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Overview

◮ Previously we have seen “closed form” estimators for quantities of interest, such as b = (X′X)−1X′y.

◮ Moving to nonlinear models for categorical and limited support outcomes requires a more flexible

process.

◮ Maximum Likelihood Estimation (Fisher 1922, 1925) is a classic method that finds the value of

the estimator “most likely to have generated the observed data, assuming the model specification

is correct.”

◮ There is both an abstract idea to absorb and a mechanical process to master.
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Model Background

◮ Suppose we care about some outcome of interest Y, and determine that it has distribution f ().

◮ The stochastic component is:

Y ∼ f (µ, τ ).

◮ The systematic component is:

µ = g−1(Xβ)

◮ This setup is very general and covers all of the nonlinear regression models we will cover.

◮ You have seen the linear model in a similar form before:

Yi = Xiβ + ǫi

ǫi = N(0, σ2).
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Model Background

◮ But now we are going to think of it in this more general way, for example:

Yi ∼ N(µi, σ
2)

µi = Xiβ.

◮ An even more general way specifies a link function:

g(Yi) = Xiβ + ǫi

Yi = g−1(Xiβ) + ǫi

Yi = g−1(µi) + ǫi

◮ We typically write this in expected value terms:

E[Y |X,β] = µ



Maximum Likelihood Estimation [4]

The Likelihood Function

◮ Assume that:

x1, x1, . . . , xn ∼ iid f (x|θ),

where θ is a parameter that is critical to the data generation process (DGP).

◮ Since these values are independent, the joint distribution of the observed data is just the product

of their individual PDF/PMFs:

f (x|θ) = f (x1|θ)f (x2|θ) · · · f (xn|θ) =

n∏

i=1

f (xi|θ).

◮ But once we observe the the data x is fixed.

◮ It is θ that is unknown, so rewrite the joint distribution function according to:

f (x|θ) = L(θ|x).

◮ Note that this is a purely notational change, nothing is different mathematically.
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The Likelihood Function

◮ Fisher (1922) justifies this because at this point we know x.

f (x|θ) −→ L(θ|x).

◮ A semi-Bayesian justification works as follows, we want to perform:

p(x|θ) =
p(x)

p(θ)
p(θ|x).

but p(x) = 1 since the data has already occurred, and if we put a finite uniform prior on θ over

its finite allowable range (support), then p(θ) = 1.

◮ Therefore:

p(x|θ) =
1

1
p(θ|x) = p(θ|x).

◮ The only caveat here is the finiteness of the support of θ.
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Generic Likelihood Function Illustration

θ
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Poisson MLE

◮ Start with the Poisson PMF for xi:

p(X = xi) = f (xi|θ) =
e−θθxi

xi!
,

which requires the assumptions: non-concurrence of arrivals, the number of arrivals is proportion

to the time of study, this rate is constant over the time, and there is no serial correlation of arrivals.

◮ The likelihood function is created from the joint distribution:

L(θ|x) =
n∏

i=1

e−θθxi

xi!
=

e−θθx1

x1!

e−θθx2

x2!
· · ·

e−θθxn

xn!
= e−nθθ

∑
xi

(
n∏

i=1

xi!

)−1

.

◮ Suppose we have the data: x = {5, 1, 1, 1, 0, 0, 3, 2, 3, 4}, then the likelihood function is:

L(θ|x) =
e−10θθ20

207360
,

which is the probability of observing this exact sample.
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Poisson MLE

◮ It is often easier to deal the logarithm of the MLE:

logL(θ|x) = ℓ(θ|x) = log



e−nθθ
∑

xi

(
n∏

i=1

xi!

)−1


 = −nθ +

n∑

i=1

xi log(θ)− log

(
n∏

i=1

xi!

)

.

◮ For our small example this is:

ℓ(θ|x) = −10θ + 20 log(θ)− log(207360)
︸ ︷︷ ︸

12.242

.

◮ Importantly, for the family of functions that we will use the likelihood function and the log-

likelihood function have the same mode (maximum of the function) for θ.

◮ They are both guaranteed to be concave to the x-axis.
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Obtaining the Poisson MLE

◮ Freshman calculus: where is the maximum of the function? At the point when first derivative of

the function equals zero.

◮ So take the first derivative, set it equal to zero, and solve.

