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Project Description

» [t is well-known that highly-multimodal target distributions are problematic for basic MCMC
algorithms (and exacerbated by high dimensions too).

» Of course they are also highly problematic for standard maximum likelihood numerical algorithms:
quasi-Newton method BFGS, standard and modified Newton-Raphson, steepest descent, IWLS,
ete.

» Key problem: algorithms are attracted to isolated local maxima and either take a long time to
leave, or in some cases never leave during the time the chain path is recorded.

» Our purpose: to provide a new algorithm that efficiently explores multimodal posterior distribu-
tions.



POLMVIETH 04

The Metropolis-Hastings Algorithm
» A type of stochastic process that will help us describe posterior distributions empirically.

» Background:

> The original work by Metropolis et al. postulated a two-dimensional enclosure with n = 10
molecular particles.

> They sought to estimate the state-dependent total energy of the system at equilibrium.

> Of course there is an incredibly large number of locations for the molecules in the system that
must be accounted for and this number grows exponentially with time.

> Their idea is to simulate this system probabilistically by generating moves that are more
likely than others based on positions that are calculated using uniform probability generated
candidate jump points.

> Therefore the simulation produces an estimated force based on a statistical, rather than de-
terministic, arrangement of particles.
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Metropolis Circa 1953

» Assumptions:
> We want to describe a posterior, (@), which is difficult to do analytically.

> Candidate values will be generated from the distribution ¢(8'|@) where ¢(.|0) a valid (and
convenient) PDF for admissible values of 6.

> Also assume for now that this candidate generating (instrumental, jumping, or proposal)
distribution is symmetric in its arguments:

q(0]0") = q(6'|6).

Otherwise the Markov chain is not irreducible (irreducible: “all reasonable sized sets can be
reached from every possible starting point” —Meyn and Tweedie 1993).

> Note that the support of 7(0) and ¢(6’|@) must be equivalent.
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Metropolis Circa 1953 (cont.)

» A a single Metropolis iteration from the symmetric form has the following steps:

1. Sample 6’ from ¢(0'|0), where 0 is the current location.
2. Sample u from U0 : 1].
3. 1f

then accept 0’
4. Otherwise keep 0 as the subsequent draw.

» The result is the chain:
907 017927 SRR 071

where consecutive values are not necessarily unique.

» roblem: it turns out that the symmetric requirement of the instrumental distribution is an
annoying restriction.
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Metropolis-Hastings Circa 1970

» Background:

> Hastings (1970) as well as Peskun (1973) generalized the Metropolis et al. version by suggesting
a way to use other jumping distributions.

> Question: can an asymmetric instrumental distribution work if there is some sort of compen-
sation in the acceptance ratio?

> Yes (obviously), but there are conditions.
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Metropolis-Hastings Circa 1970

» Generalizing:

> Define A(0',0) as the actual transaction function, which differs from ¢(6’|@) because it
includes the accept/reject decision:

A(0',0) = ¢(6'|6) min {Z%)} 1}

> Now require that the transition kernel satisfy the detailed balance equation instead of sym-
metry:

A(0',0)7(6) = A(6,0)7(0).
(also called the reversibility condition).

> Under this condition the actual transaction function becomes:

A(0',0) = ¢(0'|0) min {ZEZ,’% Z%; 1}




Metropolis-Hastings Circa 1970

» What does this buy you? The following:

L.

If the marginal distribution of the chain is proper, then this is a positive chain (Diaconis
and Stroock 1991, p.36).

A positive chain is positive recurrent Aldous and Diaconis 1987, p.70).

Reversibility and positive recurrence means that there is a unique stationary distribution
(Diaconis, Holmes, and Neal 1998, p.727; Diaconis and Freedman 1980, p.128).

Aperiodicity and positive recurrence means that the chain will eventually converge to this
stationary distribution (Diaconis and Fill 1990, p.1485-6).

Metropolis chains are irreducible and aperiodic by construction with u.s.d w(8). (Diaconis
and Saloff-Coste 1995, p.112).
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Metropolis-Hastings Circa 1970

» Generalizing, cont.:
> This means replacing the 1953 acceptance ratio with:

Ly O) e gy 4010)7(6)
a(@,@)-ﬂ(9)> th:  a(@,0) " 16) (6

> So we can use the same Metropolis-Hastings engine but replace symmetry with reversibility.

random walk chain, 8’ = 0 + f(7)
(where f(7) is some convenient PDF).

