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1 Introduction

Welcome to the special issue of Political Analysis dedicated to Bayesian methods. We

hope that you enjoy the varied and interesting contributions herein featuring Bayesian

statistical methods. For many people in empirical political science, Bayesian statistics

seems like a weird offshoot of probability that surfaces occasionally in journals and books

but does not occupy a particularly central role. This perception appears to be changing. In

fact, it appears to be changing quite rapidly. The purpose of this issue is to support and

accelerate this momentum by further demonstrating the full flexibility and power of

Bayesian methodology.

So why this change? Why are people suddenly more interested in developing Bayesian

models in their own research? The first apparent reason for this change is that the Bayesian

model specifications have distinct advantages over traditional alternatives, such as

probabilistic descriptions of model results and the systematic incorporation of prior

information. The second reason for this change has to do with computing. Prior to 1990,

when the watershed review article by Gelfand and Smith appeared, statisticians working

outside of statistical physics and image restoration (i.e., the vast majority) were unaware

of a flexible set of estimation tools based on Markov chains. Two primary tools were

described in that article: the Metropolis-Hastings algorithm from the 1953 article by

Metropolis et al. (although curiously only the Hastings 1970 paper is directly cited, p.

400), and the Gibbs sampler from the 1984 article by Geman and Geman. These were

relatively inaccessible pieces published in the Journal of Chemical Physics and IEEE
Transactions on Pattern Analysis and Machine Intelligence, respectively. What Gelfand

and Smith demonstrated was that these are actually very powerful general tools for

describing posterior distributions of interest and subsequently producing inferential

statements when standard analytical methods are difficult or impossible. As a result, we

see an explosion of Bayesian work by previously frustrated researchers in the leading

statistics journals of the 1990s who apply Markov chain Monte Carlo (MCMC) to

otherwise intractable problems.

Now we come to the social sciences, and political science in particular. Gradually over

the last five years or so Bayesian applications (generally using MCMC) have appeared.

Through the work of Gelman and King (1994), Bartels (1996, 1997), Smith (1998, 1999),

Western (1998), Quinn et al. (1999), Jackman (2000a, 2000b, 2001), Clarke (2001), Hill

and Kriesi (2001), Martin and Quinn (2002), and others, we have seen a steady increase in

awareness among general readers. An underlying theme in this work so far is that
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important model characteristics cannot be developed without a fully Bayesian

specification. A particularly appealing feature of Bayesian model specifications is the

direct inclusion of prior information that allows political scientists to recognize divergent

theoretical perspectives, expert opinion, and previous work in the studied area.

It is important to note at this point that Bayesian methods are not just another ‘‘fad’’

sweeping through social science methodology like Lisrel or HLM. As opposed to picking

up another tool or technique, Bayesian methods require a philosophical commitment on

behalf of the researcher. This commitment essentially boils down to accepting two basic

premises: (1) phenomena of interest are uncertain and changing, and (2) available prior

information should be used in model specifications. Both of these underlying principles are

well suited to research in the social sciences. First, it is rare to find authors asserting that

estimated quantities are fixed and unchanging in the real political world when there are

variables such as political ideology, probability of going to war, stability of governments,

and legislative productivity. Second, we all commence model specification with extensive

substantive knowledge about the problem (consider, for instance, the ubiquitous footnote

about coefficients that are ‘‘signed in the expected direction’’). So unlike researchers in

certain natural science fields, we view a shifting, uncertain world in which change is the

norm but previous observations and previous scholarly findings provide a substantial guide

to theory and conjecture.

Bayesian inference actually predates the classical approaches of Neyman-Pearson

frequentism and Fisher likelihoodism. These powerful giants of early-twentieth-century

statistics were openly hostile to ‘‘inverse probability,’’ and researchers were therefore

discouraged from applying Bayesian methods for quite some time. Interestingly, Fisher

(1935) created fiducial inference, which was an attempt to apply inverse probability

without uniform priors. This approach failed to do what Fisher wanted, and Lindley (1958)

eventually proved that fiducial inference is consistent only when it is made equivalent to

Bayesian inference with a uniform prior. Fortunately, Bayesians such as Good (1950),

Savage (1954, 1962), Jeffreys (1961), Lindley (1961, 1965) and de Finetti (1972, 1974,

1975) preserved interest throughout the middle of the century. One of the hallmarks of this

dark era was that many of the Bayesian specifications, while arguably superior in

theoretical foundation, led to mathematical forms that were intractable. The problem of

marginalizing difficult multidimensional integrals was eventually solved by MCMC

techniques, leading to the current Bayesian renaissance. So Bayesian statistics is

increasingly popular at the start of the twenty-first century because it has finally outlived

and outlasted active hostility by influential figures and because the computational tools for

general estimation have only recently became available and easy to use.