◮
d
dθℓ(θ|x) ≡ 0 is called the likelihood equation.

◮ For the example:

ℓ(θ|x) = −10θ + 20 log(θ)− log(207360)
︸ ︷︷ ︸

12.242

.

Taking the derivative, and setting equal to zero:

d

dθ
ℓ(θ|x) = −10 + 20θ−1 ≡ 0,

so that 20θ−1 = 10, and therefore θ̂ = 2 (note the hat).
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Obtaining the Poisson MLE

◮ More generally:

ℓ(θ|x) = −nθ +
n∑

i=1

log(θ)− log

(
n∏

i=1

xi!

)

d

dθ
ℓ(θ|x) = −n +

1

θ

n∑

i=1

xi ≡ 0

θ̂ =
1

n

n∑

i=1

xi = x̄

◮ It is not true that the MLE is always the data mean.
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General Steps

◮ This process is import to us:

1. Identify the PMF or PDF.

2. Create the likelihood function from the joint distribution of the observed data.

3. Change to the log for convenience.

4. Take the first derivative with respect to the parameter of interest.

5. Set equal to zero.

6. Solve for the MLE.
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Poisson Example in R

# POISSON LIKELIHOOD AND LOG-LIKELIHOOD FUNCTION

llhfunc<-function(X,p,do.log=TRUE) {

d <- rep(X,length(p))

q.vec <- rep(length(y.vals),length(p)); p.vec <- rep(p,q.vec)

print(q.vec)

d.mat <- matrix(dpois(d,p.vec,log=do.log),ncol=length(p))

print(d.mat)

if (do.log==TRUE) apply(d.mat,2,sum)

else apply(d.mat,2,prod)

}
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Poisson Example in R

# HERE’S A TEST FUNCTION

y.vals<-c(1,3,1,5,2,6,8,11,0,0)

llhfunc(y.vals,c(4,30))

[1] 10 10

[,1] [,2]

[1,] -2.6137 -26.599

[2,] -1.6329 -21.588

[3,] -2.6137 -26.599

[4,] -1.8560 -17.782

[5,] -1.9206 -23.891

[6,] -2.2615 -16.172

[7,] -3.5142 -13.395

[8,] -6.2531 -10.089

[9,] -4.0000 -30.000

[10,] -4.0000 -30.000

[1] -30.666 -216.114
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Poisson Example in R

# USE THE R CORE FUNCTION FOR OPTIMIZING, par=STARTING VALUES,

# control=list(fnscale=-1) INDICATES A MAXIMIZATION, bfgs=QUASI-NEWTON ALGORITHM

mle <- optim(par=1,fn=llhfunc,X=y.vals,control=list(fnscale=-1),method="BFGS")

# MAKE A PRETTY GRAPH OF THE LOG AND NON-LOG VERSIONS

ruler <- seq(from=.01, to=20, by= .01)

poison.ll <- llhfunc(y.vals,ruler)

poison.l <- llhfunc(y.vals,ruler,do.log=FALSE)

par(oma=c(3,3,1,1),mar=c(0,0,0,0),mfrow=c(2,1))

plot(ruler,poison.l,col="wheat",type="l",xaxt="n",lwd=3)

text(mean(ruler),mean(poison.l),"Poisson Likelihood Function")

plot(ruler,poison.ll,col="yellow",type="l",lwd=3)

text(mean(ruler),mean(poison.ll)/2,"Poisson Log-Likelihood Function")



Maximum Likelihood Estimation [15]

0
e

+
0

0
2

e
−

1
4

4
e

−
1

4

Poisson Likelihood Function

0 5 10 15 20

−
2

0
0

−
1

5
0

−
1

0
0

−
5

0

Poisson Log−Likelihood Function



Maximum Likelihood Estimation [16]

Measuring the Uncertainty of the MLE

◮ The first derivative measures slope and the second derivative measures “curvature” of the function

at a given point.

◮ The more peaked the function is at the MLE, the more “certain” the data are about this estimator.

◮ The square root of the negative inverse of the expected value of the second derivative is the SE of

the MLE.

◮ In multivariate terms for vector θ, we take the negative inverse of the expected Hessian.

