similarly

affected cases but not relative to advantaged cases. In both scenarios, we are

interested in residual outliers with all model specified explanations included.

Why is this approach better than segmenting out high performing cases and

performing two analyses? Primarily because one needs to develop a model

specification in order to get the residuals which determine high performance

given relative benefits and hindrances. Those cases that most exploit their

available resources are high performers, not simply those with high values of

the dependent variable. Secondly, it is possible, even likely, that segmenting

out these cases sufficiently reduces the sample size so that inference is

difficult or unreliable. In the SWLS approach a focus is developed on the high

performing cases where the others are reduced in emphasis to a "background." In

a sense we get the primary information about the coefficient effects on the high

performers cases where these results borrow strength from the full complement of

cases.

The comprehensive guide to SWAT is Meier and Gill (2000). This book provides

both a general introduction as well as coverage of some of the more complex

theory and applications. SWAT has been used to investigate optimal performers

(Meier and Keiser 1996), multiple goals (Meier, Wrinkle and Polinard 1999a),

risk averse and failing organizations (Meier, Gill and Waller 2000), minority

representation (Meier, Wrinkle and Polinard 1999b), and the differences between

good agencies and exceptional ones (Gill and Meier 2000).

7 The Generalized Linear Model

The undeniable workhorse of public administration data analysis is the linear

model (Meier and Brudney 1999). Researchers also employ an assortment of

nonlinear regression tools such as logit and probit regression, event count

models, truncated distribution models, and probability outcome models. These

tools are imported singularly from other disciplines and treated as distinct

topics. This has been a useful approach as the bulk of the empirical problems

faced can be addressed with these methodologies. However, few in the profession

are aware that these tools (and many more) are actually special cases of the

Generalized Linear Model: a common method for producing model parameter

estimates.  So instead of having to find, understand, and apply a vast array of

approaches with completely different terms and procedures, one can understand

the single over-arching theory.  Thus all of the particularistic tools can be
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thought of more easily as special cases.  Furthermore, because of its elegance

and generality, it is inevitable that all of social sciences will adapt this

framework as the dominant theoretical foundation of parametric models.

Treating various regression techniques completely separately, as nearly all

texts in public administration data analysis do, leads to a very compartmented

and necessarily limited view of the world. It also means that special

procedures, specifications, and diagnostics must be learned separately.

Conversely understanding a more encompassing theoretical basis through the

generalized linear model allows a more universal and deeper theoretical view of

empirical model building.  Once the general framework is understood, then the

optimum choice of model configuration is determined merely by the structure of

the outcome variable and the nature of the dispersion.

7.1 The Exponential Family

In order to unify seemingly diverse specification forms, the generalized

approach first recasts the chosen probability function into a consolidated

exponential family form. This formalization is necessary to recharacterize

familiar probability functions (discrete such as Poisson or binomial, and

continuous such as gamma and gaussian) into a form that allows for a single

theoretical treatment across seemingly disparate mathematical forms.

Suppose we consider a one-parameter conditional probability density function

(continuous case, PDF) or probability mass function (discrete case, PMF) for the

random variable Zi of the form: f(zi|ζ), read as "f of z sub-i given zeta". This

presentation will focus for ease of discussion on the simplified case of a

single parameter of interest, ζ, in the probability function, but this is

certainly not a restriction of the generalized linear model. We index z by the

subscript i to indicate that this is one random variable (the ith) amongst a

collection of many: we are rarely interested in single observations. This

function, or more specifically this family of PDFs or PMFs, is classified as an

exponential family type if it can be written in the form:

f(zi|ζ) = exp[t(zi)u(ζ) + logr(zi) + logs(ζ)]. (10)

 ________   ________________
     |           |
interaction additive
component component



31

where: r and t are real-valued functions of zi that do not depend on i, and s

and u are real-valued functions of ζ that do not depend on zi, and r(zi) > 0;

s(ζ) > 0 ∀ zi.  The first part of the right-hand side is labeled the

"interaction component" because it is the component that reflects the product-

indistinguishable relationship between functions of zi and ζ. The second part of

the right-hand side is labeled the "additive component" for obvious reasons.

Despite this level of specificity, the form is very general because these

restrictions are incredibly broad.

