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More On The Kaplan-Meier Graph

» Reminders. ..
> t;: the ith followup time
> d;: the number of events at the 7th time
> R;: the number of subjects at risk at the ¢th time

> S(t) = p(T > t).

» Define the categorical survival function from our last analysis as:

() = H [1 ;%dZ]

<t !

where the hat comes from the assumption that this is an estimate of the survival effect of a general
population.
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Uncertainty in Kaplan-Meier Analysis

» Greenwood’s formula for the variance:
d;
Ri(R; — d;)

Var[S(t)] = S(t)?

t; <t

» Rosner’s formula for the variance:

Var| log Z
ti<t

2

» These are actually very similar in practice and different software uses different versions.
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Uncertainty in Kaplan-Meier Analysis

» Greenwood’s formula 95% confidence interval:

Gosor(S()) = S(t) £1.965(t) \/ >

» Rosner’s formula 95% confidence interval:

Ryso(log(S(t))) = log(S(t)) £ 1.96, [ Y R-(lei_ o

<t ="
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Motivation

» Social and biomedical scientists often care about events and the timing of events.

» For example: when and how long for a militarized dispute, cabinet duration, length of negotiations,
time of legislative activity, duration of trade agreements, timing of social group formation, length
of party control of a legislature, timing of coalition formation and dissolution, etc.

» Understanding an event history means knowing when and why it happened.

» So we want to build regression-style models that associate covariates with these questions.



Survival Models Class [5]

Substantive Considerations

» While these models have a variety of names (duration models, failure-time models, reliability
models, event history models), they are most commonly called survival models.

» They are very commonly applied in biomedical research and engineering for obvious reasons.

» In the social science they are increasingly utilized since our objects of study are also subjected to
occurrences measured by time.

» Part of the reason for this increase is the increase in available longitudinal datasets.
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Growth in Political Science Measured by jstor

» Political Science cumulative count of “event history model” prior to 1990: 2.
» Political Science cumulative count of “event history model” now: 97.

» Political Science cumulative count of “survival model” prior to 1990: 14.

» Political Science cumulative count of “survival model” now: 116.

» (("event history model") OR ("survival model")) AND
disc: (politicalscience-discipline) prior to 1980

Review: KOMPLEXE DEMOKRATIE
Organisation und Demokratie, Untersuchung zum Demokratisierungspotential in komplexen Or-
ganisationen by Frieder Naschold

Review by: Lorenz Funderburk
Politische Vierteljahresschrift, Vol. 11, No. 4 (Dezember 1970), pp. 632-633.

» Total cumulative count of either: 480,446.
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Historical Example

Christiaan Huygens' 1669 curve
showing how many out of 100 pecople
survive until 86 years.

From: Howard Wainer STATISTICAL GRAPHICS: Mapping the
Pathways of Science. Annual Review of Psychology. Vol. 52: 305-335.
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General Objectives of Survival Models

» Notice that the Huygens graph let’s us ask specific questions about probabilities of survival and
events.

» What kinds of general objectives do we usually have?
> estimate time-to-event for individuals, conditionally or unconditionally.
> compare time-to-event across multiple groups, treatment and control, etc.

> assess the effects of explanatory -variables on time-to-event.
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Some Definitions

» A survival time is the period from a start time to when an event of interest occurs.

» Three elements must be defined:
> a time origin
> a scale that defines time periods
> an observable event.

» The outcome of interest in survival models is the time to the event.

» A key problem in some settings is the difficulty of observing the exact time of the event.
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Software Supporting the Book

» DBrostrom provides an R package with datasets and code that we will use:
install.packages("eha")
library(eha)
» Other important packages:
> survival
> MASS, has datasets: Melanoma, leuk, Aids2

> boot, has datasets melanoma, poisons, survival

» Source of some of the data: http://www.scb.se/en / (Statistics in Sweden).
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Example 1: Old Age Mortality

» Use data(oldmort).
» This is a list and a data.frame.
» n = 6495, in the Sundsvall region of 19th Century Sweden.

» Start: every person present and alive and 60 years or older between January 1, 1860 and December
31, 1879..

» Record by the priest of the parish (with attending biases and omissions).
» End: at December 31, 1879.
» Event: death.