◮ Poisson example:
d

dθ
ℓ(θ|x) = −n +

1

θ

n∑

i=1

xi

d2

dθ2
ℓ(θ|x) =

d

dθ

(
d

dθ
ℓ(θ|x)

)

= −θ−2
n∑

i=1

xi

◮ The expected value (estimate) of θ is the MLE, so:

SE(θ̂) =
θ̂2

∑n
i=1 xi

=
x̄2

nx̄
=

x̄

n
.
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Multivariable MLE

◮ Now θ is a vector of coefficients to be estimated (eg. regression).

◮ The Score Function is:

ℓ̇(θ|x) =
∂

∂θ
ℓ(θ|x)

which we use to get the MLE θ̂.

◮ The Hessian Matrix is:

H =
∂2ℓ(θ|x)

∂θ∂θ′

which we use to get the SE of the MLE.

◮ The information matrix is:

I = −E(f )

[
∂2ℓ(θ|x)

∂θ∂θ′

∣
∣
∣
∣
θ̂

]

≡ E(bbbh)

[
∂ℓ(θ|x)

∂θ

∂ℓ(θ|x)

∂θ′

∣
∣
∣
∣
θ̂

]

where the equivalence of these forms is called the information equality.

◮ The variance-covariance of θ̂ is produced by:

Σ = I−1
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Normal MLE

◮ Normal/Gaussian PDF:

f (x|µ, σ) = (2πσ2)−
1

2 exp

[

−
1

2σ2
(x− µ)2

]

.

◮ Likelihood function for µ and σ2 from joint PDF for the data:

L(µ, σ|x) =
n∏

i=1

(2πσ2)−
1

2 exp

[

−
1

2σ2
(xi − µ)2

]

= (2πσ2)−
n

2 exp

[

−
1

2σ2

n∑

i=1

(xi − µ)2

]

.

◮ Log-likelihood:

ℓ(µ, σ|x) = −
n

2
log(2π)−

n

2
log(σ2)−

1

2σ2

n∑

i=1

(xi − µ)2.
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Normal MLE

◮ MLE for µ (σ2 a nuisance parameter):

d

dµ
ℓ(µ, σ|x) = −

1

2σ2

n∑

i=1

(xi − µ)(2)(−1) =
1

σ2

n∑

i=1

(xi − µ) ≡ 0

0 =

n∑

i=1

xi − nµ

◮ So:

µ̂ =
1

n

n∑

i=1

xi = x̄.

◮ Again, it is not true that the MLE is always the data mean; the normal is an especially elegant

form.
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Normal MLE

◮ The standard error for µ̂ is:

d2

dµ2
ℓ(µ, σ|x) =

d

dµ

(

1

σ2

n∑

i=1

(xi − µ)

)

=
1

σ2

d

dµ

(
n∑

i=1

xi − nµ

)

= −
n

σ2
= H

SE(µ) = E[−H−1] =
σ2

n
.
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Normal MLE

◮ MLE for σ2 (µ a nuisance parameter):

d

d(σ2)
ℓ(µ, σ|x) =

d

d(σ2)

(

−
n

2
log(2π)−

n

2
log(σ2)−

1

2σ2

n∑

i=1

(xi − µ)2

)

= −
n

2

1

σ2
+

1

2

1

(σ2)2

n∑

i=1

(xi − µ)2 ≡ 0

0 = −n +
1

σ2

n∑

i=1

(xi − µ)2

σ̂2 =
1

n

n∑

i=1

(xi − µ)2

◮ This is biased in finite samples by:
n

n− 1

because of
1

n
.

◮ Note the difference between the SE of µ̂ and the MLE of σ2.
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Normal MLE

◮ The standard error for σ2 is:

d2

d(σ2)2
ℓ(µ, σ|x) =

d

d(σ2)

(

−
n

2

1

σ2
+

1

2

1

(σ2)2

n∑

i=1

(xi − µ)2

)

H =
n

2

(
σ2
)−2

−
(
σ2
)−3

n∑

i=1

(xi − µ)2

=
(
σ2
)−2

[

n

2
−
(
σ2
)−1

n∑

i=1

(xi − µ)2

]

−H−1 = −
−σ4

n
2 − (σ2)−1

n∑

i=1

(xi − µ)2

︸ ︷︷ ︸

E[ ]=nσ2

Ex[−H−1] =
2σ4

−n + 2(σ2)−1nσ2
=

2σ4

−n + 2n
=

2σ4

n
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Properties of the MLE (Birnbaum 1962)

◮ Consistency:

plimθ̂ = θ.

