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Advantages of Multilevel Models

◮ Removes the restriction that the estimated coefficients are constant across individual cases by

specifying levels of additional effects.

◮ Provides a notationally efficient way to organize groups in the model.

◮ Accounting for individual versus group-level variation.

◮ Modeling variation among individual-level regression coefficients.

◮ Estimating regression coefficients for groups of interest.

◮ Gets the standard errors right.
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Features of Multilevel Models

◮ Each level of the model is its own regression, with its own assumptions about: functional form,

linearity, independence, variance, distribution of errors, etc.

◮ Models are usually “mixed,” meaning some coefficients are modeled and some are unmodeld.

◮ Multilevel models are highly symbiotic with Bayesian specifications because the focus in both cases

is on making reasonable distributional assumptions.

◮ These approaches are generally more demanding of statistical estimation process (software) to

produce results.
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Modern Notation

◮ Units (smallest level of analysis): i = 1, . . . , n.

◮ Outcomes: y = y1, . . . , yn.

◮ Explanatory variables (predictors) at the first level are collected in an n× k non-singular matrix

X, with a leading column of 1s.

◮ Second-level explanatory variables are collected in an n× J non-singular matrix Z.

◮ Estimation produces k × 1 vector β and k × 1 vector ŷ, and higher level regression vectors γ.

◮ Individual-level result: yi = g−1(Xiβ).

◮ For an individual predictor, the column vector of X is denoted X(κ).

◮ Groups are denoted j = 1, . . . J at the first level and k = 1, . . . K at the second level.

◮ Group membership subscripted j[i], so j[35] = 4 means the 35th case belongs to group 4.

◮ Use a, b, g in code to denote α, β, γ.

◮ Standard errors are denoted σy, σα, σβ,. . . .
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Linear Model Illustration

◮ Start with a standard linear model specification indexed by subjects and a first level of grouping,

the context level.

◮ Now use a single explanatory variable that has the form:

yi = βj0[i] + βj1[i]Xi + ǫi.

◮ Suppose we have group-level explanatory variables, Zj·, in that their effect is measured at the

aggregated rather than at the individual level.

◮ Now add a second level to the model that explicitly nests effects within groups and index these

groups j = 1 to J :

βj0[i] = γ00 + γ10Zj0 + uj0

βj1[i] = γ01 + γ11Zj1 + uj1,
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Linear Model Illustration

◮ The two-level model is produced by inserting the context level specifications into the original linear

expression for the outcome variable of interest:

yi = γ00 + γ01Xi + γ10Zj0 + γ11XiZj1 + uj1Xi + uj0 + ǫi.

◮ This equation shows that the composite error structure, uj1Xi + uj0 + ǫi, is now clearly het-

eroscedastic since it is conditioned on levels of the explanatory variable, causing additional esti-

mation complexity.

◮ Notice that there is an “automatic” interaction component: γ11XiZj1.

◮ Now we are going model distributions for y, βj0, and βj1.

◮ This means we will make distributional regression statements:

βj0 ∼ f (γ00 + γ10Zj0, σβ0).
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Vocabulary Fun

◮ The varying coefficients are sometimes called random effects, since they are associated with dis-

tributional statements like αj = N(Zjγ, σ
2
α).

◮ The term fixed effects is more nebulous with different meanings from different authors:

⊲ coefficients that are constant across individuals (most common definition)

⊲ factor contrasts

⊲ nuisance coefficients that are uninteresting but included

⊲ coefficients in population models

⊲ realized random variables

⊲ MLE values assuming infinite group-level variance

(see the discussion in G&H, p.245).

◮ Sometimes these models labeled as mixed effects models.

◮ Prescription: use multilevel models or hierarchical models with appropriate descriptor or detailed

specification.
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Vocabulary Overview

◮ For the data matrices, Xi for individual i in cluster j, and Zj for cluster j, there are five canonical

models that we will look at:

“Completely Pooled” yi = β0 + β1Xi + γZ + ei

“Fixed Effect” yi = βj0[i] + β1Xi + ei

“Random Effect” yi = βj0[i] + β1Xi + γZj + ei

“Random Intercept and Random Slope” yi = βj0[i] + βj1[i]Xi + ei

“Completely Unpooled’ yj[i] = βj0 + (βj1Xj[i] + γZj) + ej[i]

◮ This is produced by replacing the previous γ coefficient names with common regression-style

language.