» Not Event: out-migration or live past December 31, 1879.
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Sundsvall, Sweden

Sweden
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head (oldmort)

id
1 765000603
2 765000669
3 768000648
4 770000562
5 770000707
6 771000617

enter

94.
94.
91.
89.
89.
88.

510
266
093
009
998
429

95.
95.
91.
89.
90.
89.

exit
813
756
947
593
211
762

Looking At The Data

event birthdate m.id f.id

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

1765.
1765.
1768.
1770.
1770.
1771.

490
734
907
991
002
571

NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA

sex civ
female widow
female unmarried
female widow
female widow
female widow
female widow

sum(is.na(oldmort))/prod(dim(oldmort))

[1] 0.076568

ses.50 birthplace imr.birth
22.
17.
12.
16.
11.
13.

unknown
unknown
unknown
unknown

middle
unknown

remote
parish
parish
parish
region
parish

region
20000 rural
71845 industry
70903 rural
90544 industry
97183 rural
08594 rural
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Looking At The Data

for (i in 1:ncol(oldmort)) { print(names(oldmort[i])); print (summary(oldmort[[i]])) }
[1] "id"

Min. 1st Qu. Median Mean 3rd Qu. Max.
765000000 797000000 804000000 803700000 812000000 826000000
[1] "enter"

Min. 1st Qu. Median Mean 3rd Qu. Max.

60.00 60.00 60.07 64.07 66 .88 94 .51
[1] "exit"

Min. 1st Qu. Median Mean 3rd Qu. Max.

60.00 63.88 68.51 69.89 74.73 100.00
[1] "event"

Mode  FALSE TRUE NA’s
logical 4524 1971 0
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Looking At The Data

[1] "birthdate"
Min. 1st Qu. Median Mean 3rd Qu. Max.
1765 1797 1805 1804 1812 1820
[1] "m.id"
Min. 1st Qu. Median Mean 3rd Qu. Max.
6039 766000000 775000000 771300000 783000000 802000000
[1] "f.id"

Min. 1st Qu. Median Mean 3rd Qu. Max.
2458 763000000 772000000 762700000 780000000 797000000
[1] "sex"
male female
2884 3611
[1] "civ"
unmarried married widow

557 3638 2300

NA’s
3155

NA’s
3310
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Looking At The Data

[1] "ses.50"
middle unknown  upper farmer  lower
233 2565 55 1562 2080
[1] "birthplace"
parish region remote
3598 1503 1394
[1] "imr.birth"
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.348 12.710 14.230 15.210 17.720 31.970
[1] "region"
town industry rural

657 2214 3624
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Data Description From the Book

» id: identifier for each individual

» enter: age at enrollment

» exit: age at death, dropout or end of study

» event: TRUE if death, FALSE if dropout or end of study

» birthdate: year plus proportion into that year, for instance 1819.999 was born on the last day
of 1819.

» m.id: mother’s identification, mostly missing

» f.id: father’s identification, mostly missing
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Data Description From the Book, Continued

» sex: female or male

» civ: civil status: unmarried, married, or widow(er)

» ses.50: upper, middle, lower, farmer (mostly missing)
» birthplace: three categories

» imr.birth: infant mortality percent at time of birth

» region: what type area in Sundsvall: town, rural, or industry.
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Questions of Interest From These Data

» Do women live longer than men?

» Do married people live longer?

» Does SES matter for longevity?

» Does place of birth matter for longevity, and does it differ for men and women?
» Does region where people live matter?

» Does civil status matter?

» Notice that these questions are all restricted to the population of Sundsvall over the age of 60, not
the general population.
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Details on Entry and Exit

» Subjects are in the study if they are alive and over 60 years of age anytime between January 1,
1860 and December 31, 1879.

» So the start is their 60th birthday (not necessarily 1860) and the stop is their death.

» Notice:

table (round (oldmort$birthdate + oldmort$enter))
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
1457 278 232 262 181 364 214 225 192 192 173

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
302 343 333 286 256 306 312 222 254 111

» This is left truncation because we are deliberately excluding those not 60 yet, even though they
exist: inclusion is conditional on surviving until age 60.
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Details on Entry and Exit

» The survival object consists of the triplet: (entry, exit, event).

» For parametric models we will subtract 60 from all ages to get actual time in the study, rather
than chronological age.

» This means we have both left censoring and right censoring.
» Vocabulary: entry is called “birth” and exit is called “death” by convention.