2 Bayesian Mechanics

The core philosophical foundation of Bayesian inference in statistics is the consideration

of both observables and parameters as random quantities for description. In practice, all

observed quantities are treated as fixed to be conditioned on, and all unobserved quantities

are assumed to possess distributional qualities to be treated as random variables.

Unobserved quantities can be both parameters to be estimated as well as missing data.

Thus underlying parameter values are now no longer treated as fixed and unmoving in the

total population, and all statements are made in probabilistic terms.

The Bayesian inference process begins with explicitly assigning prior information to

the unknown quantities from sources that can be empirical, qualitative, narrative,

statistical, or intuitive. These prior distributions range from very informative descriptions
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based on previous research in the field to deliberately vague and uncertain forms that

reflect high levels of uncertainty or previous ignorance. Furthermore, this prior distribution

is not seen as an inconvenience imposed by the treatment of unknown quantities; it is the

means by which existing knowledge is systematically included in the model.

Next, a likelihood function is specified in the conventional manner by assigning

a parametric form and plugging in the observed data. The third step produces a posterior
distribution by multiplying the prior distribution by the likelihood function. In this

manner, the likelihood function uses the data to update the specified prior knowledge

conditionally on the data (through the likelihood function):

Posterior Probability } Prior Probability 3 Likelihood Function.

This is just Bayes’s law, in which the denominator on the right-hand side has been ignored

by using proportionality. Stated more formally, and including the proportionality constant

in the denominator, we have

pðb j XÞ ¼ pðbÞLðb j XÞR
B
pðbÞLðb j XÞdb ; ð1Þ

where b is the parameter vector of interest with defined support B, and X represents the

data. Standard notation gives p(b) as the prior distribution on b, and L(b jX)db as the

likelihood function. Thus by conditioning on the data through the likelihood function, we

are updating the information contained in the prior distribution.

The idea of Bayesian updating is more general than it first appears. Since prior

information comes from virtually any source, we can treat the current posterior distribution

as a prior should new data be observed that we would like to condition on. Obviously this

process of updating continues indefinitely, or as long as we like, with old posteriors

becoming new priors and our level of knowledge constantly improving. A very neat

consequence of Bayesian updating is that the final posterior distribution after a series of

such updating steps is identical to the posterior constructed in the standard way as if all the

data had arrived at once.

The final step is to evaluate the fit of the model to the data and the sensitivity of the

conclusions to the assumptions, including the prior distribution. This is often done by

varying the prior in a systematic or ad hoc manner and observing the magnitude of changes

in the posterior. Global sensitivity analysis evaluates a wide range of alternative prior

specifications, forms of the link function, missing data implications, error sensitivity, and

perturbations of the likelihood and prior specifications. Local sensitivity analysis is the

more modest and realizable process of making minor changes in the prior parameteriza-

tion (but generally keeping the same parametric form) while looking at the resulting

posterior effects.

When the researcher is satisfied with the fit of the model and the range of assumptions,

the results are then described to readers. Unlike the null hypothesis significance test

(NHST) method of deciding strength of conclusions based on the magnitude of p values,

evidence is presented in the Bayesian inference process by simply summarizing the

posterior distribution, and therefore there is no artificial decision based on the assumption

of a true null hypothesis. The posterior summary is typically given by quantiles and

probability statements such as the probability that the parameter occupies some region of

its support: p(b 2 [bL : bH]).
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The most useful interval measure for model results is the highest posterior density
(HPD) region, which is the Bayesian version of a confidence interval. The HPD region is

the (possibly multidimensional) region of the posterior distribution with the highest

probability at some threshold, regardless of whether or not it is contiguous. More formally,

the 100(1 � a)% HPD region is the subset of the support of the posterior distribution for

some parameter, b, that meets the criteria:

C ¼ b : pðb j XÞ � kf g;

where k is the largest number such that

1� a ¼
Z
b:pðb jXÞ.k

pðb j XÞdb

(Casella and Berger 2001, p. 448). Unlike the analogous frequentist construct, we treat b
as a random quantity and therefore do not have to be bothered with nebulous concepts like

confidence here. This means that we can speak probabilistically: ‘‘The probability that the

posterior mean is greater than zero is . . .,’’ etc.
We can also consider the posterior predictive distribution as a way to check model

integrity and to make predictions if desired. Start with the prior predictive distribution of

a new data value, xnew, before observing the full data set:

pðxnewÞ ¼
Z
B

pðxnew; bÞdb ¼
Z
B

pðxnew j bÞpðbÞdb:

This is just the marginal distribution of an unobserved data value from the product of the

prior for b and the PDF or PMF, integrating out this parameter. This makes intuitive sense

because uncertainty in b is averaged out to reveal a distribution for the data point. More

useful is the distribution of a new data point, xnew, after the data, X, have been observed,

which is the posterior predictive distribution, calculated by

pðxnew j XÞ ¼
Z
B

pðxnew; b j XÞdb ¼
Z
B

pðxnew; b j XÞ
pðb j XÞ pðb j XÞdb

¼
Z
B

pðxnew j b;XÞpðb j XÞdb:

This can be simplified since xnew and X are assumed independent:

¼
Z
B

pðxnew j bÞpðb j XÞdb:

Because of the integral the posterior predictive distribution is the product of the single

variable PDF or PMF times the full data likelihood in which we integrate over uncertainty

in b to give a probability statement that is dependent on the observed data only. Now the

degree to which this predicted distribution differs from observed data is a measure of

model fit.

It is also possible to compare models with the Bayes factor. This is easily related to

conventional hypothesis testing since one of them can be a ‘‘null’’ specification. Suppose
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we wish to test two competing (not necessarily nested) models, M1 and M2, for explaining

the same data X, with corresponding estimated coefficient vectors b1 and b2. The posterior
odds ratio in favor of Model 1 versus Model 2, incorporating both prior and posterior

information, is produced by Bayes’s law:

pðM1 j XÞ
pðM2 j XÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
posterior odds

¼ pðM1Þ=pðXÞ
pðM2Þ=pðXÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
prior odds=data

3

R
b1
f1ðX j b1Þp1ðb1Þdb1R

b2
f2ðX j b2Þp2ðb2Þdb2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bayes factor

:

By rearranging we get the standard form of the Bayes factor, which can be thought of as

the magnitude of the evidence for Model 1 over Model 2, contained in the data:

BðXÞ ¼ pðM1 j XÞ=pðM1Þ
pðM2 j XÞ=pðM2Þ

:

Interestingly, for nested models with the same priors, the Bayes factor reduces to

a standard likelihood ratio.

3 Relation to Classical Methods

By classical methods here we mean both frequentist and likelihoodist approaches. A

frequentist posits a very large number of repeated trials of the same experiment and

estimates (assumed) fixed, but unknown, population parameters by conditioning on these

parameters and integrating over the observed data. A likelihoodist, like the Bayesian,

assumes that data are fixed once observed, but finds that all useful information for

estimating the unknown parameters is contained in the likelihood function. In contrast, the

Bayesian balances information between the prior and the likelihood function, conditioning

on the data and integrating over the parameters. Thus the greatest distance actually lies

between the Bayesian perspective and the canonical Neyman-Pearson frequentist view.

Since the Neyman-Pearson frequentist setup is not one that social scientists generally

prescribe to directly (our standard testing method is an inconsistent blend of Fisher and

Neyman-Pearson, something I have been quixotically complaining about for some time

[Gill 1999, 2001, 2002]), more appropriate comparisons are drawn with Fisher’s test of
significance. A noticeable difference is the means by which results are described. Rather

than give the mode of the likelihood function and the curvature around it, the Bayesian

approach is intended to more fully describe the posterior in probabilistic terms. Therefore

it is counter to the Bayesian mentality to talk simply about ‘‘the value’’ of some parameter,

since parameters possess distributional rather than fixed properties.

