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So What’s All This *&#$@*$% Bayesian Stuff Anyway?

◮ Overt and clear model assumptions.

◮ A rigorous way to make probability statements about the real quantities of theoretical interest.

◮ An ability to update these statements (i.e. learn) as new information is received.

◮ Systematic incorporation of qualitative knowledge on the subject.

◮ Recognition that population quantities are changing over time rather than fixed immemorial.

◮ Straightforward assessment of both model quality and sensitivity to assumptions.

◮ Freedom from the flawed NHST paradigm.
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Typology of Statistics

◮ Frequentists: From the Neyman/Pearson/Wald setup. An orthodox view that sampling is in-

finite and decision rules can be sharp. Estimated quantities usually produced with closed-form

statements.

◮ Bayesians: From Bayes/Laplace/de Finetti tradition. Unknown quantities are treated probabilis-

tically and the state of the world can always be updated.

◮ Likelihoodists: From Fisher. Single sample inference based on finding the parameter value, θ̂, that

maximizes the joint distribution of the observed data (L(θ|x) =
∏n

i=1 f (xi|θ)), with properties

laid-out in Birnbaum (1962). Bayesians that don’t know that they are.

◮ So let’s look at some critical differences between Frequentists and Bayesians. . .
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Critical Differences Between Bayesians and Non-Bayesians, What is Fixed?

Frequentist:

◮ Data are an IID random sample from a

continuous stream.

◮ Parameters are fixed by nature.

Bayesian:

◮ Data are observed and therefore fixed by

the sample generated.

◮ Parameters are unknown and described

distributionally.
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Critical Differences Between Bayesians and Non-Bayesians, Interpretation of
Probability

Frequentist:

◮ Probability is observed from the long-run

proportion of times that some event oc-

curs in a replicated experiment.

◮ Probabilistic quantity of interest is

p(data|H0).

Bayesian:

◮ Probability is the researcher/observer

“degree of belief” before or after the data

are observed.

◮ Probabilistic quantity of interest is

p(θ|data).
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Critical Differences Between Bayesians and Non-Bayesians, General Inference

Frequentist:

◮ Point estimates and standard errors or

95% confidence intervals.

◮ Deduction from p(data|H0), by setting α

in advance.

◮ Accept H1 if p(data|H0) < α

◮ Accept H0 if p(data|H0) ≥ α

Bayesian:

◮ Induction from p(θ|data), starting with

p(θ).

◮ Broad descriptions of the posterior distri-

bution such as means and quantiles.

◮ Highest posterior density intervals indi-

cating region of highest posterior proba-

bility, regardless of contiguity.
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Critical Differences Between Bayesians and Non-Bayesians, Post-hoc Quality Checks

Frequentist:

◮ Calculation of Type I and Type II errors,

even if there is no setting α in advance.

◮ Sometimes : effect size and/or power.

◮ Usually : fixation with small differences

in p-values despite large measurement er-

ror in the social sciences relative to other

scientific disciplines.

Bayesian:

◮ Posterior predictive checks from integrat-

ing over posterior.

◮ Sensitivity checks to forms of the prior,

and other assumptions.

◮ Bayes factors for model comparison, BIC,

DIC.
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Reasons Not to Use Bayesian Inference in the Social Sciences:

◮ The population parameters of interest

truly fixed and unchanging under all real-

istic circumstances.

◮ We do not have any information prior to

the model specification.

◮ It is necessary to provide statistical results

as if data were from a controlled experi-

ment.

◮ We care more about “significance” than ef-

fect size.

◮ Computers are slow and relatively unavail-

able.

◮ Wewant very automated, “cookbook” type

procedures.
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Reasons to Use Bayesian Inference in the Social Sciences:

◮ We want to be very careful about stipulat-

ing assumptions and are willing to defend

them.

◮ We view the world probabilistically, rather

than as a set of fixed phenomena that are

either known or unknown.

◮ Every statistical model ever created in the

history of the human race is subjective; we

are willing to admit it.

◮ Prior information abounds in the social sci-

ences and it is important and helpful to use

it.
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Some Problems with Traditional Statistical Thinking in the Social Sciences

◮ Small-n inference.