» These birth-death models are actually very general and are routinely applied to: cabinet dissolu-
tion, cessation of armed conflict, length of marriage, length of schooling, length of party majority
in a legislature, length of disease outbreak, machine life-cycle, and so on.
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Censoring

» Right Censoring means that we do not know the resolution of a subject after the study is over:
“lost to follow-up.”

» Not incorporating right censoring in the model leads to bias since it would appear that such
subjects die at the end of the study rather than later.

» Left Censoring means (here) that the subject did not live to be age 60 by January 1, 1860.

» Left censoring is incorporated into the design of the study by truncation.
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Truncation

» HUGE DIFFERENCE: censoring is data that exists but we do not see it, whereas truncation is a
definitional statement.

» Truncation is the researcher defined inclusion criteria.

» In a basic distributional assignment (prior distribution, etc.) we might define A(0,7) truncated
to be only between (—6,6).

» In the oldmort dataset, if a person did not live until age 60 at 1860, they are excluded: they are
(obviously) dead at the time but the collector of the data could have made the start date 1850.

» Also a person age 40 in 1860 cannot be in the dataset because they are less than 60 and will remain
less than 60 until the study ends at the conclusion of 1879.
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General Missing Data

» Note that left or right censored values are forms of missing data.

» However, they are structural forms of missing data that need to be accomodated in the context
of the model specification for the event that is unseen.

» Contrast this with regular missing data in the covariates, NA in R.

» The latter is dealt with in the usual way with various forms of imputation (multiple, hot-deck,
etc.) or by estimation in the context of the sampler in the Bayesian case.
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Time Waits for No One

» The starting point needs to be tied to the research question.

» Example from the Brostrom book:
> The time from marriage to first born child for women.

> This is left truncation since marriage is the start point by the design of the study (remember
the era).

> Alternatively, how about the time from birth of mother to birth of first child?
> There is no left truncation here since unborn females cannot give birth.

> So the effect of marriage (presumably the dominant cause of birth in traditional societies) is
not incorporated since women marry at different ages but they are all born at the same age.

» Choose starting points that allow you to answer the question of interest.
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Lexis Diagram

» To illustrate the two time scales the Brostrom book introduces a new (related) dataset but won’t
let us have it (lex).

» So use oldmort so we have code for the diagram. First:

oldmort[1:6,]

id enter exit event birthdate m.id f.id sex civ ses.b50 birthplace imr.birth  region
1 765000603 94.510 95.813 TRUE 1765.490 NA NA female widow unknown remote 22.20000 rural
2 765000669 94.266 95.756 TRUE 1765.734 NA NA female unmarried unknown parish 17.71845 industry
3 768000648 91.093 91.947 TRUE 1768.907 NA NA female widow unknown parish 12.70903 rural
4 770000562 89.009 89.593 TRUE 1770.991 NA NA female widow unknown parish 16.90544 industry
5 770000707 89.998 90.211 TRUE 1770.002 NA NA female widow middle region 11.97183 rural
6 771000617 88.429 89.762 TRUE 1771.571 NA NA female widow unknown parish 13.08594 rural

age.window(oldmort[1:6,],c(94,100)) # DROPS exit < 94

id enter exit event birthdate m.id f.id sex civ ses.b0 birthplace imr.birth region
1 765000603 94.510 95.813 1 1765.490 NA NA female widow unknown remote 22.20000 rural
2 765000669 94.266 95.756 1 1765.734 NA NA female unmarried unknown parish 17.71845 industry

cal.window(oldmort[1:6,],c(1861,1889)) # DROPS birthdate+exit < 1861

id enter exit event birthdate m.id f.id sex civ ses.b0 birthplace imr.birth region
1 765000603 95.50995 95.813 1 1765.490 NA NA female widow unknown remote 22.20000 rural
2 765000669 95.26628 95.756 1 1765.734 NA NA female unmarried unknown parish 17.71845 industry

6 771000617 89.42906 89.762 1 1771.571 NA NA female widow unknown parish 13.08594 rural
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Lexis Diagram, oldmort Data




Survival Models Class [28]