A common question asked by skeptics and enthusiasts is to what degree Bayesian

estimates resemble traditional likelihood estimates. Since the posterior is, by definition,

a data-weighted compromise between the prior and the likelihood, the Bayesian posterior

resembles a classical sampling distribution to the degree to which the likelihood swamps

the prior. This happens in two important circumstances. First, if the information in the

prior is weak relative to the likelihood then the latter will dominate. For this reason

researchers sometimes deliberately establish weak priors in the form of uniforms,

dispersed normals, or other forms in order to let the data dominate. Furthermore, the

Bayesian posterior can be setup as equal to the Fisherian sampling distribution if the

appropriate uniform prior is used. Often such diffuse priors are used with nuisance

parameters where it is not worth the effort to specify highly informed prior distributions.
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Second, as the data size increases the likelihood progressively dominates the prior, and in

the limit the prior is immaterial. This means that the maximum likelihood estimate is

asymptotically equal to a Bayesian posterior mean for any proper (noninfinite density)

prior. There is a great amount of statistical theory behind these relations. For instance,

Freedman (1963, 1965) and Diaconis and Freedman (1986) give mathematically rigorous

conditions for the consistency of Bayesian estimates in standard terms.

The primary differences are seen in small sample problems in which the asymptotic

equivalence is not applicable. A common frequentist criticism of the Bayesian approach in

these settings is that subjective priors have a great impact on the posterior distribution.

However, since the prior is an overt, integral part of the model development process,

researchers must be direct and clear about this part of the specification. There is nothing

inherently wrong with the prior dominating likelihood function as long as the prior is

defensible. As Western and Jackman (1994) note, certain literatures are destined to have

small samples and therefore important priors. There is also a developing literature on

robust Bayesian analysis specifically focused on producing estimators that are insensitive

to a wide range of possible prior distributions (Berger 1990).

4 Obtaining Marginal Posterior Distributions through Stochastic Simulation

As noted, Markov chain Monte Carlo techniques solve a lingering problem in Bayesian

analysis. Often Bayesian model specifications produce joint posterior expressions that are

analytically intractable. The core principle behind MCMC techniques is that if an iterative

chain of consecutive values can be carefully set up and run long enough, then empirical
summaries of quantities of interest can be obtained from chain values. So to marginalize

multidimensional probability structures (such as desired posteriors), we start a Markov

chain in the appropriate sample space and let it run until it settles into the target

distribution. When it runs for a time confined to this particular distribution, we can collect

summary statistics such as means, variances, and quantiles from the simulated values. So

the process replaces usually difficult or impossible analytical work with empirical sum-

maries from the simulated values. As long as the simulated values are from the distribution

of interest, there is no qualitative difference in the answers.

The most common method of producing Markov chains for MCMC work is the Gibbs

sampler (the default mechanism in the package WinBUGS), which produces an empirical

estimate of the marginal posterior distributions by iteratively sampling from full
conditional distributions for each parameter. The Gibbs method is popular because it is

usually easy to stipulate these conditional specifications: the distribution for each

parameter when candidate or real values are established for all others.

For convenience define b as a k-dimensional vector of unknown parameters. Call b[i]
the b vector where the ith parameter is omitted. The Gibbs sampler draws from the

complete conditional distribution for the ‘‘left-out’’ value: p(bi j b[i]), repeating for each

value in the vector each time conditioning on the most recent draw of the other parameters.

When each of the parameters has been updated in this way, then the cycle recommences

with the completely new vector b.
This procedure will eventually converge permanently to a limiting (stationary)

distribution that is the target posterior, provided that the Markov chain is ergodic.
Ergodicity results from aperiodicity plus positive recurrence of the Markov chain.

Aperiodic chains have no defined pattern whereby they repeat the same series of values in

any arbitrary period. A Markov chain is recurrent if it is defined on an irreducible state

space such that every substate can be reached from every other substate, and a Markov
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chain is positive recurrent if the mean time to transition back to the same state is finite. The

ergodic theorem is foundational to MCMC work since it is essentially the strong law of

large numbers in a Markov chain sense: the mean of chain values converge almost surely

to strongly consistent estimates of the parameters of the limiting distribution, despite mild

dependence (on some state space S 2 < for a given transition kernel and initial

distribution). These properties for the Gibbs sampler are well known and are described in

detail elsewhere (Robert and Casella 2004).

Unfortunately the word eventually as used above in claiming convergence is a big

caveat, and a large part of the MCMC literature in statistics journals focuses on

understanding and assessing Markov chain limiting behavior. Two primary philosophies

compete for adherents among applied researchers. Gelman and Rubin (1992) suggest using

the EM algorithm (or some variant) to find the mode or modes of the posterior, then using

overdispersed points throughout the posterior as a starting point for multiple chains.