◮ “Fixed” and “random” can differ in definition by literature (Kreft and De Leeuw 1988, Section

1.3.3, Gelman 2005), and better notation is “random intercepts” for “fixed effect,” and “varying-

intercept, varying-slope” for “random intercept and random slope.”

◮ Best to conceptualize these specifications as members of a larger multilevel family where indices

are turned-on or turned-off systematically depending on the hierarchical purpose.
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Comparison with Variable Contrasts

◮ The most commonly used scheme for dealing with purely categorical explanatory variables is called

a treatment contrast where one category is selected as a baseline and for k categories of the

explanatory variable there are k − 1 estimated difference parameters.

◮ Such schema are necessary because including all categorical information creates an uninvertible

X′X matrix (perfect collinearity).

◮ This can be awkward for large k or where there is not a logical baseline category.

◮ Multilevel models allow inclusion of all categorical values through specification in a hierarchy: they

become part of the model specification rather than just additional X columns.
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Back to Pooling

◮ Complete-Pooling: excluding categorical predictors completely (no hierarchy).

◮ This ignores (possibly important) variation between categories.

◮ No-Pooling: estimating separate models for each level of the categorical predictors.

◮ This overstates variation between categories, making them look more different than they really

are (unless the categories are not meaningful).

◮ Multilevel Models: a compromise between these two extremes that captures within category

uniqueness and between category similarities.

◮ Running example from Gelman & Hill: Radon gas by county (J = 85) in Minnesota.
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Presenting Results from Multilevel Models

◮ Often there are too many parameters to

present in journal articles with realistically

large models.

◮ In some literatures, such as statistical ge-

nomics, there are thousands.

◮ Strategies:

⊲ give only group level summaries,

⊲ plot group level effects,

⊲ sample cases from the total,

⊲ identify critical cases,

⊲ graph summaries of individual level ef-

fects.
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Statistical “Significance” In This Course

◮ We will not be making the mistake of fixating on p-values and “stars.”

◮ Melton, A.W. (1962). Editorial. Journal of Experimental Psychology, 64, 553-557.

◮ Generally statistical significance in the sciences is not very significant.

◮ We will take a Bayesian approach with (mostly) vague priors and subsequently describe the re-

sulting posterior distributions.

◮ We will therefore be thinking about more important concepts like:

⊲ effect size,

⊲ power,

⊲ statistical reliability,

⊲ posterior probability.
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Simple Illustration of Bayesian Inference

dur <- c(0.833, 1.070, 1.234, 1.671, 2.065, 2.080, 2.114, 2.168, 2.274, 2.629, 2.637)

N <- c(38, 28, 27, 20, 17, 15, 15, 15, 15, 14, 12)

L <- qgamma(0.05,shape=sum(N),rate=sum(N*dur))

H <- qgamma(0.95,shape=sum(N),rate=sum(N*dur))

ruler <- seq(0,0.90,length=1000)

postscript("Class.Multilevel/Images/models.figure01.ps")

par(mfrow=c(1,1),mar=c(6,6,2,2),cex.axis=1,cex.lab=1.5,bg="slategray")

plot(ruler,seq(0,12,length=length(ruler)),type="n", ylim=c(-3,12.5),

xlab="Posterior Support",ylab="Posterior Density")

lines(ruler,dgamma(ruler,shape=sum(N),rate=sum(N*dur)),lwd=2.5); abline(h=0)

segments(L,0-.5,L,dgamma(L,shape=sum(N),rate=sum(N*dur)),lty=2)

segments(H,0-.5,H,dgamma(H,shape=sum(N),rate=sum(N*dur)),lty=2)

segments(L,0-.5,H,0-.5,lty=2)

segments((L+H)/2,0-.5,(L+H)/2,0-1.09,lty=2)

text((L+H)/2,-1.4,paste("90% Credible Interval, (",round(L,3),", ",

round(H,3),")",sep=""),cex=1.1)

segments(0,11,sum(N)/sum(N*dur),11,col="yellow3",lwd=4)

text(sum(N)/sum(N*dur)/2,11.5,"Effect Size",col="yellow3",cex=1.3)

dev.off()
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The pseudo-Frequentist NHST is wrong for 1-off analysis of observational data

◮ A few authors have noted this (just a small sample): Barnett 1973, Berger, Boukai, and Wang 1997, Berger Thomas