Lexis Diagram Code

# in.mat COLUMNS: exit, event, birthdate

lexis <- function(in.mat, start, stop, min.age,x.offset=85,y.offset=85) {
start.time <- min(in.mat[,3]) + x.offset
stop.time <- max(in.mat[,3] + in.mat$exit) + 0.5
start.age <- y.offset
stop.age <- max(in.mat$exit) + 1
plot(c(start.time,stop.time),c(start.age,stop.age) ,type="n",xlab="",ylab="")
mtext(side=1,1line=3,"Calendar Time"); mtext(side=2,1line=3,"Age")
segments(start,min.age,start,stop.age)
segments (start,min.age,stop,min.age)
segments(stop,min.age,stop,stop.age)
segments(stop,stop.age,start,stop.age)
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Lexis Diagram Code, Continued

for (i in 1:nrow(in.mat)) A
# LEFT CENSORED CASES
if ( ((An.mat[i,1]+in.mat[i,3] < start) | (in.mat[i,1] < min.age)) ) {
segments(in.mat[i,3],0,in.mat[i,1]+in.mat[i,3],in.mat[i,1],1ty=3)
text(in.mat[i,1]+in.mat[i,3]+0.2,in.mat[i,1],"D")
ks
else {
# ACCOUNT FOR POSSIBLE RIGHT CENSORING
if (in.mat[i,1]+in.mat[i,3] > stop) {
end.X <- stop
end.Y <- stop-in.mat[i,3]
censored <- TRUE
k)
else {
end.X <- in.mat[i,1]+in.mat[i,3]
end.Y <- in.mat[i,1]
censored <- FALSE
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Lexis Diagram Code, Continued

if (in.mat[i,2] == TRUE) { # DEATH IS OBSERVED OR RIGHT CENSORED
segments(in.mat[i,3],0,end.X,end.Y,1ty=2)
if (censored == FALSE)
text(in.mat[i,1]+in.mat[1,3]+0.2,in.mat[i,1],"D")
else
text(in.mat[i,1]+in.mat[i,3]+0.2,in.mat[i,1],"C")
}
if (in.mat[i,2] == FALSE) { # CASE DROPPED-QUT
segments(in.mat[i,3],0,end.X,end.Y,1ty=2)
text(in.mat[i,1]+in.mat[i1,3]+0.2,in.mat[i,1],"C")
}
segments(start,start-in.mat[i,3],end.X,end.Y,1ty=1,1wd=3)

lexis(oldmort[c(13,15,17,18,19),3:5], start=1864, stop=1867, min.age=87)
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Birth Intervals, Married with at Least One Birth, 19th Century Northern Sweden

» Panel data with 12169 rows for 1859 married women with at least one birth.

» id: Personal identification number for mother.

» parity: indicator for the previous birth order. Zero means that there was no previous child
» age: age of mother at start of interval.

» year: calendar year at start of interval.

» next.ivl: length of the coming time interval.

» event: indicator for whether the next.ivl ends in a new birth (event = 1) or is right censored
(event = (). Censoring occurs when the woman ends her fertility period within her first marriage
(marriage dissolution or reaching the age of 48).

» prev.ivl: The length of the previous time interval.
» ses: Socio-economic status, a factor with levels lower, upper, farmer, and unknown parish.

» parish: Jorn, Norsjo, and Skelleftea.
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Karta - Vasterbottens lan, Sweden

16 = Jorn, 17 = Norsjo, 14 = Skelleftea lands, 29 = Skelleftea stads
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Birth Intervals, Married with at Least One Birth, 19th Century Northern Sweden

data(fert)
dim(fert)
[1] 12169 9
ert[1:10,]

1d parity age year next.ivl event prev.ivl ses parish
1 1 0 24 1825 0.411 1 NA farmer SKL
2 1 1 25 1826  22.348 0 0.411 farmer SKL
3 2 0 18 1821 0.304 1 NA unknown SKL
4 2 1 19 1821 1.837 1 0.304 unknown SKL
5 2 2 21 1823 2.546 1 1.837 unknown SKL
6 2 3 23 1826 2.541 1 2.546 unknown SKL
7T 2 4 26 1828 2.431 1 2.541 unknown SKL
8 2 5 28 13831 2.472 1 2.431 unknown SKL
9 2 6 31 1833 3.173 0 2.472 unknown SKL
10 3 0 23 1826 0.772 1 NA farmer SKL
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Male Mortality In Ages 40-60, Nineteenth Century

» Males born in the years 1800-1820 and surviving at least 40 years in the parish Skelleftea in
northern Sweden are followed from their fortieth birthday until death or the sixtieth birthday,
whichever comes first.