> U.

independence chain, 8’ = f(7)

> Workhorses: _ N :
(ignores current position entirely).

hit and run chain, 8’ = 6 + Ds x Dr
(separates direction and distance decisions).

» Problem: standard M-H gets can get stuck in isolated modes with low total probability for long

periods of time.
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Simulated Annealing

Basic Idea (Kirkpatrick, et al. 1983):

» Analogous with metallurgy: heat up the MCMC transition matrix such that the chain converges
weakly over a near-uniform distribution, then progressively cool.

» Once cooling begins, the chain is observed to converge at progressively declining temperatures
until the transition matrix returns to its original state.

» While the Markov chain described here is not homogeneous like the standard Metropolis-Hastings
algorithm, Hajek (1988) showed that the discrete version still has convergence properties.



POLMVIETH 04

Simulated Annealing

Metropolis-Hastings Implementation: For “Heated-Up” Chains:

» Heating the kernel flattens out its probability structure toward a uniform distribution, thus melting
down modes.

» As the jumping distribution generates candidate positions, very few of these will be rejected and
the Markov chain will rarely stay in place.

» The Good: it means that the chain can freely explore the sample space without impediments.

» The Bad: there is obviously much less of a tendency to remain in the (previous) high density
areas.

» The Ugqly: there is a cooling schedule trade-oft:
> slow cooling enables greater coverage of the sample space,

> faster cooling gives more reasonable simulation times.
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Simulated Annealing

Temperature Schedule:

» Start with a high initial temperature, Tj, that provides sufficient melting.

» Gradually cool down to one by decreasing slightly to T} at era t.

M-

» At each temperature modify the target according to 7*(0) = 7(0)T.

» Some example cooling schemes:
> linear: Ty = Ty — kt > logarithmic: Ty = 1+ k71 /log(t + 1)

> proportional: T} = €1;_1,0<e<1 > geometric: Ty = 1 + kelTi_1,0<e< 1.
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Simulated Annealing

Metropolis Implementation Details:

» During era t we are at temperature 73, starting at time 0 with the heated up temperature Tj,.

» Subsequent values are chosen according to the algorithm:
> At the j step draw @’ from a convenient distribution around the current position, oY,
> Define: a(@’,0) = exp|(7(0') — ©(0Y)))/T;], and make the decision:

. @'  with probability P |min (a(6',6),1)]
9!

J

- 0V with probability 1 — P [min (a(6',0),1)]

» After thermal convergence or sufficient traversal is concluded at this temperature, move down the
temperature schedule from T} to T}, 1.

» Repeat steps 1-3 until the temperature schedule has been completed.

» [’roblem: only the cold chain is useful for inferential purposes.
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Simulated Annealing

Example:
» The infamous witch’s hat distribution of Matthews (1991):
S|
p(@|x) = (1 —9) [27T02]_d/2 exp | — Z 27‘2(33Z — 01»)2 -+ 5](071)(:17@),

1=1

where [(g1)(z;) is an indicator function equal to one when w; is in the interval (0,1) and zero
otherwise.

» Melting Down the Witch’s Hat Distribution, at temperatures 1,25,300:
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Alternative 1] Metropolis-Coupled Markov Chain Monte Carlo

» Because of the high-dimensional and multimodal nature of objective functions of interest here,
the candidate distribution and the temperature schedule must be chosen with great care to allow
adequate exploration of the space.

» One carly solution: MCMCMC (Geyer 1991). Characteristics (for a vector ¢ from 7(c)):
> Run N parallel chains at different heat levels from 1 to Gy.
> Thus N transition kernels are defined, M C1, ..., MCy, with stationary distributions m, ... my.
> At time ¢ select two chains, ¢ and 7, and attempt to swap states:

) (£)

(t
c, < c

> with a Metropolis decision using the hotter chain as the baseline, probability: ~ min { ”
s

> Record only the cold chain for inferential purposes.

» Problem: N usually needs to be large.
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Alternative 2] Simulated Tempering

» Geyer & Thompson (1995) and Marinari & Parisi (1992) proposed an alternative algorithm called
simulated tempering that reduces MCMCMC to a single chain.

» Essentially temperature becomes a discrete random variable (i.e. it now possesses a distributional
assignment) so the system can heat and cool as time proceeds, at each step draw:

6", 3] ~ q(0'16)9(5)

» Why would one do this? Now elderly chains can still avoid being trapped at local maxima without
having to run many replicants.