Sellke 1987, Berkhardt and Schoenfeld 2003, Bernardo 1984, Brandstätter 1999, Carver 1978, 1993, Dar, Serlin and Omar 1994, Cohen

1988, 1994, 1992, 1977, 1962, Denis 2005, Falk and Greenbaum 1995, Gelman, Carlin, Stern, and Rubin 1995, Gigerenzer 1987, 1993,

1998, Gigerenzer and Murray 1987, Gill 1999, 2005, Gliner, Leech and Morgan 2002, Grayson 1998, Greenwald 1975, Greenwald, Gonzalez,

Harris and Guthrie 1996, Hager 2000, Howson and Urbach 1993, Hunter 1997, Hunter and Schmidt 1990, Jeffreys 1961, Kirk 1996, Krueger

1999, 2001, Lindsay 1995, Loftus 1991, 1993a, 1993b, 1994, 1996, Loftus and Bamber 1990, Macdonald 1997, Meehl 1967, 1978, 1990, 1978,

Nickerson 2000, Oakes 1986, Pollard 1993, Pollard and Richardson 1987, Robinson and Levin 1997, Rosnow and Rosenthal 1989, Rozeboom

1960, 1997, Schmidt 1996, Schmidt and Hunter 1977, Sedlmeier and Gigerenzer 1989, Thompson 2002, Wilkinson 1999.
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The pseudo-Frequentist NHST is wrong for 1-off analysis of observational data

◮ A few authors have noted this (just a small sample): Barnett 1973, Berger, Boukai, and Wang 1997, Berger Thomas

Sellke 1987, Berkhardt and Schoenfeld 2003, Bernardo 1984, Brandstätter 1999, Carver 1978, 1993, Dar, Serlin and Omar 1994, Cohen

1988, 1994, 1992, 1977, 1962, Denis 2005, Falk and Greenbaum 1995, Gelman, Carlin, Stern, and Rubin 1995, Gigerenzer 1987, 1993,

1998, Gigerenzer and Murray 1987, Gill 1999, 2005, Gliner, Leech and Morgan 2002, Grayson 1998, Greenwald 1975, Greenwald, Gonzalez,

Harris and Guthrie 1996, Hager 2000, Howson and Urbach 1993, Hunter 1997, Hunter and Schmidt 1990, Jeffreys 1961, Kirk 1996, Krueger

1999, 2001, Lindsay 1995, Loftus 1991, 1993a, 1993b, 1994, 1996, Loftus and Bamber 1990, Macdonald 1997, Meehl 1967, 1978, 1990, 1978,

Nickerson 2000, Oakes 1986, Pollard 1993, Pollard and Richardson 1987, Robinson and Levin 1997, Rosnow and Rosenthal 1989, Rozeboom

1960, 1997, Schmidt 1996, Schmidt and Hunter 1977, Sedlmeier and Gigerenzer 1989, Thompson 2002, Wilkinson 1999.

◮ Why?

1. Artificial Model Selection Criteria

2. The Arbitrariness of Alpha

3. Replication Fallacy

4. Asymmetry and Accepting the Null Hypothesis

5. Probabilistic Modus Tollens

6. Inverse Probability Problem
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Sample Analysis, Data

◮ 29 Incarcerated Women with Substance Use Disorder and Post-traumatic Stress Disorder in Prov-

idence, Rhode Island, 1999-2001.
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Sample Analysis, Data

◮ 29 Incarcerated Women with Substance Use Disorder and Post-traumatic Stress Disorder in Prov-

idence, Rhode Island, 1999-2001.

◮ Outcome variable: PTSD diagnosis (13 negative, 16 positive).

◮ Explanatory variables

⊲ AGE, 1 for 20-29, 2 for 30+

⊲ ETHNIC, 1 for white (nonhispanic), 2 for nonwhite

⊲ EDUCATE, 1 for no HS diploma, 2 for HS diploma

⊲ FSTPRIS, 0 for in prison before, 1 for first time

⊲ CRIME, 0 for misdomeanor, 1 for felony

⊲ ARRESTS, the number of arrests with convictions

⊲ TRAGE, age of first trauma (robbery/mugging, sexual abuse, physical abuse)