◮ Significance through sample size.

◮ Confidence.

◮ Contrived ignorance and buried as-

sumptions.

◮ Null Hypothesis Testing/Star-gazing.
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Large and Small Sample Inference

http://setiathome.ssl.berkeley.edu/ Marriage Rates per 1000 in Italy 1936 to 1951.
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Confidence

◮ Which of these is the correct interpreta-

tion of a (1− α) confidence interval?

⊲ An interval that has a 1−α% chance

of containing the true value of the

parameter.

⊲ An interval that over 1−α% of repli-

cations contains the true value of the

parameter, on average.

◮ What interpretation do people really

want.
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Contrived Ignorance, Buried Assumptions

◮ Models with uniform priors.

◮ Normality.

◮ Correlation coefficient.

◮ Only two models tested.

◮ No such thing as specification searches.
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The pseudo-Frequentist NHST is wrong

◮ A few authors have noted this (just a sample): Barnett 1973, Berger, Boukai, and Wang 1997, Berger Thomas Sellke

1987, Berkhardt and Schoenfeld 2003, Bernardo 1984, Brandstätter 1999, Carver 1978, 1993, Dar, Serlin and Omar 1994, Cohen 1988,

1994, 1992, 1977, 1962, Denis 2005, Falk and Greenbaum 1995, Gelman, Carlin, Stern, and Rubin 1995, Gigerenzer 1987, 1993, 1998,

Gigerenzer and Murray 1987, Gill 1999, 2005, Gliner, Leech and Morgan 2002, Grayson 1998, Greenwald 1975, Greenwald, Gonzalez, Harris

and Guthrie 1996, Hager 2000, Howson and Urbach 1993, Hunter 1997, Hunter and Schmidt 1990, Jeffreys 1961, Kirk 1996, Krueger 1999,

2001, Lindsay 1995, Loftus 1991, 1993a, 1993b, 1994, 1996, Loftus and Bamber 1990, Macdonald 1997, Meehl 1967, 1978, 1990, 1978,

Nickerson 2000, Oakes 1986, Pollard 1993, Pollard and Richardson 1987, Robinson and Levin 1997, Rosnow and Rosenthal 1989, Rozeboom

1960, 1997, Schmidt 1996, Schmidt and Hunter 1977, Sedlmeier and Gigerenzer 1989, Thompson 2002, Wilkinson 1999.

◮ Why?

1. Artificial Model Selection Criteria

2. The Arbitrariness of Alpha

3. Replication Fallacy

4. Asymmetry and Accepting the Null Hypothesis

5. Probabilistic Modus Tollens

6. Inverse Probability Problem
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Regular Modus Tollens

If A then B If H0 is true then the

data will follow an

expected pattern

Not B observed The data do not follow

the expected pattern

Therefore not A Therefore H0 is false.
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Probabilistic Modus Tollens

If A then B is If H0 is true then

highly likely the data are highly

likely to follow an

expected pattern

Not B observed The data do not follow

the expected pattern

Therefore A is Therefore H0 is

highly unlikely highly unlikely.
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Probabilistic Modus Tollens Example

If A then B is If a person is an

highly likely American, then it is

highly unlikely she is

a member of Congress.

Not B observed The person is a member

of Congress

Therefore A is highly unlikely Therefore it is highly

unlikely she is

an American.
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Misconceptions about Inverse Probability

◮ The inferential mechanism of the null hypothesis significance test is based on conditional proba-

bility.

◮ The test looks at: p(data|H0), “how likely is it to observe these data, given that the null hypothesis

of no effect is true.”

◮ It is commonly (mis)interpreted as: p(H0|data), “how probable is the null hypothesis, given these

observed data.”

◮ These (the right and the wrong) statements are fundamentally different quantities and can only

be related with Bayes’ Law:

p(H0|data) =
p(H0)

p(data)
p(data|H0).

◮ The problem comes from an unholy blending of Fisher and Neyman/Pearson.
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Misconceptions about Inverse Probability

◮ The order of conditionality can be really important.