» 2058 observations with 6 variables.

» id: personal identification number.

» enter: start of duration in years since the fortieth birthday:.
» exit: end of duration in years since the fortieth birthday.
» event:a logical vector indicating death at end of interval.

» birthdate: birthdate in decimal form.

» ses: socio-economic status, a factor with levels lower (565), upper (643).
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Male Mortality In Ages 40-60, Nineteenth Century

data(mort)
mort[1:10,]
id enter exit event birthdate ses

1 1 0.000 20.000 0 1800.010 upper
2 2 3.478 17.562 1 1800.015 lower
3 3 0.000 13.463 0 1800.031 upper
4 3 13.463 20.000 0 1800.031 lower
5 4 0.000 20.000 0 1800.064 lower
6 5 0.000 0.089 0 1800.084 lower
7 5 0.089 20.000 0 1800.084 upper
8 6 0.000 20.000 0 1800.094 upper
9 7 0.000 3.388 0 1800.105 upper
10 7 3.388 14.063 1 1800.105 lower
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Infant Mortality and Maternal Death, Sweden 1821-1894

» stratum: triplet number, each triplet consist of one infant whose mother died (a case), and two
matched controls: infants whose mother did not die.

» enter: age (in days) of case when its mother died.

» exit: age (in days) at death or right censoring (at age 365 days).
» event: follow-up ends with death (1) or right censoring (0).

» mother: dead for cases, alive for controls.

» age: mothers age at infants birth.

» sex: infants sex.

» parish: birth parish, either Nedertornea or not Nedertornea.

» civst: civil status of mother, married or unmarried.

» ses: socio-economic status of mother, either farmer or not farmer.

» year: year of birth of the infant.
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data(infants)
dim(infants)
[1] 105 11

infants[1:10,

Infant Mortality and Maternal Death, Sweden 18211894

stratum enter exit event

1

© 0 N O O b W N+
W W wNDNNN - =

=
o

]
55 365 0
55 365 0
55 365 0
13 76 1
13 365 0
13 365 0
361 365 0
361 365 0
361 365 0
2 16 1

mother

dead
alive
alive
dead
alive
alive
dead
alive
alive
dead

age
26
26
26
23
23
23
24
24
24
28

sex
boy
boy
boy
girl
girl
girl
boy
boy
boy
girl

parish
Nedertornea
Nedertornea
Nedertornea
Nedertornea
Nedertornea
Nedertornea
Nedertornea
Nedertornea
Nedertornea
Nedertornea

civst
married
married
married
married
married
married
married
married
married
married

ses
farmer
farmer
farmer
other
other
other
other
other
other
other

year
1877
1870
1882
1847
1847
1848
1879
1878
1879
1840
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Reminder of Terms

» At each time ¢;, define:
d; = the number of deaths/terminations

» (O, is the total for group A, and Op is the total for group B,

» Under Hj the expected deaths at time ¢; for group A is: es, = dina,/n;, where ny, is the number
at risk in group A and n; is the total number at risk (both at time 7).

» The total number of deaths for group A under the null hypothesis is E4 = > €.
» The total number of deaths for group B under the null hypothesis is Ep = >, d; — Ea.

» The Chi-Square statistics with df = 1 is:

, _(0a—Es’ | (Op—Ep)
Xlogrank EA EB
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Hazard Ratio For Comparing Two Groups

» Observe O4 and Ogp.

» Ho : no difference between groups, H 4 : groups are different.

» Calculate 4 and E'g, as before:

EA:ZGAi EB:Zdi_EA-
T

T

» O,/ FE, is the relative death rate in group A, and Op/FEp is the relative death rate in group B.
» The Hazard Ratio is:
_ O4/E4
Op/Ep’
which is near 1 under the null hypothesis of no difference.

HR
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Confidence Interval for the Hazard Ratio

» The HR is skewed to the right and bounded by [0 : 0o], so to make it more normal (and therefore
casier to test), it is often treated as: log(H R).

» The standard error of the log(H R) is given by:
1 1

SE(0g(HR)) = | 3+ 5

and generally requires relatively large sample size.