◮ Asymptotic Normality:

θ̂ ∼
a
N
(
θ, I(θ)−1

)
where I(θ) = −E

[
∂2ℓ(θ)

∂θ∂θ′

]

.

◮ Asymptotic Efficiency: no other estimator has lower variance, the variance of the MLE meets the

Crámer-Rao Lower Bound.

◮ Invariance To Reparameterization:

γ = c(θ) =⇒ γ̂ = c(θ̂).
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Exponential PDF MLE

◮ Assume: xi, i = 1, . . . , n iid with f (x|θ) = 1
θ exp[−x/θ].

◮ This gives:

L(θ|x) = θ−n exp

[

−
1

θ

n∑

i=1

xi

]

ℓ(θ|x) = −n log(θ)−
1

θ

n∑

i=1

xi

◮ Taking the derivative, setting equal to zero, and solving, gives:

d

dθ
ℓ(θ|x) = −

n

θ
+

1

θ2

n∑

i=1

xi ≡ 0 =⇒ θ̂ =
1

n

n∑

i=1

xi = x̄.

◮ The curvature for this estimate is:

d2

dθ2
ℓ(θ|x) =

d

dθ

(

−
n

θ
+

1

θ2

n∑

i=1

xi

)

= nθ−2 − 2θ−3
n∑

i=1

xi = nθ−2
[
1− 2θ−1x̄

]
= H.

◮ So the variance of the MLE is given by:

−H−1 = −
θ2

n(1− 2θ−1x̄)
=

θ2/n

2θ−1x̄− 1
=⇒ E

[
−H−1

]
=

x̄2/n

2x̄−1x̄− 1
=

x̄2

n
.
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Maximum Likelihood Estimation for Linear Regression

◮ Assume: y = Xβ + e, e ∼ N(0,Σ), Σ = σ2I.

◮ Normally we would estimate according to b̂ = (X′X)−1X′y.

◮ Start with the likelihood function for iid e:

L(e) = (2πσ2)−
n

2 exp

[

−
1

2σ2
e′e

]

.

◮ Now plug in the estimate of e, ei = yi −Xiβ (where β is yet to be estimated):

L(β) = (2πσ2)−
n

2 exp

[

−
1

2σ2
(y −Xβ)′(y −Xβ)

]

ℓ(β) = −
n

2
log(2πσ2)−

1

2σ2
(y −Xβ)′(y −Xβ)
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Maximum Likelihood Estimation for Linear Regression

◮ Now take the derivative with regard to β, and set equal to zero:

∂

∂β
ℓ(β) =

∂

∂β

(

−
n

2
log(2πσ2)−

1

2σ2
(y −Xβ)′(y −Xβ)

)

= −
1

2σ2
(−X)′(2)(y −Xβ) ≡ 0

0 = X′(y −Xβ)

0 = X′y −X′Xβ
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Maximum Likelihood Estimation for Linear Regression

◮ Now take the derivative with regard to β, and set equal to zero:

∂

∂β
ℓ(β) =

∂

∂β

(

−
n

2
log(2πσ2)−

1

2σ2
(y −Xβ)′(y −Xβ)

)

= −
1

2σ2
(−X)′(2)(y −Xβ) ≡ 0

0 = X′(y −Xβ)

0 = X′y −X′Xβ

β̂ = (X′X)−1X′y

◮ Here, X′Xβ = X′y is called the normal equation.
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Maximum Likelihood Estimation for Linear Regression

◮ Now treat µ as the nuisance parameter:

d

dσ2
ℓ(σ2) =

d

dσ2

(

−
n

2
log(2π)−

n

2
log(σ2)−

1

2σ2
(y −Xβ)′(y −Xβ)

)

= −
n

2

1

σ2
+

1

2(σ2)2
(y −Xβ)′(y −Xβ)

= −
n

2σ2
+

1

2(σ2)2
e′e ≡ 0

0 ≡ −nσ2 + e′e

σ̂2 =
1

n
e′e.

◮ Note that this is biased by:
n

n− 1

because of
1

n
.



Maximum Likelihood Estimation [22]

MLEs Are Not Guaranteed To Exist

◮ Let X1, X2, . . . , Xn be iid from B(1, p), where p ∈ (0, 1).