» Problem: specifying the marginal distribution for 3 is difficult in practice since f(3) needs to
favor the cold chain sufficiently to get a large enough sample for inferences, but it also needs to be
able to sample from higher temperature values as well for good traversal.



POLMVIETH 04

Alternative 3| Tempered Transitions

» Neal (1996) extends simulated tempering with tempered transitions to heat up the posterior
distribution at each step (preserving the detailed balance equation).

» Basic idea: “ladder” up and down at every iteration of the chain with random walk steps.

» Each ladder step specifies a (nonnormalized) stationary distribution defined on the same state
space but at progressively hotter temperatures (3;) going up.

» We accept the last (bottom) ladder value with a Metropolis decision.

» Details:

> define a sequence of candidate densities m;,2 = 1,..., N, where as ¢ increases the m,; get
flatter going up the ladder then again more peaked going down the ladder.

> parameterize: m; = ml/ﬁi;
> where: 1 < 31 < By < -+ < By_1 < By

> then: Oy > Bny1 >+ > Poy—2 > Bon-1 > 1.
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Tempered Transitions (cont.)

» Starting from the original candidate m, at each step we cycle through the m; as follows:

> Let MC(c, m) denote an MCMC kernel for ¢ with stationary distribution m where 71 is the
target density;,

> then we use the following transitions starting at point ¢ = ¢ and iteration ¢ (N odd):

step 1: cy ~ MC(cp, my)

step N: cy ~ MC(cly_{,my)
step N+1:  cjy.; ~ MC(cy.q, mn_1)

step 2N-1: ¢y, ~ MC(chy_o, m1).

(t+1)

> Now use a final Metropolis-Hastings decision, accepting ¢}, _; as c with probability:

Cfmalch)malc))  ma(cyl)  mi(chyy)
e { Ti(ch) mi(ch) maa(cy ) malchy )’ 1} ’

which preserves the detailed balance condition.
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Tempered Transitions (cont.)

» Substitute the (3; parameterization back in for clarity and accept cgt)g ~_1 With probability:

m e\ [ m% D)\ [ mB(el)
min (t)O ) ?t> .
ri(cg) m!/4(c)) ) \m!/%(c}))
m/Av-1 (el ) m'/ov () ) mb/ v ()
Amti(el ) ) \mtoai(eyl ) ) \ mi(ey)y )
<m1/ﬁ2<cé?v3>> <m1/ﬂl<c§}w>> ( oy ) ) 1}_
mU(esy ) ) \mb(egy ) ) \mi/(eyy )
» If we notationally “collapse” the ancillary walk it is clear that the standard M-H decision exists:

min m*(c%)) —71(0512;_1) 1 » = min q<C’C/)7T<C/)1
ey ) \meel]) ) dele)ie) [

~—~

[
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Tempered Transitions (cont.)

» This sequence of transitions allows excellent exploration of the space, as the density my is typically

chosen as very “hot”, for example, uniform on the entire space.

» Tradeoff: spacing between ladder rungs decision.

> Setting

> Setting

ﬁi _ 6@'—1—1

ﬁi — ﬁi—i—l

as small gives higher acceptance rates but poorer mixing.

as large is good for mixing around the space but may lead to inordinately

high rejection rates.

> Both criteria can be satisfied with taller ladders (i.e. more steps), for a given difference in (3

values.
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Comparison of Algorithms

A deliberately “ugly” example
objective function on [—1, 1]*:

f(z,y) = abs((z sin(20y — 90) —
y cos(20x + 45))%a cos(sin(90y +
412)x) + (xcos(10y + 10) —
y sin(10z + 15))?a cos(cos(10z + \ : |

7 ’?“‘ 2o
24)y)) . I B A 7/ ' \v‘»h};'l}:/

¥ N
4, l// AV
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Comparison of Algorithms (5,000 iterations only)

With Reqular Metropolis With Simulated Annealing With Tempered Transitions

- ey ! +
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(New) Alternative 4| Dynamic Tempered Transitions

» Ladder height issue:

> When the area around the chain is highly irregular, it is better to have a lower (cooler maximum
temperature) ladder in order to better explore modes.

> When the area around the chain is smooth, it is better to have a longer (hotter maximum
temperature) ladder in order to quickly traverse the low density region.

» Number of ladder rungs issue:

> Setting the number for a given ladder height as too small can reduce the acceptance rate
because high quality candidates may not be offered.