⊲ ALCO1B, alchohol issue: 0=None, 1=Abuse, 2=Dependent
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Sample Analysis, Data
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Sample Analysis, Model

p(yi = 1) = logit−1
(

β0 + βAGE
· AGEi + βEDUCATE

· EDUCATEi

+βAGE·EDUCATE
· (AGEi · EDUCATEi) + βCRIME

· CRIMEi + βFSTPRIS
· FSTPRISi

+βARRESTS
· log(ARRESTSi) + βTRAGE

· exp(TRAGEi) + βALCO1B
· ALCO1Bi + αETHNIC

j[i]

)
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Sample Analysis, Model

p(yi = 1) = logit−1
(

β0 + βAGE
· AGEi + βEDUCATE

· EDUCATEi

+βAGE·EDUCATE
· (AGEi · EDUCATEi) + βCRIME

· CRIMEi + βFSTPRIS
· FSTPRISi

+βARRESTS
· log(ARRESTSi) + βTRAGE

· exp(TRAGEi) + βALCO1B
· ALCO1Bi + αETHNIC

j[i]

)

αETHNIC
j ∼ N

(

α0 + αAGE
m[j] · AGE + αEDUCATE

m[j] · EDUCATE, σ2
ETHNIC

)

Fixed effects: Random effects:

Estimate Std. Error z value Groups Name Variance Std.Dev.

(Intercept) -5.02e+00 4.14e+00 -1.214 ETHNIC (Intercept) 0.1839 0.429

AGE 5.12e+00 2.78e+00 1.841 AGE 0.0643 0.253

EDUCATE 7.37e+00 3.76e+00 1.959 EDUCATE 0.0904 0.301

CRIME -2.00e+00 9.01e-01 -2.221 Residual 0.7299 0.854

FSTPRIS 2.48e-01 1.11e+00 0.222

log(ARRESTS) -1.19e+00 6.17e-01 -1.927

exp(TRAGE) 5.63e-08 3.48e-08 1.617

ALCO_1B 1.10e-01 4.18e-01 0.264 AIC BIC logLik deviance

AGE:EDUCATE -3.98e+00 1.99e+00 -2.003 57.2 77.7 -13.6 27.2
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Sample Analysis, Code

trauma.short.complete <- read.table("http://jgill.wustl.edu/data/trauma.short.dat",

header=TRUE)

library(nlme); library(arm)

trauma.out <- lmer(PTSD2 ~ CRIME + FSTPRIS + log(ARRESTS) + exp(TRAGE) + ALCO_1B

+ (1 + AGE + EDUCATE | ETHNIC),

family=binomial(link="probit"),

data=trauma.short.complete)

summary(trauma.out)
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Specifications with the lmer() Function

◮ Start with an outcome variable Y, a continuous variable X1. and a categorical grouping variable

X2 Then model M1 is:

Y ~ X1 + (1|X2)

This gives estimates for β0 a global (constant) intercept, β1 a slope estimate corresponding to X1,

and a set of group-level intercepts that for the deviation from the global intercept.

◮ We can add another hierarchy definition for M2:

Y ~ X1 + (1|X2) + (0+X1|X2)

This provides everything in M1 and also give the effect of X1 within each level of X2, which is a

set of group-level deviations from the slope.

◮ M2 assumed that there are no correlations between the two sets of deviations. To relax this specify

M3:

Y ~ X1 + (1+X1|X2)

which gives the correlation between the two sets of deviations.
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Specifications with the lmer() Function

◮ Adding another continuous paramater X3 according to M4:

Y ~ X1*X3 + (1+X1+X3|X2)

gives:

⊲ a global intercept, β0

⊲ a single global estimate for the effect of X1, β1

⊲ a single global estimate for the effect of X3, β2

⊲ a single global estimate for the interaction between X1 and X3, β3

⊲ deviations from the global intercept in each level of X2, γ1

⊲ deviations of the slope effect from β1 in each level of X2, γ2

⊲ deviations of the slope effect from β3 in each level of X2, γ3
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Specifications with the lmer() Function

◮ Continuing M4. . .

⊲ correlation between γ1 and γ2 across levels of X2

⊲ correlation between γ1 and γ3 across levels of X2

⊲ correlation between γ1 and γ4 across levels of X2

⊲ correlation between γ2 and γ3 across levels of X2

⊲ correlation between γ2 and γ4 across levels of X2

⊲ correlation between γ3 and γ4 across levels of X2

plus standard errors for these coefficients.

◮ A model that did not give deviations from the global intercept but did give deviations from the

slopes is specified by M5:

Y ~ X1 + (0+X1|X2)
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The Bayesian Take On Hierarchical Models