» Therefore the 95% confidence interval for the log( H R) is:
log(HR) — 1.96 x SE(log(HR)) : log(HR) + 1.96 x SE(log(HR))],
and the 95% confidence interval for the H R is:

lexp{log(HR) — 1.96 x SE(log(HR))} : exp{log(HR) + 1.96 x SE(log(HR))}|.
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Theoretical Details Again

» There are two main approaches: parametric assignment and proportional hazards.

» Both rely on the hazard function to give the proportion of cases who fail just after time ¢ given
that they have survived past time ¢ — 1.

» First define a PDF for the event over continuous time, f(¢), which is not very intuitive unless we
are talking about a range of time.

» From the PDF define the cumulative distribution function (CDF) for time ¢:

t
F(t) = / p(T < t)dt
0
which is the probability of the event happening any time before t.

» This immediately gives the the survival function:

S(t)=p(T >1t)=1— F(t) = /too fla)dz

which is the probability of the even happening at time ¢ or later.
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Theoretical Details Again

» The hazard function is created by:

< >
h(t) = lim pt <T <t+0t|T > 1)
5t—0 ot

» The hazard function is related to the survival function through the event time PDF"

h(t) = %

» And we can also rewrite the survival function as:
S(t) = exp(—H(t)),

where:
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Theoretical Details Again

» The derivative of the survival function is:

d d

E5(75) = E[1 — F(t)] = —f(1).

» So we can rewrite the hazard function as:

h(t) = —L log(S(1))
- ou(S(0) = ~ g (- FO) = ~(-0

» Integrate the hazard function from 0 to ¢ and note the left boundary condition S(0) = 1, since
the event cannot occur before time period 0, which allows us to rewrite the previous expression to
obtain the probability of surviving to ¢ as a function of the hazard at all durations up to ¢:

S(t) = exp [— /0 t h(x)dx] .

using the cumulative hazard (the “sum” going from 0 to ).
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A Regression Model for Survival Data

» The Cox Proportional Hazards Model gives a regression where the outcome variable is the instan-
taneous hazard rate, h(t).

» For individual 7 in the study at time ¢ this links h;(¢) to a baseline hazard rate and covariates
according to:

loglhi(t)] = loglho(t)] + Bizit + Batio + - - - + BT

» This model can also be expressed with exponentiation:

hi(t) = ho(t) exp(Bizi + Boxio + - - - + Brxir)

= exp(S1xi + Boxio + - - - + BrTik).

» This latter form reveals the proportional nature of the model more directly.

» Finally, note that there is an assumption that hazard ratios between individuals are constant over

()
time: )~ k.
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The Surv Function In Detail

» Surv creates a survival object, which is the response variable in an R model formula.
» Argument matching is important for this function since it gives structure to the outcome variable.

» Syntax:

Surv(time, time2, event, type=c(’right’, ’left’, ’interval’, ’counting’,
’interval2’, ’mstate’), origin=0)

» time: For continuous data this is the starting time for the interval.

» event: 0/1 or 1/2 not-occured/occured. For interval censored data, the status indicator is O=right
censored, 1=event at time, 2=left censored, 3=interval censored. Where 1/2 coding is used and
all the subjects are censored the model will be wrong (no 2’s to use). If you want to be extra safe
about coding use something like Surv(time, status==3) where 3 indicates the event.

» time2: Ending time of the interval for interval censored or counting process data only.

» origin: for counting process data, the hazard function origin. Not commonly used.
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The Surv Function In Detail

» type: a character string specifying the type of censoring: “right”, “left”, “counting”, “interval”,
“Interval2”, or “mstate”.

» For “mstate” the status variable will be treated as a factor where the first indicates censoring and
remaining values are transitions to the given state.

» When the type argument is assumed that:
> If there are two unnamed arguments, they match time and event in that order.
> If there are three unnamed arguments, they match time, time2, and event in that order.

> If the event variable is a factor then type mstate is assumed, otherwise type right if there
is no time2 argumement, and type counting if it is present.

» Due to these rules, the type argument will is often not used.
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The Surv Function In Detail

» Example from the R helpfile:

Surv (heart$start, heart$stop, heart$event)

[1] ¢ 0.0, 50.0] ( 0.0, 6.0 ( 0.0, 1.0+4] C 1.0, 16.0]
[5] ¢ 0.0, 36.0+] ( 36.0, 39.0] ( 0.0, 18.0] ( 0.0, 3.0]
[9] (¢ 0.0, 51.0+] ( 51.0, 675.0] ( 0.0, 40.0] ( 0.0, 85.0]

( 0.0, 26.0+] ( 26.0, 153.0]

[13] ¢ 0.0, 12.0+] ( 12.0, 58.0]

» Notice the use of brackets in the conventional mathematical sense.
» The first of the pair of numbers is the start time in the Stanford Heart Transplant study.