The form of (10) is specified for only one random variable, zi. However, the

exponential family form is preserved under random sampling meaning that the

joint density function of an independent, identically distributed (i.i.d.) set

of random variables, Z = {z1, z2,... , zn}, is

f(z|ζ) = exp[u(ζ)∑t(zi) +  ∑logr(zi) + nlogs(ζ)] (11)

where the summations range from 1 to n.  So the joint distribution of a

systematic random sample of variates with exponential family marginal

distributions produces a joint an exponential family form.

The canonical form is a simplification that greatly facilitates estimation

and inference. It is a transformation of the probability function that reduces

the complexity of the symbolism and reveals important structure. If t(zi) = zi

in (11), then we say that this PDF or PMF is in a canonical form for the random

variable Z. Otherwise we make the simple transformation: yi = t(zi) to produce a

canonical form. Furthermore, if u(ζ) = ζ in (11), then we have a canonical form

for ζ. If not, we can force a canonical form by transforming: θ = u(ζ), and call

θ the canonical parameter. The final form after these transformations is the

following general expression, expressed as a joint distribution like (11):

f(y|θ) = exp[∑yiθ - nb(θ) +  ∑c(yi)] (12)

again where the summations range from 1 to n.  The forms for nb(θ) and
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c(yi) are simply what results from the transformations on ζ and z.  They are

intentionally left as general (i.e. the logs are not explicit), and the

resulting form of b(θ) turns out to have great theoretical importance.  In

common cases we do not have to do the work of making transformations to achieve

(12) as the canonical form is tabulated in many texts.

The form of θ in (12) is the "canonical link" between the original form and the

θ parameterized form. The canonical link is used to generalize the linear model

beyond the assumptions for normally distributed outcome variables. The forms of

the canonical link and the normalizing constant for several common probability

distributions are provided in Table 1.  The term, b(θ) in (12) plays a key role

in calculating the mean and variance of the distribution.  These are more

formally called the first two moments of the distribution.  Table 1 also lists

b(θ), the "normalizing constant" for the distributions.

Table 1: Canonical Links and Normalizing Constants
-------------------------------------------------------------------------------
   Distribution Normalizing Constant, b(θ) Canonical Link, θ=g(µ)
-------------------------------------------------------------------------------
   Poisson exp(θ) log(µ)
   Binomial nlog(1 + exp(θ)) log(µ/(1-µ))
   Normal θ2/2 µ
   Gamma -log(-θ)  -1/µ
   Negative Binomial rlog(1 - exp(θ))  log(1-µ)
   Inverse Gamma -(-2θ)1/2 µ-2

-------------------------------------------------------------------------------

It can be easily seen from Table 1 that the standard linear model uses an

identity canonical link function. In other words, in the simplest case when we

"do nothing" to the generalized linear model, it reduces to the standard linear

model, which is solved using ordinary least squares. So the familiar form of the

linear model is nothing more than a special case of the generalized linear

model.

7.2 Calculating the Mean and Variance of the Exponential Family

The generalization of the linear model is done by connecting the linear

predictor, Xβ, from a standard linear models analysis of the explanatory

variables to the non-normal outcome variable through its mean function.

Therefore the expected value plays a key theoretical role in the development of



33

generalized linear models. The expected value calculation of (12) with respect

to the data (Y) is the wonderfully useful result: EY = Μ/Μθb(θ). Furthermore,

VAR(Y) = Μ2/Μθ2b(θ)  So all that is required from (12) to get the mean and

variance of a particular exponential family of distributions is b(θ). This is an

illustration of the value of expressing exponential family distributions in

canonical form, since the derivatives of b(θ) immediately produce the mean and

variance.

It is common to define a variance function for a given exponential family

expression in which the θ notation is preserved for compatibility with the b(θ)

form. The variance function is used in generalized linear models to indicate the

dependence of the variance of Y on location and scale parameters. It is also

important in developing useful residuals analysis. The variance function is

simply defined as: τ2 = Μ2/Μθ2b(θ), meaning that VAR(Y) = Μ2/Μθ2b(θ) indexed by

θ. Note that the dependence on b(θ) explicitly states that the variance function

is conditional on the mean function.