◮ suspected probability of AIDS in risk group: P (A) = 0.02

probability of correct positive classification: P (C|A) = 0.95

probability of correct negative classification: P (Cc|Ac) = 0.97
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Misconceptions about Inverse Probability

◮ The order of conditionality can be really important.

◮ suspected probability of AIDS in risk group: P (A) = 0.02

probability of correct positive classification: P (C|A) = 0.95

probability of correct negative classification: P (Cc|Ac) = 0.97

◮ Suppose we want P (A|C), from: P (A|C) =
P (A)

P (C)
P (C|A)

◮
Getting the unconditional:

P (C) = P (C ∩ A) + P (C ∩ Ac)

= P (C|A)P (A) + P (C|Ac)]P (Ac)

= P (C|A)P (A) + [1− P (Cc|Ac)]P (Ac)

= (0.95)(0.02) + (1− 0.97)(0.98) ∼= 0.05
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Misconceptions about Inverse Probability

◮ The order of conditionality can be really important.

◮ suspected probability of AIDS in risk group: P (A) = 0.02

probability of correct positive classification: P (C|A) = 0.95

probability of correct negative classification: P (Cc|Ac) = 0.97

◮ Suppose we want P (A|C), from: P (A|C) =
P (A)

P (C)
P (C|A)

◮
Getting the unconditional:

P (C) = P (C ∩ A) + P (C ∩ Ac)

= P (C|A)P (A) + P (C|Ac)]P (Ac)

= P (C|A)P (A) + [1− P (Cc|Ac)]P (Ac)

= (0.95)(0.02) + (1− 0.97)(0.98) ∼= 0.05
◮ So now we can calculate:

P (A|C) =
P (A)

P (C)
P (C|A) =

0.02

0.05
(0.95) = 0.38
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The History of Bayesian Statistics–Milestones

◮ Reverend Thomas Bayes (1702-1761).

◮ Pierre Simon Laplace.

◮ Pearson (Karl), Fisher, Neyman and

Pearson (Egon), Wald.

◮ Jeffreys, de Finetti, Good, Savage,

Lindley, Zellner.

◮ A world divided.

◮ The revolution: Gelfand and Smith

(1990).

◮ Today. . .
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Two Primary Principles of Bayesian Inference

Principle I.

Principle II.
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Two Primary Principles of Bayesian Inference

Principle I. Explicit and direct use of probability for describing uncertainty:

⊲ probability models (likelihood fn.) for data given parameters,

⊲ probability distributions (PDF,PMF) for parameters.

Principle II.



JEFF GILL: Linear Regression Basics [23]

Two Primary Principles of Bayesian Inference

Principle I. Explicit and direct use of probability for describing uncertainty:

⊲ probability models (likelihood fn.) for data given parameters,

⊲ probability distributions (PDF,PMF) for parameters.

Principle II. Inference for unknown values conditioned on observed data:

⊲ use of inverse probability,

⊲ Bayes theorem,

⊲ description of full posterior.
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The Three General Steps

Step I.

Step II.

Step III.
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The Three General Steps

Step I. Specify a probability model for unknown parameter values that includes

some prior knowledge about the parameters if available.

Step II.

Step III.
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probability model on observed data.

Step III.
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The Three General Steps

Step I. Specify a probability model for unknown parameter values that includes

some prior knowledge about the parameters if available.

Step II. Update knowledge about the unknown parameters by conditioning this

probability model on observed data.

Step III. Evaluate the fit of the model to the data and the sensitivity of the

conclusions to the assumptions.
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Simple Mechanics

π(θ|x) =
p(θ)L(θ|x)

∫

Θ p(θ)L(θ|x)dθ

∝ p(θ)L(θ|x)

Posterior Probability ∝ Prior Probability× Likelihood Function
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Views On Priors Determine Types of Bayesians

◮ Empirical Bayes : prior distributions are produced from other parts of the data, or possibly from

the same data. Results are reported like Frequentists.

◮ Proper Bayes :

◮ Reference Bayes :

◮ Decision-Theoretic Bayes :

◮ Bayesians of Convenience :
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Views On Priors Determine Types of Bayesians

◮ Empirical Bayes : prior distributions are produced from other parts of the data, or possibly from

the same data. Results are reported like Frequentists.