Convergence is then assessed by comparing within-chain variance against between-chain

variance in a standard ANOVA manner with the idea that at convergence, variability

within each chain should be similar and will resemble the estimated target variance.

Conversely, Geyer (1992) recommends implementing one long chain and using well-

known time series statistics to assess convergence. In this vein, Geweke (1992) suggests

a difference of means test using an asymptotic approximation of the standard error for the

difference. Since the test statistic is asymptotically standard normal, then for long chains,

large values imply nonconvergence. In practice, most experienced users perform some

combination of diagnostic approaches.

5 A Brief Illustrative Application

As stated, the two primary advantages of Bayesian models are systematic integration of prior

information and probabilistic treatment of all unknown quantities. The former is con-

siderably more obvious, so this example highlights the value of the latter. The previously

described method of comparing models with the Bayes factor is somewhat limiting in its

restriction to two candidates. This could be extended with iterative comparisons but the

process would get quite tiresome, and a more generalized process is desired.

Suppose we are in the process of determining a final model specification from among

several, possibly many, alternatives. Classical methods say relatively little about this

process except in cases in which nested models are tested with likelihood ratios.

Furthermore, most authors in political science admit only one specification in their finished

work, despite admonitions by Leamer (1978, 1983) and others that competing models can

contain important information about parameter reliability and model fit. It turns out that the

probabilistic foundation here, which is literally not allowed in classical analysis, provides

an effective means of making such comparisons and evaluations.

We need to choose between alternative not necessarily nested models:M1,M2, . . .,MK.

For each k ¼ 1 : K, we determine a model prior, p(Mk), which represents our a priori belief

in this model. These priors can be determined from assertions in the relevant substantive

literature or by our own beliefs, or can be left deliberately vague by specifying uniform

probabilities, 1K. Note also that model priors are distinct from the prior distributions assigned

to each coefficient within the individual models (part of what determines their identity) and

are necessary only when we wish to develop a systematic comparison between models.

Also, by convention these model priors sum to one for the set of models tested, hence the

(unfortunately) standard situation in which specifying only a single model is equivalent to

a prior probability of one for the model and zero for all possible alternatives.
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For comparative purposes, we can use a simple averaging scheme from Raftery (1995).

The standard posterior distribution in alternative models can be reexpressed to explicitly

note the dependence on the model specification choice:

pðb j X;MkÞ ¼
pðb j MkÞLðb j X;MkÞ

pðX j MkÞ
;

the kth model in this case (recall that bk is the varying length coefficient vector

corresponding to the kth model only). The integrated likelihood is the denominator of

Bayes law calculated here by

pðX j MkÞ ¼
Z

‘ðbk j Mk;XÞpðbk j MkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
likelihood3 prior

dbk

(also called the marginal likelihood, the marginal probability of the data, or the predictive
probability of the data). For additional details on the setup for Bayesian model averaging see

Bartels (1997),Raftery et al. (1997), orHoeting et al. (1999) and the references contained therein.

Since we treat parameters and models in probabilistic terms, it is possible to continue to

use standard probability calculus to produce quantities of interest. For instance, using

Bayes law we can produce the posterior probability of any model of interest, given the set

of models evaluated:

pðMk j XÞ ¼
pðMkÞpðX j MkÞPK
‘¼1 pðM‘ÞpðX j M‘Þ

;

which is just a generalization of the Bayes factor to accommodate more reference models

in the denominator.

Often, though, it is parameter posterior information that is of greater interest, and we

would certainly want a way to average these posterior distributions across model

specifications. Consider now

Pðbj 6¼ 0 j XÞ ¼
X

bj 2Mk

pðMk j XÞ;

where the notation bj 2Mk requires summation only over models where Bj is included in the

specification. This form is essentially just the posterior probability that bj is reliable in the

‘‘true’’ model conditional on the model set compared. Conditional the assumption that bj 6¼
0, we can analyze the posterior mean and variance for the jth coefficient of the kth model:

E½bj j X�’
XK
i¼1

b̂jðkÞpðMk j XÞ

and

Var½bj j X�’
XK
i¼1

½ðVarbjðkÞ þ b̂jðkÞ2ÞpðMk j XÞÞ � E½bj j X�2�;

where the approximation notation is used to account for categorical granularity. So what

we are left with is the probability that the explanatory variable of interest actually matters
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to us averaging across models, and the expectation and statistical reliability also both

averaged across models. Note again that we are now considering models and posterior

coefficients in a direct probabilistic way.