7.3 The Generalization

Consider the standard linear model meeting the Gauss-Markov conditions (linear

functional form, i.i.d. residuals with expected value zero and constant

variance, and no correlation between any regressor and residual). This can be

expressed as follows:

  V  =     Xβ    +   ε (13)
(nx1)  (nxp)(px1)  (nx1)

 E(V) =  θ  =     Xβ (14)
(nx1)  (nx1)  (nxp)(px1)

The right-hand sides of the two equations contain: X, the matrix of observed

data values, Xβ, the "linear structure vector", and ε, the error terms. The

left-hand side contains: E(V) =  θ, the vector of means: the systematic

component. The variable, V, is distributed i.i.d. normal with mean θ, and

constant variance σ2. Now suppose we generalize slightly this well known form

with a new "linear predictor" based on the mean of the outcome variable, Y,

which is no longer required to be normally distributed or even continuous:

 g(µ) =  θ  =     Xβ (15)
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(nx1)  (nx1)  (nxp)(px1)

Here g() is required to be an invertible, smooth function of the mean vector µ

of Y.  Information from the explanatory variables is now expressed in the model

only through the link from the linear structure, Xβ, to the linear predictor,

θ = g(µ), controlled by the form of the link function, g(). This link function

connects the linear predictor to the mean of the outcome variable not directly

to the expression of the outcome variable itself, so the outcome variable can

now take on a variety of non-normal forms. The link function connects the

stochastic component which describes some response variable from a wide variety

of forms to all of the standard normal theory supporting the systematic

component through the mean function: g-1(g(µ)) = g-1(θ) = g-1(Xβ) = µ = E(Y).

So the inverse of the link function ensures that Xβ maintains the Gauss-Markov

assumptions for linear models and all of the standard theory applies even though

the outcome variable no longer meets the required assumptions.

The generalization of the linear model now has four components derived from the

expressions above.

I. Stochastic Component: Y is the random or stochastic component which

remains distributed i.i.d. according to a specific exponential family

distribution with mean µ.

II. Systematic Component: θ = Xβ is the systematic component with an

associated Gauss-Markov normal basis.

III. Link Function: the stochastic component and the systematic component

are linked by a function of θ which is exactly the canonical link

function, summarized in Table 1. We can think of g(µ) as "tricking" the

linear model into thinking that it is still acting upon normally

distributed outcome variables.

IV. Residuals: Although the residuals can be expressed in the same manner

as in the standard linear model, observed outcome variable value minus

predicted outcome variable value, a more useful quantity is the deviance

residual described in detail below.
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7.4 Estimation: Iterative Weighted Least Squares

Even though it is very common for the variance structure to be dependent on the

mean function, it is relatively rare to know the exact form of the dependence to

estimate the covariances. A solution to this problem is to iteratively estimate

regression weights, improving the estimate on each cycle using the mean

function. Since µ = g-1(Xβ), then the coefficient estimate, β̂, provides a mean

estimate and vice versa. The iterative weighted least squares algorithm

alternately estimates these quantities using progressively improving weights.

Under very general conditions, satisfied by the exponential family of

distributions, iterative weighted least squares finds the mode of the likelihood

function, thus producing the maximum likelihood estimate of the unknown

coefficient vector, β̂. For a detailed explanation of the procedure and its

theoretical justification, the reader is directed to del Pino (1989), Gill

(2000), and Green (1984).

7.5 The Deviance Function and Deviance Residuals

By far the most useful category of residuals for the generalized linear model is

the deviance residual. This is also the most general form. A common way to look

at model specification is the analysis of the likelihood ratio statistic

comparing a proposed model specification relative to the saturated model (n data

points, n specified parameters, using the exact same data and link function).

The difference in fit is generally called the summed deviance. Since this

deviance is composed of the contributions from each data point and the

difference between summarizing with a relatively small subset of parameters and

one parameter for every data point, then these individual deviances are directly

analogous to residuals.

Starting with the log likelihood for a proposed model, add the "^" notation as a

reminder that it is evaluated at the maximum likelihood values:

L( θ̂|y) = ∑[yi θ̂ b(θ̂)] + c*(yi).  Now also consider the same log likelihood

function with the same data and the same link function, except that it now has n

coefficients for the n data points, i.e. the saturated model log likelihood

function with the "~" function to denote the n-length θ vector:
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L(
~
θ|y) = ∑[yi

~
θ b(

~
θ)] + c*(yi).  This is the highest possible value for the

log likelihood function achievable with the given data, y. Yet it is also

generally useless analytically except as a benchmark. The deviance function is

defined as minus twice the log likelihood ratio (i.e. the arithmetic difference,

since both terms are already written on the log metric):