◮ If we get the sample (0, 0, . . . , 0), then the MLE is obviously X̄ = 0.

◮ But this is not an admissible value, so the MLE does not exist.
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Likelihood Problem #1

◮ What if the likelihood function is flat around the mode?

◮ This is an indeterminate (and fortunately rare) occurrence.

◮ We say that the model is “non-identified” because the likelihood function cannot discriminate

between alternative MLE values.

◮ Usually this comes from a model specification that has ambiguities.
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Likelihood Problem #2

◮ What if the likelihood function has more than one mode?

◮ Then it is difficult to choose one, even if we had perfect knowledge about the shape of the function.

◮ This model is identified provided that there is some criteria for picking a mode.

◮ Usually this comes from complex model specifications, like nonparametrics.
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Root and Mode finding with Newton-Raphson

◮ Newton’s method exploits the properties of a Taylor series expansion around some given point.

◮ General form (to be derived):

x(1) ∼= x(0) −
f (x(0))

f ′(x(0))
,

◮ The Taylor series expansion gives the relationship between the value of a mathematical function

at point, x0, and the function value at another point, x1, given (with continuous derivatives over

the relevant support) as:

f (x1) = f (x0) + (x1 − x0)f
′(x0) +

1

2!
(x1 − x0)

2f ′′(x0)

+
1

3!
(x1 − x0)

3f ′′′(x0) + . . . ,

where f ′ is the first derivative with respect to x, f ′′ is the second derivative with respect to x, and

so on.
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Root and Mode finding with Newton-Raphson

◮ Note that it is required that f () have continuous derivatives over the relevant support. Infinite

precision is achieved with the infinite extending of the series into higher order derivatives and

higher order polynomials (of course the factorial component in the denominator means that these

are rapidly decreasing increments).

◮ This process is both unobtainable and unnecessary, and only the first two terms are required as a

step in an iterative process.

◮ The point of interest is x1 such that f (x1) = 0. This value is a root of the function, f () in that it

provides a solution to the polynomial expressed by the function.
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Root and Mode finding with Newton-Raphson

◮ It is also the point where the function crosses the x-axis in a graph of x versus f (x). This point

could be found in one step with an infinite Taylor series:

0 = f (x0) + (x1 − x0)f
′(x0) +

1

2!
(x1 − x0)

2f ′′(x0) + . . .

+
1

∞!
(x1 − x0)

∞f (∞)(x0) + . . . .

◮ While this is impossible, we can use the first two terms to get closer to the desired point:

0 ∼= f (x0) + (x1 − x0)f
′(x0).

◮ Now rearrange to produce at the (j+1)th step: x(j+1) ∼= x(j) −
f (x(j))

f ′(x(j))
,

so that progressively improved estimates are produced until f (x(j+1)) is sufficiently close to zero.

◮ It has been shown that this method converges quadratically to a solution provided that the selected

starting point is reasonably close to the solution, although the results can be very bad if this

condition is not met.
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Newton-Raphson for Statistical Problems

◮ The Newton-Raphson algorithm, when applied to mode finding in an MLE statistical setting,

substitutes β(j+1) for x(j+1) and β(j) for x(j) (where the β values are iterative estimates of the

parameter vector) and f () is the score function.

◮ For a likelihood function: L(β|X), the score function is the first derivative with respect to the

parameters of interest:

ℓ̇(β|X) =
∂

∂β
ℓ(β|X).

Setting ℓ̇(β|X) equal to zero and solving gives the maximum likelihood estimate, β̂.

◮ The goal is to estimate a k-dimensional β̂ estimate, given data and a model. The applicable

multivariate likelihood updating equation is now provided by:

β(j+1) = β(j) −
∂

∂β
ℓ(β(j)|x)

(
∂2

∂β∂β′ℓ(β
(j)|x)

)−1

.

◮ Which can be rewritten as:
(

∂2

∂β∂β′ℓ(β
(j)|x)

)

(β(j+1) − β(j)) =
∂

∂β
ℓ(β(j)|x)
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Newton-Raphson for Statistical Problems

◮ When β(j) is the maximum likelihood coefficient vector, the quantity in the denominator is the

Hessian.