> Conversely, settings the number as too large can also reduce the acceptance rate because of
the product in the Metropolis-Hastings decision step.
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Dynamic Tempered Transitions (cont.)

» Our strategy:

> Specity a distribution of ladders all having the same number of rungs, but differing heights
(differing maximum temperatures).

> Observe the multidimensional curvature at the current Markov chain location and specify a
greater probability of selecting a cooler ladder when this curvature is high, and a greater
probability of selecting a hotter ladder when the curvature is low.

> We treat the number of rungs as a nuisance parameter which can be fixed at the beginning of
the chain or tuned during the early runs by comparing acceptance probabilities.
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Dynamic Tempered Transitions Details
» Define A to be a discrete parameter that indexes ladders.

» For each c, let p(A|c) be a proper conditional probability distribution, that is, p(Alc) > 0 and
[ p(Ae)dA = 1.

» Next, let my(c,c’) be a temperature indexed distribution similar to the described tempered tran-
sitions ladder according to Neal (1996).

» We want to take a mixture of these ladders now. Therefore our candidate generating distribution
becomes:

g(c'|e) = ma(c, ¢')p(Alc),

and form a Metropolis kernel based on g,(c’|c) and f(c).



POLMVIETH 04

Dynamic Tempered Transitions Details (cont.)

» As an example, suppose that there are ¢ = 1,...,k ladders, and as ¢ increases the ladders get
hotter.

» If | f”(c)| is big (so we are near a mode) we might want to favor the cooler ladders.

» To do this we can take p(A|c) to be a binomial mass function with & trials and success probability
p(c), where
logit[p(c)] = a — b|f"(c)], b>0.

» So big values of |f”(c)| would result in small p(c), which would favor the smaller values of 7 and
the cooler ladders.
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Dynamic Tempered Transitions Details (cont.)

» The key challenge is that by making the behavior the Markov chain adjust to its surroundings (i.e.
conditional on ¢), we run the risk of losing the detailed balance equation.

» Let f(c) be the stationary distribution (objective function), let g)(c|c) be a candidate distribution,
and let M C)(c,c’) be the associated transition kernel.

» By the construction of the Metropolis algorithm, M C)\(c’, ¢) is now given by:

f(C/>g>\(C‘C’) , /
fl©)g(clc)’ 1} ga(c'|lc)+ (1 —r(c))dc(c),

r(c) = /min {;(c’)gA(c\c’) 1} gr(c'|e)dc’

(c)ga(clc)’

MC,(c',¢c) = min {

where:

and d.(c’) = 1 if ¢ = ¢’ and zero otherwise.
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Dynamic Tempered Transitions Details (cont.)

» The kernel MC)y\(c,c’) now satisfies detailed balance with f(c) as the stationary distribution at
each individual step (exactly from Robert and Casella 1999, Theorem 6.2.3, with proof), so the
full Markov chain kernel is interpreted as a (very high dimension) mixture kernel.

» Because:

C(Fmel) N e Fenll
i | eaetel 200 = min{ SR ek €)

and:

for each selected .
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Example: A Probabilistic Spatial Model of Voting Under Uncertainty
» J candidates, N voters, and a compact, convex K-dimensional Euclidean issue-space S* .

» The voter is assumed to vote for the candidate who has a K-dimensional position the closest to
this voter’s ideal point: sincere proximity voting.

» Our hypothetical Candidate picks a point in S* designed to maximize her expected votes, given
the other candidates’ position.

» The position of candidate j (j = 1,...,J) is the K-length vector:
C;, = [le, Cjz, ceey Cj[(].

» Voter i's ideal point in S® is the K-length vector:

v, = [Vi1, Vig, .. ., Vik].
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Example: A Probabilistic Spatial Model of Voting Under Uncertainty (cont.)

» The utility of candidate j to voter i is the negative (vector) distance between c; and v;, plus a
zero-mean uncertainty term independent across candidates(E;):

U; =E; - Dy = E; — [|vi — ¢j|

where ||.|| denotes the vector K-norm so D;; is squared Euclidean distance.

» Voter ¢ prefers candidate j over candidate ¢ if her utility for 5 exceeds her utility for ¢:
Uz’j — Uz’ﬁ = (E] — Dzy) — (Eg — Dw) > O,

defining

Ejg = Eg — Ej and Dij,£ = Dz'g — Dij

S0
U;; —Uy=D;j,— Ejy
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Example: A Probabilistic Spatial Model of Voting Under Uncertainty (cont.)