◮ Proper Bayes : prior distributions come from previously compiled evidence, such earlier studies or

published work, researcher intuition, or substantive experts. Results are reported without utility

or loss functions.

◮ Reference Bayes : prior distributions are created to influence the posterior as little as mathemat-

ically possible (“objective”). Results are reported without utility or loss functions.

◮ Decision-Theoretic Bayes : prior distributions are from either of the last two sources. Results are

presented in a full decision-theoretic framework where utility functions determine decision losses,

which are minimized according to different probabilistic criteria.

◮ Bayesians of Convenience : conjugate diffuse priors or uniform priors on all parameters. Results

are reported without utility or loss functions.
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Important Observations On Priors

◮ Not considering prior distributions can lead to the wrong conclusion: consider alternative prob-

abilities that a randomly chosen US citizen is a member of Congress: 1/300M, 535/300M, and

0.5.

◮ Stipulating priors is an overt public statement made to a naturally skeptical scientific audience,

so priors cannot be covertly adjusted to “cook” the conclusions.

◮ When there are multiple theories or empirical observations, then the associated prior distributions

can be used to test the efficacy of the different subsequent posterior distributions.

◮ Prior to posterior inference is how scientific knowledge accumulates.

◮ With very large data stated priors are typically not important.

◮ Producing even multiple priors is a straightforward and easy process.
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Spreading the Bayesian Gospel?

◮ Preaching: π(θ|x) ∝ p(θ)L(θ|x)

◮ Practicing: p(θ) = 1, −∞ < θ < ∞; p(θ) ∼ N (0, σ2), σ2 ≫ 0; or p(θ) = −Eθ

[

∂2

∂θ2
log f (x|θ)

]
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Example: the Beta-Binomial

◮ X1, X2, . . . , Xn iid Bernoulli, p ∼ beta(A,B) prior.

◮ Standard trick: Y =
∑n

i=1Xi ∼ binomial(n, p).
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Example: the Beta-Binomial

◮ X1, X2, . . . , Xn iid Bernoulli, p ∼ beta(A,B) prior.

◮ Standard trick: Y =
∑n

i=1Xi ∼ binomial(n, p).

◮ Joint Distribution:

f (y, p) = f (y|p)f (p)

=

[(

n

y

)

py(1− p)n−y

]

×

[

Γ(A + B)

Γ(A)Γ(B)
pA−1(1− p)B−1

]

=
Γ(n + 1)Γ(A + B)

Γ(y + 1)Γ(n− y + 1)Γ(A)Γ(B)
py+A−1(1− p)n−y+B−1
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Example: the Beta-Binomial

◮ X1, X2, . . . , Xn iid Bernoulli, p ∼ beta(A,B) prior.

◮ Standard trick: Y =
∑n

i=1Xi ∼ binomial(n, p).

◮ Joint Distribution:

f (y, p) = f (y|p)f (p)

=

[(

n

y

)

py(1− p)n−y

]

×

[

Γ(A + B)

Γ(A)Γ(B)
pA−1(1− p)B−1

]

=
Γ(n + 1)Γ(A + B)

Γ(y + 1)Γ(n− y + 1)Γ(A)Γ(B)
py+A−1(1− p)n−y+B−1

◮ Marginal Distribution for y:

f (y) =

∫ 1

0

Γ(n + 1)Γ(A + B)

Γ(y + 1)Γ(n− y + 1)Γ(A)Γ(B)
py+A−1(1− p)n−y+B−1dp

=
Γ(n + 1)Γ(A + B)

Γ(y + 1)Γ(n− y + 1)Γ(A)Γ(B)

Γ(y + A)Γ(n− y + B)

Γ(n + A + B)
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Example: the Beta-Binomial, Cont.

◮ Posterior Distribution for p:

f (p|y) =
f (y, p)

f (y)
=

Γ(n+1)Γ(A+B)
Γ(y+1)Γ(n−y+1)Γ(A)Γ(B)p

y+A−1(1− p)n−y+B−1

Γ(n+1)Γ(A+B)
Γ(y+1)Γ(n−y+1)Γ(A)Γ(B)

Γ(y+A)Γ(n−y+B)
Γ(n+A+B)

=
Γ(n + A +B)

Γ(y + A)Γ(n− y + B)
p(y+A)−1(1− p)(n−y+B)−1

p|y ∼ beta(y + A, n− y +B)
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Example: the Beta-Binomial, Cont.