◮ At each step of these Newton-Raphson steps, a system of equations determined by the multivariate

normal equations must be solved:

A︸︷︷︸
angle

(β(j+1) − β(j))
︸ ︷︷ ︸

direction: δβ

=
∂

∂β
ℓ(β(j)|x)

︸ ︷︷ ︸
size of direction: u

,

which builds “linear structure in the parameter vector,” and leads to estimates from the system

of linear equations: δβ = A−1u.

◮ It is computationally convenient to solve on each iteration by least squares, so that the problem of

mode finding reduces to a repeated weighted least squares application in which the inverse of the

diagonal values of the second derivative matrix in the denominator are the appropriate weights

(this is a diagonal matrix by the iid assumption).
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Newton-Raphson for Statistical Problems

◮ The Newton-Raphson algorithm when applied to ML mode finding treats the score function as

f () to produce iterative estimates from the Taylor series:

β(j+1) = β(j) −

∂
∂βℓ(β

(j)|y)

∂2

∂β∂βℓ(β
(j)|y)

.

◮ Generalize this by allowing multiple coefficients, changing the parameter β to the vector β:

β(j+1) = β(j) −

(
∂2

∂β∂β′ℓ(β
(j)|y)

)−1
∂

∂β
ℓ(β(j)|y).

◮ Where the Hessian is:

H =
∂2

∂β∂β′ℓ(β
(j)|y).
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Newton-Raphson for Statistical Problems

◮ For exponential family distributions and natural link functions, the observed and expected Hessian

matrix are identical (Fahrmeir and Tutz, 1994, p.39; Lehmann and Casella, 1998, pp.124-8).

◮ So it is common to replace this calculation with forms that are equivalent for the exponential

family, such as the Fisher information:

AFisher = −E

(
∂2

∂β∂β′ℓ(β
(j)|y)

)

(Fisher 1925), or the square of the score function:

ABHHH = E

[
∂

∂β
ℓ(β(j)|y)′

∂

∂β
ℓ(β(j)|y)

]

.

sometimes called the BHHH method (Berndt, Hall, Hall, and & Hausman 1974).

◮ From now on the slides will just say A, under the assumption it’s either of these forms.
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Newton-Raphson for Statistical Problems

◮ At each step of the Newton-Raphson algorithm there is a system of multivariate normal equations:

A︸︷︷︸
angle

(β(j+1) − β(j))
︸ ︷︷ ︸

direction: δβ

=
∂

∂β(j)
ℓ(β(j)|y)

︸ ︷︷ ︸
size of direction: u

,

builds “linear structure in the parameter vector.”

◮ This creates a linear system of equations according to:

δβ
(p×1)

= A−1

(p×p)
u

(p×1)

where we obtain new estimates by iterating over:

β∗ = β + δβ

= β +A−1u



Maximum Likelihood Estimation [33]

Newton-Raphson for Statistical Problems

◮ Given this system of equations, it is computationally convenient to solve on each iteration by

weighted least squares.

◮ Therefore the problem of mode finding reduces to a repeated weighted least squares application

in which the inverse of the diagonal values of A are the appropriate weights.

◮ So we now review weighted least squares. . .



Maximum Likelihood Estimation [34]

Review of Weighted Least Squares

◮ A standard technique for compensating for non-constant error variance in LMs is to insert a diago-

nal matrix of weights,Ω, into the calculation of β̂ = (X′X)−1X′Y such that the heteroscedasticity

is mitigated.

◮ The Ω matrix is created by taking the error variance of the ith case (estimated or known), vi,

and assigning the inverse to the ith diagonal: Ωii =
1
vi
. The idea is that large error variances are

reduced by multiplication of the reciprocal.

◮ Starting withYi = Xiβ+ǫi, observe that there is heteroscedasticity in the error term so: ǫi = ǫvi,

where the shared (minimum) variance is ǫ (i.e. non-indexed), and differences are reflected in the

vi term.
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Review of Weighted Least Squares

◮ Really simple example: a heteroscedastic error vector: E = [1, 2, 3, 4]. Then ǫ = 1, and the v

vector is [1, 2, 3, 4]. So by the logic above, the µ matrix for this example is:

Ω =








1
v1

0 0 0

0 1
v2

0 0

0 0 1
v3

0

0 0 0 1
v4







=








1 0 0 0

0 1
2 0 0

0 0 1
3 0

0 0 0 1
4







.