» Voter ¢ votes for candidate 5 over all others if:

Ejg<DZ'j’g, (=1,2,....9—19+1,...,J.

» Of course voters are assumed to be comparing all candidates, so for j as the baseline comparison
candidate, the (J — 1)-length uncertainty vector can be treated as multivariate normal:

e; = [Ejla Ce Ej(j—1)7 Ej,(j+1); Ce Ejj] ~ gb((), AJ)

» Collect the K-dimensional J —1 distance cross-candidate comparisons to candidate j into a single
vector:

dj - [Dij,la c ey Dij,(j—l)) Dij,(j—i—l)? c ey Dij,J] .
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Example: A Probabilistic Spatial Model of Voting Under Uncertainty (cont.)

» So the probability that voter ¢ votes for candidate j is the CDF' of the multivariate normal at the
(vector-valued) point d;:

P(Z,j) = P(Ejg<Dij’g,€:1,...,j—1,j-|-1,...,:])

D;;1 Dijj-1Dijj+1 Dijg
— // // G0, A)dE; | - -dE; ;_dE; ;4 ---dE; .

—00 —0 —00 —0

» This setup makes it possible to calculate the expected vote totals for the jth candidate:
N
Ti(clv) = EVi(c) = > _ P(i,])
i=1
and therefore every candidate.

» We will restrict ourselves to the case of fixred competing candidates and the determination of the
best reply surface for a hypothetical candidate of interest.
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Small Example

» 3 candidates, 100 voters, over a standardized 2-dimensional issue-metric, where we evaluate the expected number of votes for candidate 1
taking all possible issue positions.

» Voter ideal points are drawn from a mixture of beta densities to reflect some division of preferences across two roughly defined groups, and
e; ~ N(0,0.02) Vj.
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Application to Some Real Data

» American National Election Study (ANES) of the 2000 Presidential election.

» 1462 potential voters surveyed prior to the election.

» We analyze 10 policy dimensions where respondents place themselves, to produce: v; = [Vi1, Vio, . ..

» Policy issues given by nominal scales:

> political ideology

: > abortion
> preference on government spending

: > environment vs. industrial development
> preference on defense spending

> S
> government should help generate .
jobs > role of women in society
> government should help African > increased /decreased regulation

Americans economically

7‘/;K]-
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Application to Some Real Data

» The positions for Gore and Bush are modal evaluations from respondents across ten dimensions:

CGore = [CGOT6,17 CGOT€,27 SR} CGore,lo]
cpush = |CBush.1; CBush.2, - - -, CBush.10)-

» Our question: can we find a third candidate position that beats both on these policy issues?

2

T(Crew|V) =Y P(i,new) > 7(Cgore|v) and 7(cpysn|v)
1=1
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Application to Some Real Data
» What does this mean electorally?

» We compare cgore and cpysp to the greatest posterior mode:

ideology spending defense jobs blacks abortion environment guns gender regulation
3.2423  3.2478  3.2384 3.2195 3.2230 3.2494 3.2388 3.2412 2.6322  3.0006

using
N

m(clv) = BVj(c) = Y P(i,j)

1=1

. . Dij1 Dijj—1 Dsj 41 Dijg
» Results produced using SIR to get tail values from: ¥, /-7 . [ ¢(0,4,)dE;, - dE,;, 1dE; ;.\, ---dE, ,

— 0o — 00 — 00 — 0o

7;(Gore|v) = 0.34758
7;(Bush|v) = 0.17477

7;(Candidate|v) = 0.47100
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Application to Some Real Data

Overlayed Traceplots

Cumulative Sum Plot
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Random (anonymous) Testimonials

» “ ..the various version of choice based sampling maximum likelihood all suffer a severe computa-
tional drawback. Each requires numerous evaluations of integrals of the form [, P(i, z,0)p(z)dz.”

» . ..solving M different k-dimensional first-order conditions is a maximization problem of great
complexity which leads to them use a computerized search to locate locally optimal candidate
locations in a 2-dimensional 6-candidate election.”

» “We managed to optimize the criterion with a simplex-type algorithm, but the convergence process
took a very long time. The estimated model was, however, relatively simple, and it is therefore
doubtful whether this type of numerical algorithm is well suited for more complicated econometric
models (such as models with explanatory variables).”