As an empirical example of how this is useful, we will highlight here Raftery’s (1995)

reanalysis of Ehrlich’s 1933–1969 state-level crime data. Ehrlich (1975, 1977) provides

famous and highly criticized studies of the economic motivations for crime, which

included the first published instance of a multivariate linear model on deterrence. The

outcome variable is crime rate, and 15 possible explanatory variables are considered: %

young male, south, education, police 1960, police 1969, labor participation, sex ratio,

population, nonwhites, unemployment 14–24, unemployment 35–39, GDP, inequality,

probability of prison, and prison time. Therefore with K ¼ 15 explanatory variables, there

are 32,768 possible model specifications calculated from Num ¼
PK

r¼0
K
r

� �
(assuming no

interactions, polynomial, or time series components).

Raftery (1995) considers 14 possible model specifications (all with diffuse prior

distributions on the coefficients) to produce the results given in Table 1. This table actually

contains quite a bit of information. The black boxes indicate variable inclusion in the

numbered models. A single model specification is therefore understood by looking down

a particular column. It is easy to see that two variables (education and inequality) are

incorporated in every model and four variables (south, labor participation, sex ratio, GDP)

are incorporated in none. Since this is a linear model R2 values are provided, and more

informatively below them is the model probability (p(Mk jX)). These latter values

necessarily sum to one (subject to rounding) for all of the models specifically
incorporated, since nonincluded models are explicitly given zero prior probability.

Certainly the first specification stands out according to this criterion as well as by

BIC [BIC is the Bayesian analog of the Akaike Information Criterion, calculated by

� 2‘(b̂ jX) þ plog(n), for p explanatory variables and n observations].

On the right-hand sideP(bj 6¼0 jX) gives the probability that the jth coefficient is statistically
‘‘reliable’’ conditional on the set of models. That is, given the specifications analyzed, what is

the probability that this variable is nonzero in the traditional Fisherian sense? This quantity is

somewhat less useful than the others in the table since it is substantially (but not completely)

affected by the number of models that the researcher selected to include this variable. More

interestingly we can see in the following columns the model-averaged coefficient value and its

standard error. Choosing to view these in the traditional manner (rather than through Bayesian

posterior description), we can see that they all meet the 95% level of statistical reliability.

Actually, two coefficients (population and prison time) have 95%HPD intervals that edgeup to

(but do not cross) zero. So the worst thing we could say is that 95% of the posterior density for

these two parameters is bounded away from zero.

The key point from this brief example is that there is great advantage in being able to

treat model quantities probabilistically. Such an approach is intuitive and it facilitates

comparison in a way that classical models do not permit. While this is a somewhat stylized

example provided to show high-level points, it is also a starting point for more nuanced

and flexible approaches. For instance, some authors treat model space as a continuous

metric rather than a discrete one, with the objective of integrating over all of the

alternatives rather than just a chosen set. So if we were interested in making predictions

about some variable of interest (y) across models, then the weighted average predictive

distribution is given by

pðyjXÞ ¼
Z
B

Z
M

pðy j X; b;MÞpðb j X;MÞpðM j XÞdbdM;
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Table 1 Posterior summary of models

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 P(bj 6¼ 0 jX) E[bj jX]
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½bj jX�

q
% young male

South

n n n n n n n n n n n n 0.94 1.40 0.50

Education n n n n n n n n n n n n n n 1.00 2.12 0.50

Police 1960 n n n n n n n n n 0.76 0.95 0.20

Police 1969 n n n n n 0.24 0.97 0.19

Labor part.