◮ Premultiply each term by the square root of the Ω matrix (a Cholesky factorization given that A

is a positive definite, but greatly simplified here since Ω is diagonal): Ω
1

2Y = Ω
1

2Xβ +Ω
1

2ǫ.

◮ So if the heteroscedasticity in the error term is expressed as the diagonals of a matrix: ǫ ∼ (0, σ2V),

then this gives: ǫ ∼ (0,Ωσ2V) = (0, σ2), and the heteroscedasticity is “removed.”

◮ Now instead of minimizing (Y−Xβ)′(Y−Xβ), we minimize (Y−Xβ)′Ω(Y−Xβ), and the

weighted least squares estimator is found by β̂ = (X′ΩX)−1X′ΩY.
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Review of Weighted Least Squares, GLS in R

diastolic.pressure.df <-

read.table("http://people.hmdc.harvard.edu/~jgill/bloodpressure.data",header=FALSE))

dimnames(diastolic.pressure.df)[[2]] <- c("age","pressure")

summary(diastolic.pressure.df)

age pressure

Min. :20.00 Min. : 63.00

1st Qu.:30.25 1st Qu.: 71.00

Median :40.00 Median : 77.00

Mean :39.57 Mean : 79.11

3rd Qu.:49.00 3rd Qu.: 85.75

Max. :59.00 Max. :109.00

attach(diastolic.pressure.df)

unweighted.lm <- lm(pressure~age)
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Review of Weighted Least Squares, GLS in R

summary(unweighted.lm)

Residuals:

Min 1Q Median 3Q Max

-16.47859 -5.78765 -0.07844 5.61173 19.78132

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.15693 3.99367 14.061 < 2e-16

age 0.58003 0.09695 5.983 2.05e-07

---

Residual standard error: 8.146 on 52 degrees of freedom

Multiple R-Squared: 0.4077, Adjusted R-squared: 0.3963

F-statistic: 35.79 on 1 and 52 DF, p-value: 2.05e-07
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Review of Weighted Least Squares, GLS in R

# REGRESS ABSOLUTE VALUE RESIDUALS ON PREDICTOR -> SD FUNCTION

resid.fit <- lm(abs(unweighted.lm$residuals)~age)

# OBTAIN FITTED VALUES FOR THE WEIGHTS

weights.fit <- 1/(resid.fit$fitted.values)^2

# USE THESE WEIGHTS FOR A GLS REGRESSION

weighted.lm <- lm(pressure~age,weights=weights.fit)

summary(weighted.lm)

Residuals:

Min 1Q Median 3Q Max

-2.0230 -0.9939 -0.0327 0.9250 2.2008

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 55.56577 2.52092 22.042 < 2e-16

age 0.59634 0.07924 7.526 7.19e-10

---

Residual standard error: 1.213 on 52 degrees of freedom

Multiple R-Squared: 0.5214, Adjusted R-squared: 0.5122

F-statistic: 56.64 on 1 and 52 DF, p-value: 7.187e-10
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Iterative Weighted Least Squares

◮ Suppose that the individual variances used to make the reciprocal diagonal values for Ω are

unknown and cannot be easily estimated.

◮ It is known that they are a function of the mean of the outcome variable: vi = f (E[Yi]).

◮ So if the expected value of the outcome variable, E[Yi] = µ, and the form of the relation function,

f (), are known then this is a straightforward estimation procedure.

◮ Unfortunately, it is not always possible to know the exact form of the relationship between the

mean function and the variance structure.
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Iterative Weighted Least Squares

◮ A solution to this problem is to iteratively estimate the weights, improving the variance estimate

on each cycle from the mean function:

diag(Ω) = min
β

[

(A−1u− δβ)′(A−1u− δβ)

]

◮ Recall that:

A = −E

(
∂2

∂β∂β′ℓ(β
(j)|y)

)

u =
∂

∂β
ℓ(β(j)|x) δβ = (β(j+1) − β(j))

◮ Since µ = g−1(Xβ), then the coefficient estimate, β̂, provides a mean estimate and vice versa,

and for exponential family forms this process leads to the MLE.