D(θ,y) = ∑[L(
~
θ|y - L(

^
θ|y)] = ∑[yi(

~
θ - θ̂) -(b(

~
θ) - b( θ̂))]. (16)

This is a measure of the summed difference of the data-weighted maximum

likelihood estimates and the b(θ) parameters. Thus the deviation function gives

a measure of the trade-off between a saturated model which fits every single

data point, assigning all variation to the systematic component, and a proposed

model which reflects the researcher’s belief about the identification of the

systematic and random components. Hypothesis tests of fit are performed using

the asymptotic property that D(θ,y) ~ χ2
n-p (although the asymptotic rate of

convergence varies dramatically depending on the exponential family form).

However, for dichotomous and count outcome data, the convergence of the deviance

function to a χ2
n-p is relatively slow. In cases involving such outcome

variables, it is strongly advised to add or subtract 1/2 to each outcome

variable in the direction of the outcome variable mean. This continuity

correction greatly improves the distributional result (Pierce and Schafer 1971,

1986). Observe once again that the b(θ) function plays a critical role.

Although calculating D(θ,y) is relatively straightforward, we usually do not

need to do this as many texts provide the result for frequently used PDFs and

PMFs (Gill 2000, Jφrgensen 1997, McCullagh and Nelder 1989). A utility of the

deviance function is that it also allows a look at the individual deviance

contributions in an analogous way to linear model residuals. The single point

deviance function is just the deviance function for the yth point (i.e. without

the summation): d(θ,yi) = [yi(
~
θ - θ̂) -(b(

~
θ) - b( θ̂))]. To define the deviance

residual at the yi point, we take the square root:
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       (yi - µi)
RDeviance = ---------(|d(θ,yi)|)1/2 (17)

       |yi - µi|

(yi - µi)

where ------- is just a sign-preserving function.     
      |yi - µi|

This section has very briefly summarized the theory and major components of the

generalized linear model. It should be apparent that it is both a broad

construct, encompassing most parametric forms of interest to public

administration data analysts, and a complete system of analysis that includes a

specification process, a computational algorithm, and a criteria for analyzing

fit. It is not implied that this discussion of generalized linear models is

anywhere near complete, instead it is a short preface to a large body of applied

and theoretical literature. The classic book-length work is McCullagh and Nelder

(1989). Two very accessible works are Dobson (1990) and Lindsey (1997). An

excellent, but more complex, book is that of Fahrmeir and Tutz (1994). An

exposition focused on social science data analysis and the theory of generalized

linear models is Gill (2000).

8 Incentives to Develop Methods

Any methodological manifesto in public administration should address the problem

of implementation. Prior calls to battle have been issued but relatively little

has changed. For progress to be made in public administration developing its own

methods, the current incentives of the profession need to be altered so that

individuals will invest the time necessary to develop new methods or alter

existing methods to the specific needs of public administration.

8.1 A Publication Outlet

Any scholar investing time in developing new methods or translating methods into

public administration needs a publication outlet that is receptive to such an

endeavor and is likely to be read by others in public administration. Our

perception is that most in public administration do not read the Journal of the

American Statistical Association, Econometrica or even the workshop section of

the American Journal of Political Science. If one did religiously read such

publications, the valuable information gained would be swamped by the volume of

dross; much of what appears in those pages is unlikely to have any useful

applications in public administration.
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Without a new outlet for methods-related work, public administration scholars

working in this area face the problem that they must make a substantive

contribution as well as illustrate a new method, a not enviable task made

difficult by editorial demands to dumb down manuscripts for a practitioner

readership. A separate journal devoted to methods in public administration is

not likely to be feasible. A better solution would be to have workshop sections,

patterned after that in the American Journal of Political Science, in one or

more public administration journals where individuals could present and

illustrate methods.