Sex ratio

Population n n n 0.12 �0.08 0.04

Nonwhites n n n n n n n n n n 0.83 0.10 0.04

Unemp. 14–24

Unemp. 35–39 n n n n n n 0.68 0.32 0.13

GDP

Inequality n n n n n n n n n n n n n n 1.00 1.33 0.32

Prob. prison n n n n n n n n n n n n n 0.98 �0.24 0.10

Prison time n n n 0.35 �0.30 0.15

R2 0.84 0.83 0.82 0.82 0.80 0.82 0.80 0.80 0.80 0.81 0.79 0.79 0.78 0.78

p(Mk j X) 0.24 0.18 0.11 0.08 0.08 0.06 0.05 0.04 0.04 0.03 0.02 0.02 0.02 0.02

BIC þ 60 4.1 4.6 5.5 6.2 6.4 6.9 7.3 7.6 7.6 7.5 8.7 8.8 9.1 9.1

3
3
2



which is the posterior probability of y times the probability of the model and the coefficient

posterior, integrating across coefficient and model space (cf. Draper 1995). Another group

of authors (Spiegelhalter et al. 2002) take a slightly different (but probabilistic) approach

to obtain a measure for the effective number of parameters in a model based on comparing

the difference between posterior means of deviances and the deviances at the posterior

means of parameters. Accordingly, specification and parameter decisions are simulta-

neously considered.

6 Concluding Points

Bayesian methods are not a panacea, and Bayesian approaches are not going to solve every

problem that one encounters. What is offered is a grounded way of thinking about

probability models and inference that is typically more flexible than known alternatives.

Consider some important features of Bayesian inference:

� A tradition of specifying overt and clear model assumptions. By convention and

necessity, prior information and posterior uncertainty are given in Bayesian research

as direct statements. That is, it is necessary to fully describe to readers how one’s

prior beliefs influence the model results and how sensitive these model results are to

changes in those prior beliefs. Classical researchers are ‘‘let off the hook’’ here even

though their results are based on prior beliefs as well, a characteristic called

incoherence in the Bayesian literature (Cornfield 1969).

� A rigorous way to make probability statements about the real quantities of interest.
Consider the murky meaning of ‘‘confidence’’ in classical models. Anyone who has

lectured to undergraduates about how to interpret a standard confidence interval

should appreciate the probabilistic meaning of the Bayesian HPD interval (which is

actually how many would like to interpret a confidence interval). Conversely,

adopting the Bayesian perspective is to say that all claims and summaries will be

made on a probabilistic basis, which is much more flexible and convenient.

� An ability to update these statements as new information is received. The Bayesian
updating process by which today’s posteriors become tomorrow’s priors is a simple,

and fully consistent, way to change conclusions (posteriors) as new information is

observed.

� Systematic incorporation of previous knowledge on the subject. Prior distributions
are not encumbrances; they are opportunities. We all have prior beliefs and

suspicions before commencing a data analysis project. One should actually be

suspicious about claims of total ignorance, since the substantive interpretation is

therefore itself suspect. So the ability to systematically insert information from

previous work, competing theories, and qualitative data is an opportunity to ground

the model in its substantive context. Furthermore, we are not actually required to

provide strongly informed prior information, and weak forms of prior distributions

are easy to stipulate.

� Missing values handled seamlessly as part of the estimation process. In a Bayesian

model everything is designated as either ‘‘known’’ or ‘‘unknown’’ whether this is

data, parameters, latent variables, prior parameters, or anything else. So missing data

are estimated as a parameter conditional on observed or known quantities just like

standard parameters (usually as a nuisance parameter in MCMC estimation). Thus

missing data are seamlessly accommodated and do not have to be accommodated as

a special problem. In fact, multiple imputation, the state-of-the-art standalone
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procedure for handling missing data, is a Bayesian estimation process (whether the

users of convenient software know it or not).

� Recognition that population quantities are changing over time rather than fixed
immemorial. One of the defining characteristics of the social sciences is that we

rarely have fixed constants to estimate, such as the speed of light, the orbits of

planets, or various molecular values (real problems in early natural science statistics).

Instead we regularly contend with ideas that are mobile and shifting with changing

social systems and uncertain or ambivalent underlying attributes. So if we are to

recognize that the probability of war between India and Pakistan changes for both

systematic and stochastic reasons, then we should systematize this outcome to the

greatest extent possible and summarize the remaining uncertainty probabilistically.

In other words, we should create a Bayesian posterior distribution.

� Direct assessment of both model quality and sensitivity to assumptions. It is the

norm rather than the exception in Bayesian inference to test the sensitivity of the

model results to assumptions, particularly the prior. Conversely, it is the exception

rather than the norm to do so in classical inference. This partly resulted from

defensiveness by twentieth-century Bayesian practitioners, but also because it

highlights the degree to which the posterior is a weighted compromise between the

prior and the data, something of vital interest.