◮ Posterior Distribution for p:

f (p|y) =
f (y, p)

f (y)
=

Γ(n+1)Γ(A+B)
Γ(y+1)Γ(n−y+1)Γ(A)Γ(B)p

y+A−1(1− p)n−y+B−1

Γ(n+1)Γ(A+B)
Γ(y+1)Γ(n−y+1)Γ(A)Γ(B)

Γ(y+A)Γ(n−y+B)
Γ(n+A+B)

=
Γ(n + A +B)

Γ(y + A)Γ(n− y + B)
p(y+A)−1(1− p)(n−y+B)−1

p|y ∼ beta(y + A, n− y +B)

◮ An implication:

p̄ =
(y + A)

(y + A) + (n− y + B)
=

[

n

A + B + n

]

(y

n

)

+

[

A + B

A + B + n

](

A

A + B

)
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Example: the Beta-Binomial, Cont.

◮ The Data (Romney 1999):

Response: 1 1 1 1 0 1 1 0 1 0 1 1

1 0 1 1 1 1 1 1 0 0 0 1

◮ Two Priors: BE(p|15, 2), BE(p|1, 1)

◮ Resulting Posteriors:

BE (
∑

xi + 15, n−
∑

xi + 2) = BE(32, 9),

and BE (
∑

xi + 1, n−
∑

xi + 1) = BE(18, 8)
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Example: the Beta-Binomial, Cont.
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Point Estimates Versus Intervals

◮ Bayesians often describe posterior results with point estimates (posterior means, etc.) but generally

prefer more full descriptions of the posterior distribution like HPD intervals and quantiles.

◮ Also, no point estimator can be absolutely correct and no point estimator can describe the full

posterior.

◮ So the vast literature on what point estimator is better is not a concern to Bayesians and Bayesians

give more information anyways.
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Bayesian Tobit Model for Death Penalty Support
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Bayesian Tobit Model for Death Penalty Support

◮ Use the Tobit model (Tobin 1958) to look at

social and political influences on U.S. state

decisions to impose the death penalty since

the Supreme Court ruled the practice consti-

tutional in Furman v. Georgia 1972.

◮ Does the ideological, racial and religious

makeup, political culture, and urbanization

are causal effects for state-level death sen-

tences from 1993 to 1995.

◮ The Tobit model is necessary to account for

censoring here because 15 states did not have

capital punishment provisions on the books in

the studied period.
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Bayesian Tobit Model for Death Penalty Support

◮ If z is a latent outcome variable in this context with the assumptions

z = xβ + E

and

zi ∼ N (xβ, σ2),

then the observed outcome variable is produced according to:

yi = zi if zi > 0,

and

yi = 0 if zi ≤ 0.

◮ The likelihood function is then:

L(β, σ2|y,X) =
∏

yi=0

[

1− Φ

(

xiβ

σ

)]

∏

yi>0

(σ−1) exp

[

−
1

2σ2
(yi − xiβ)

2

]

.
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Bayesian Tobit Model for Death Penalty Support

◮ A flexible parameterization for the priors is given by

β|σ2 ∼ N (β0, Iσ
2B−1

0 ) σ2 ∼ IG
(γ0
2
,
γ1
2

)

with vector hyperparameter β0, scalar hyperparameters B0, γ0 > 2, γ1 > 0, and appropriately

sized identity matrix I.

◮ Substantial prior flexibility can be achieved with varied levels of these parameters, although values

far from those implied by the data will make the Gibbs sampler algorithm run very slowly.
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Bayesian Tobit Model for Death Penalty Support

◮ The resulting joint posterior, π(β, σ2, z|y,X), is now analytically intractable, even with this basic

model:

π(β, σ2|y,X) =
∏

yi=0

[

1− Φ

(

xiβ

σ

)]

∏

yi>0

(σ−1) exp

[

−
1

2σ2
(yi − xiβ)

2

]

× (2πσ2)−
n
2 exp

[

−
1

2σ2
(y −Xβ0)

′(y −Xβ0)

]

(

γ1
2

)

γ0
2

Γ
(

γ0
2

)(σ2)−(
γ0
2
+1) exp[−

(γ1
2

)

/σ2]

◮ To produce a regression table we now need to solve seven six-dimensional integrals (6 parameters

in β plus σ2) to get the marginal posteriors, then seven times two more one-dimensional integrals

to get the first two moments for each parameter.