» The second of the pair of numbers is either exit time (death), or the right-censoring time denoted
by the “+”.
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The Surv Function In Detail

» So consider case number 5 in the data:

heart[5,]
start stop event age year surgery transplant id
5 0 36 0 -7.737166 0.4900753 0 0 4

» In the Surv output:

Surv(heart$start, heart$stop, heart$event) [5]
[1] (0,36+]

» They started at zero, exited at 36 but had no event, so they must be censored.
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Small Case Study

library(survival)

data(aml)

names (aml)

[1] "time" "status" "x"

aml

1 9 1 Maintained 12 5 1 Nonmaintained

2 13 1 Maintained 13 5 1 Nonmaintained

3 13 0 Maintained 14 8 1 Nonmaintained

4 18 1 Maintained 15 8 1 Nonmaintained

5 23 1 Maintained 16 12 1 Nonmaintained

6 28 0 Maintained 17 16 O Nonmaintained

7 31 1 Maintained 18 23 1 Nonmaintained

8 34 1 Maintained 19 27 1 Nonmaintained

9 45 0 Maintained 20 30 1 Nonmaintained

10 48 1 Maintained 21 33 1 Nonmaintained

11 161 0 Maintained 22 43 1 Nonmaintained
23 45 1 Nonmaintained
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Small Case Study

» Apply the Surv function:

Surv(aml$time, amlPstatus)
[1] 9 13 13+ 18 23 28+ 31 34 45+ 48 161+ 5

[16] 12 16+ 23 27 30 33 43 45

» Run a simple model:

( leukemia.surv <- survfit(Surv(time, status) ~ x, data = aml) )

Call: survfit(formula = Surv(time, status) ~ x, data = aml)

n events median 0.95LCL 0.95UCL

x=Maintained 11 7 31 18 NA
x=Nonmaintained 12 11 23 8 NA
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summary (leukemia.surv)
Call: survfit(formula = Surv(time, status) ~ x, data = aml)

x=Maintained
time n.risk n.event survival std.err lower 95% CI upper 95% CI

9 11 1 0.909 0.0867 0.7541 1.000
13 10 1 0.818 0.1163 0.6192 1.000
18 8 1 0.716 0.1397 0.4884 1.000
23 7 1 0.614 0.1526 0.3769 0.999
31 5 1 0.491 0.1642 0.2549 0.946
34 4 1 0.368 0.1627 0.1549 0.875
48 2 1 0.184 0.1535 0.0359 0.944

x=Nonmaintained
time n.risk n.event survival std.err lower 957 CI upper 95% CI

5 12 2 0.8333 0.1076 0.6470 1.000
8 10 2 0.6667 0.1361 0.4468 0.995
12 8 1 0.5833 0.1423 0.3616 0.941
23 6 1 0.4861 0.1481 0.2675 0.883
27 5 1 0.3889 0.1470 0.1854 0.816
30 4 1 0.2917 0.1387 0.1148 0.741
33 3 1 0.1944 0.1219 0.0569 0.664
43 2 1 0.0972 0.0919 0.0153 0.620
45 1 1 0.0000 NEW NA NA
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Small Case Study

» Now plot:

postscript("Class.Survival/Images/aml.small.ps")
par(col.axis="white",col.lab="white",col.sub="white",col="white",bg="slategray")
plot(leukemia.surv, 1ty = 1:2)

legend (100, .9, c("Maintenance", "No Maintenance"), 1ty = 1:2,col="white")
dev.off ()
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Small Case Study
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Week 2 Assignment

» Run the lexis diagram code with five different cases.

» You will have to re-parameterize start=1864, stop=1867, min.age=87 to make the result
look clear in the plot.

» Turn in a screen-shot or PDF of the result.
» Using the infants dataset fit a Cox Proportional Hazards model.
» For example:

inf.fit <- coxph(Surv(enter, exit, event) ~ civst, data = infants)

» Submit the output from summary.