7 This Issue of Political Analysis

This special issues provides a wide variety of well-constructed Bayesian research. The

applications include issues of measurement, specification, dimensionality, and estimation.

In all cases Bayesian solutions are given to problems where alternatives are either

impossible, difficult, or theoretically undesirable.

In ‘‘Bayesian Factor Analysis for Mixed Ordinal and Continuous Responses,’’ Kevin
Quinn addresses an underappreciated problem with latent variable analysis: there can be

both continuous and ordinal measurements in the same model. In these cases neither factor

analysis nor item response theory are fully appropriate, so biases can occur from strict use

of either. The Bayesian measurement model presented here provides a major step forward

in this nettlesome problem by generalizing measurement to a higher level that specifically

incorporates mixed latent traits. The MCMC estimation process developed for this model

is made freely available to interested readers through the R package MCMCpack.
Bruce Western and Meredith Kleykamp provide a Bayesian look at change point

analysis in ‘‘A Bayesian Change Point Model for Historical Time Series Analysis.’’

Change point estimation is a perfect application for the Bayesian approach because these

events in the social sciences do not generally occur instantaneously as they might in some

physical experiment. More accurately, their commencement has a probabilistic in-

terpretation due to various delaying and anticipatory effects. So why would we presuppose

that a classical binary test of change at some exact point in time would be more appropriate

than a posterior distribution for the change? The answer, of course, is that we would not.

The authors also show that a simple linear specification can be very flexible when put in

the Bayesian context, and the results turn out to be quite interesting.

The ‘‘Columbia Group’’ of David Park, Andrew Gelman, and Joseph Bafumi
present us with a new way to specify multilevel Bayesian models in ‘‘Bayesian Multilevel

Estimation with Poststratification.’’ The article gives a new means of estimating state-level

opinions from national data using a Bayesian model specification. Furthermore, the article

takes a novel approach to the problem by constructing a design matrix (in the classical
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sense) and using the resulting coefficient estimates to produce predicted probabilities

across these characteristics. Finally, the authors show how to construct verifying model

checks (a practice that is unfortunately infrequent in standard empirical political science).

Jack Buckley writes a very different type of article from the others in this special issue.

In ‘‘Simple Bayesian Inference for Qualitative Political Research,’’ he argues for Bayesian

inference as a way to ‘‘build rapprochement’’ between qualitative and quantitative political

science. Since priors can come from many sources, such information can be completely

qualitative in nature as long as the end product for the model is a probability distribution of

some kind (very generally defined). The vehicle for illustrating Bayesian flexibility here is

the underappreciated Behrens-Fisher problem, which has bedeviled classical statisticians

for decades.

Simon Jackman departs from conventional data sources in ‘‘What Do We Learn from

Graduate Admissions Committees? A Multiple Rater, Latent Variable Model, with

Incomplete Discrete and Continuous Indicators’’ to analyze applications data for a political

science Ph.D. program with a measurement model of latent applicant quality based on the

ratings from admissions committee members and (the few) observable characteristics of

the applicants. Anyone who has served on these committees will certainly appreciate the

assessment problem addressed with his technique for combining ordinal rankings with

other covariates. This is a surprisingly complex task and one in which the Bayesian

approach using data augmentation is quite helpful. It also turns out that this measurement

model can be applied to more conventional data-analytic settings in political science where

latent traits are important. The findings also imply that such ratings actually do reflect

applicant quality, but there exist noticeable biases among individual raters, and the

uncertainty of point estimates can be large.

Finally, Jeff Gill and George Casella address a pervasive issue in the applied MCMC

world: mixing problems from high-dimension, multimodal target posterior distributions.

Such distributions provide many local maxima to attract and trap Markov chains for

extended periods of time that can exceed reasonable chain lengths and thus prevent a full

exploration of the posterior distribution of interest. The article, ‘‘Dynamic Tempered

Transitions for Exploring Multimodal Posterior Distributions,’’ gives a new MCMC

algorithm based on simulated annealing. This is a means of melting down the posterior

space to allow more free traversal of the Markov chain before cooling back to the original

state. The authors then demonstrate the properties and performance of the new technique

and apply it to a well-known problem in voting theory.

What is apparent from these brief descriptions is that there is a broad set of applications

suited to Bayesian analysis. This underscores my assertion that Bayesian methods are not

simply a temporary trend or fashionable application but represent a fundamentally differ-

ent way of thinking about statistical modeling and inference.
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