◮ Furthermore, the matrix produced by: σ̂2(X′ΩX)−1 converges in probability to the variance

matrix of β̂ as desired (here σ̂2 =
∑

diag(Ω)).
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Derivation of IWLS

◮ Define the current (or starting) point of the linear predictor by:

ê0
(n×1)

= X′β0
(n×p)(p×1)

with fitted value µ̂0 from g−1(ê0).

◮ Form the “adjusted dependent variable” according to:

z0
(n×1)

= ê0
(n×1)

+

(

∂η

∂µ

∣
∣
∣
∣
µ̂0

)

diag(n×n)

(y − µ̂0)
(n×1)

which is a linearized form of the link function applied to the data. As an example of this derivative

function, the Poisson form looks like:

η = log(µ) =⇒
∂η

∂µ
=

1

µ
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Derivation of IWLS

◮ Form the quadratic weight matrix, which is the variance of z:

w−1
0

(n×n)

=

(

∂η

∂µ

∣
∣
∣
∣
µ̂0

)2

v(µ)|µ̂0

where v(µ) is the variance function: ∂
∂θb

′(θ) = b′′(θ) from McCullagh & Nelder’s standard setup.

◮ This process is necessarily iterative because both z and w depend on the current fitted value, µ0.

◮ Recall the following:

b′(θ) = µ b′′(θ) = v(µ) =
∂

∂θ
µ

∑

j

βjxj = η =⇒
∂η

∂βj
= xj ℓ(yj, θ) =

yjθ − b(θ)

φ
+ c(yj, φ)

with the simplifications: a(φ) = φ, and no grouping/clustering.
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Derivation of IWLS

◮ General Scheme:

1. Construct z, w. Regress z on the covariates with weights to get a new interim estimate:

β̂1
(p×1)

=

[

X′

(p×n)
w0

(n×n)
X

(n×p)

]−1

X′

(p×n)
w0

(n×n)
z0

(n×1)

2. Use the coefficient vector estimate to update the linear predictor:

ê1 = X′β̂1

3. Iterate:

z1, w1 =⇒ β̂2, ê2 β̂2, ê2 =⇒ z2, w2

z2, w2 =⇒ β̂3, ê3 β̂3, ê3 =⇒ z3, w3

z3, w3 =⇒ β̂4, ê4 β̂4, ê4 =⇒ z4, w4

(and so on. . . ).
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Justification
◮ First obtain the first derivative WRT βj coefficient starting with the log likelihood in canonical

form for a single data point, apply the chain rule:

∂ℓ

∂βj

=
∂ℓ

∂θ

∂θ

∂µ

∂µ

∂η

∂η

∂βj

◮ Now simplify using the following properties/results:

∂µ

∂θ
=

∂

∂θ
b′(θ) = v(µ)

∂η

∂βj

= xj

∂µ

∂η
= w0

∂η

∂µ
v(µ)

∂ℓ

∂θ
=

y − µ

φ
,

which produces:
∂ℓ

∂βj

=
w0

φ
(y − µ)

∂η

∂µ
xj = Uj
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Justification

◮ This can also be expressed in vector form for the full coefficient vector:

u
(p×1)

=
∂

∂β
ℓ(y,β)

◮ Use Fisher scoring with gradient vector and the negative expected value of the Hessian, for example

for coefficients r and s:

Ars = −E

(
∂2

∂βr∂β
′
s

ℓ(y,β)

)

.

This is the value in the rth row and sth column.
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Justification

◮ What does A look like?

Ars = −E
∂ur

∂βs

= −E
∂

∂βs

[
n∑

i=1

wi(y − µ)
∂η

∂µ
xr

]

= −E
n∑

i=1

[

(y − µ)
∂

∂βs

(

wi
∂η

∂µ
xr

)

+

(

wi
∂η

∂µ
xr

)
∂

∂βs

(y − µ)

]

= −
n∑

i=1

[

0 +

(

wi
∂η

∂µ
xr

)
∂

∂βs

(−µ)

]

=

n∑

i=1

wixr
∂η

∂µ

∂µ

∂βs

=

n∑

i=1

wixr
∂η

∂βs

=

n∑

i=1

wixrxs

◮ So the full A matrix is a weighted sums of products matrix of the covariates, in matrix form:

A = X′wX

and if we express U in matrix form as:

U = X′wy∗

(using U = Aδβ and y∗ = Xδβ) then the weighted LM form is apparent.