9 Final Comments

9.1 Winning By Losing

An interesting public policy scenario developed during the late 1980s into the

1990s with regard to high definition television (HDTV). The three primary

industrialized sectors, Europe, Japan, and the U.S., were anxious to produce a

working system, and none of the key governmental and industrial players in the

three centers were able to agree on a global technical standard. Key decisions

needed to be made such as the frequency arrangement and whether or not the

system would be analog or digital. The Japanese were more aggressive and had a

technical lead. In fact they developed a working analog system in Japan, albeit

an expensive and exclusive one. Conversely, the United States was mired in

inter-agency conflict and political battles between broadcasters and electronic

manufacturers. As a result the Japanese had a working system when there was none

in Europe and the U.S. The irony of this story is that the U.S. actually won

this competitive economic battle because the right type of system was the

superior digital standard rather than the analog. So by being behind,

politically and technically, the U.S. avoided making a significant financial

investment in an inferior earlier standard, and eventually set the standard for

the world system, which advantaged U.S. corporations and customers. We see the

current state of public administration methodology in this light. Clearly the

field is behind related fields such as economics, political science, psychology,

and sociology. We should, however, turn this into an advantage rather than a

deficit by avoiding some of the unproductive paths that these other fields have

taken (null hypothesis significance testing, non-integrated approaches, content

analysis, excessive scaling, case study generalizations, confusion about

causality, etc.), and pursue the areas that have been productive or promising

(times series analysis, SWAT, Bayesian methods, GLM).
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9.2 The Empirical Proletariat

Public administration as an empirical research field is dominated by case

studies and description in general. Evidence to support this statement is easily

found by browsing the field’s journals at random or looking at the ASPA annual

meeting program. One sees a gamut of particularistic work ranging in importance

from "Improving Garbage Collection in Topeka" to "Organizing the Executive

Office of the President" (actual paraphrased titles). As a result a large

proportion of the high quality quantitative work addressing questions in public

administration, and public management in particular, are published in political

science, sociology, or business administration journals. This clearly damages

the integrity of the boundaries, and the legitimacy, of public administration as

a distinct academic field. Thus part of the message of this manifesto is a call

for more rigorous mathematical, statistical, and formal theoretic applications

to questions in public administration to be published in public administration.

In another perhaps more famous manifesto, Marx and Engels state: "All previous

historical movements were movements of minorities, or in the interest of

minorities." The approaches that we advocate clearly make us a minority; we

would now like to create a movement.

9.3 The Methodological Bourgeoisie

Heinz Eulau once described research in public administration as "an intellectual

wasteland suffering from undue constriction of scope, theory, and method"

(Bobrow et al. 1977). This less than tactful statement was made well over twenty

years ago, and we believe it is currently only one third correct. It is rare to

the point of surprise that a new methodological contribution in the social

sciences comes from the public administration literature. This is not to say

that important, creative, and occasionally sophisticated methods are not

employed in public administration research. Instead we mean that there are few

instances where a methodology developed to address a research question in public

administration is subsequently applied in other fields. However, as per the HDTV

analogy above, there is great opportunity accelerate the production of research

tools. Quoting again from that other manifesto, "The bourgeoisie cannot exist

without constantly revolutionizing the instruments of production."

9.4 Free the Bound Periodicals

We disdain to conceal our views and aims with regard to publishing outlets in

public administration. The current mean methodological level of journals in the

field is significantly lower than every other social science. The reasons for
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this are varied but the core issue is that many journals pander to the lower

levels of research sophistication held by public administration practitioners.

The so-called "flagship" journal of the field is the most flagrant offender in

this regard. It is not that the interests and concerns held by practitioners are

necessarily bad for the field, rather that practitioners are holding back the

methodological and theoretical discussion in the premier journals.

Why are we picking on practicing public administrators? Well actually we are

not. But by binding together publishing outlets that affect academic careers

with the more nuts-and-bolts interests of those who manage programs, balance

budgets, and implement policies, we are making a deliberate normative statement

about the orientation of the discipline. This orientation means that

methodologically sophisticated public administration research will end up

appearing in the American Journal of Political Science, the American

Sociological Review, or Administrative Science Quarterly before any public

administration journal. Actually our reasoning is somewhat circular as some

researchers that feel constrained by the orientation of the journals are, to a

great extent, the ones who teach these practitioners through MPA programs. So

perhaps fault lies with the NAASPA induced curricular rigidity that makes it

difficult to teach quantitative approaches beyond tabular analysis and the

linear model.

As the title of this paper implies, we have strong opinions about the direction

of the discipline. Public administration is out of balance relative to other

social sciences, and in general quite far behind with regard to analyzing data

in meaningful ways. This is certainly a correctable situation, and we have

provided a number of paths to get there. We encourage a greatly enhanced focus

on empiricism and rigorous quantitative approaches. "The proletarians have

nothing to lose but their chains."
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