◮ Better solution: Gibbs sampling (MCMC) which cycles through iterative draws of the full condi-

tional distributions for each model parameter.
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Bayesian Tobit Model for Death Penalty Support

◮ The full conditional distributions for Gibbs sampling are given for the β block, σ2, and the

individual zi|yi = 0 as:

β|σ2, z,y,X ∼ N

(

(B0 +X′X)−1)(β0B0 +X′z), (σ−2B0 + σ−2X′X)−1)

)

σ2|β, z,y,X ∼ IG

(

γ0 + n

2
,
γ1 + (z−Xβ)′(z−Xβ)

2

)

zi|yi = 0,β, σ,X ∼ T N (Xβ, σ2)I(−∞,0),

where T N () denotes the truncated normal and the indicator function I(−∞,0) provides the bounds

of truncation.
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Gibbs Sampling Illustration
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Posterior Summary, Tobit Model for Death Penalty Support

β̄ σβ

Constant -6.7600 3.5630

Past Rates 25.5586 8.0697

Political Culture 0.7919 0.1398

Current Opinion 5.9499 1.0805

Ideology 0.2638 1.0961

Murder Rate 0.1800 0.0764
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Important Application: Did Vinnie Johnson Have a Hot Hand?

◮ On May 5, 1985, the Pistons trailed the

Celtics by 87-76 after three periods at

home during the playoffs (Eastern Con-

ference Semi-Finals). Then in an amaz-

ing scoring display off the bench, John-

son scored 22 of 26 Piston’s points in

the period to pace an incredible 102-99

win, and tie the series 2-2.

◮ His overall shooting rate for 380 games

was ξ̂ = 0.43.

◮ Question: is there extra game-to-game

extra-binomial variability?
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Vinnie Johnson (“microwave”)

◮ Null: success probability constant across games

H0 : Yi
iid
∼ Bin(ni, p), i = 1, . . . , 380.

◮ Alternative: success probability has extra-variability

H1 : Yi ∼ Bin(ni, pi) independently,

where:

pi ∼ Beta(ξ/ω, (1− ξ)/ω),

so from beta-binomial E[Yi/ni] = ξ since ξ/ω
ξ/ω+(1−ξ)/ω = ξ, ω is an assigned parameter, and the

prior on ξ is U(0, 1).
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Vinnie Johnson (6’2”; 200 lb.)

◮ UnderH1 the variance of pi is large causing “swings” across games inducing the Hot Hand analogy:

V ar(pi) =

(

ξ
ω

)(

1−ξ
ω

)

(

ξ
ω + 1−ξ

ω

)2 (
ξ
ω + 1−ξ

ω + 1
)

=
ξ(1− ξ)

1 + 1
ω

◮ Interpretation of ω parameter: as ω → 0, V ar(pi) → 0, meaning H1 → H0.

◮ So it is interesting to compare models with different ω values: how far does the data support a

difference from the binomial?
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Flexible Hypothesis Testing Alternatives, α = 0.05, One-Tail
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Vinnie Johnson (#15)

◮ One way to directly test competing models is the Bayes Factor:

B10(y) =
π(M1|y)/p(M1)

π(M0|y)/p(M0)

◮ Results here:

ω V ar(p) B10(y)

0.001 0.007 0.21

0.005 0.035 0.16

0.010 0.049 0.017

0.030 0.085 0.0000003

◮ So as ω → 0, B10(y) → 1, and as ω ↑, V ar(p) ↑, but B10(y) → 0.

◮ For further exploration the data can be downloaded at

http://www.stat.washington.edu/raftery/software.html, and there is a brief discussion

in Kass and Raftery (1995).


