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Motivation

◮ The goal is to achieve desired: significance levels, effect sizes, subsetting ability, and power (one

minus the probability of a Type II error) by collecting a sufficiently large sample.

◮ In some settings the statistician does not participate in the design of the study.

◮ Therefore others do the required sample size calculations.

◮ This is all really about stipulating reasonable and defensible assumptions on the future data-

generating process.

◮ It is important to realize that this is a fictional enterprise.

◮ Complexities: cluster sampling, stratified sampling, multilevel data, dropouts, outcome variable

measurement, multiple studies, and stopping rules.
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Power Difference: Aspirin For Non-Fatal Myocardial Infarction

◮ Treatment: 300 mg aspirin three times daily.

◮ Elwood and Sweetnam (1979) studied 1239 patients just after a myocardial infarction, and found

the mortality difference at one year to be:

paspirin = 0.080 pplacebo = 0.107 CI0.95 = [−0.005 : 0.06].

◮ Later a study by the Aspirin Reinfarction Research Study Group (1980) of 6292 patients under

almost exactly the same circumstances found:

paspirin = 0.092 pplacebo = 0.115 CI0.95 = [0.008 : 0.038].

◮ So the first confidence interval has length 0.065, and the second confidence interval has length

0.03.

◮ What is going on here?
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Hypothesis Testing Review: Physiotherapy for Lung Cancer Patients

◮ Because sample size calculations are tied to hypothesis testing and decision-making in general,

return to the foundational setup.

◮ Griffiths et al. (2000) conducted a randomized clinical trial to compare post-operative lung cancer

patients under:

⊲ Treatment: a new pulmonary rehabilitation program, nT = 93.

⊲ Control: standard care, nC = 91.

◮ The outcome of interest is distance walked in meters six weeks after randomization, which is

assumed to be normally distributed, and observed to have:

⊲ x̄T = 211, sT = 118.

⊲ x̄C = 123, sC = 99.

◮ Therefore the difference is characterized by the observed effect size and its standard error:

d̄ = x̄T − x̄C = 88, SE(d̄) =

√

s2T
nT

+
s2C
nC

=

√

1182

93
+

992

91
= 16.04.

where SE(d̄) assumes different underlying population standard deviations.
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Hypothesis Testing Review: Physiotherapy for Lung Cancer Patients

◮ Hypotheses:

H0 : δ = µT − µC = 0 HA : δ = µT − µC > 0

where δ is the true population effect size, estimated by the observed effect size, d̄.

◮ We know that d̄ = x̄T − x̄C = 88, which is clearly not zero, but the question is whether it is

sufficiently far from zero in units of SE(d̄) such that we conclude for HA.

◮ The test statistic is:

zd =
d̄− δnull
spooled

=
88− 0

16.04
= 5.4863 > 1.645

for a one-sided test.

◮ We therefore reject the Null Hypothesis of no difference and find evidence for the Alternative

Hypothesis that the physiotherapy helps lung cancer patients at the α = 0.05 level for a one-sided

hypothesis test.

◮ This represents a completely typical hypothesis testing process, and serves as reminder before we

go on.
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Living With Errors

◮ Whenever you make a decision like this based on statistical analysis you run the risk of making

an error because these decisions are based on probabilistic not deterministic statements.

◮ With hypothesis testing we care principally about two types of errors:

⊲ Type I Error: the probability that the Null Hypothesis is true and we reject it anyway. This

is labeled α.

⊲ Type II Error: the probability that the Null Hypothesis is false and we fail to reject it. This

is labeled β.

◮ Often we care more about 1− β, which is called Power, rather than β.

◮ Key problem: these errors are traded-off by determination of α, δ, β, n, and can never be fully

eliminated.

◮ Frequent strategy: fix α = 0.05 and 1− β = 0.8, determine a useful threshold for δ, and calculate

the required n to make these happen.
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Multiple Objectives

◮ So if you require 1−β > 0.8 and α < 0.05, then you only have sample size and minimal detectable

(hypothesized) effect size to manipulate.

◮ Effect Size is usually the key quantity of interest here (the true magnitude of some treatment,

procedure, exposure, etc.).

◮ Smaller samples are achieved in studies designed to maximize potential effect size, subject to other

constraints.

◮ This is why many drug studies give the lowest possible level to the control group and the highest

safe level to the treatment group.

◮ So how do we visualize these trade-offs between α, δ, β, and n?
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General Illustration of Trade-Offs
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Implications of Sample Size on Realized Significance For Means
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Implications of Sample Size on Power For Means
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A Key Principle

◮ We are always interested in testing some effect size as shown in the figures as a difference in

hypothesized means using a mean estimate (ȳ), or possibly an observed proportion (p̂).

◮ More generally denoted as δ = θ − θ0 for the difference in the true value and the hypothesized

value that motivates the study (in medicine often the “minimal detectable effect size”).

◮ If the green area from the first plot equaled the tan area then there would be no difference, δ = 0.

◮ This means that for this standard normal case:

δ = 0 −→ θ0 + α = θ − (1− β).

◮ If we generalize this statement to all normals it becomes:

θ0 + α× SE(ȳ) = θ − (1− β)× SE(ȳ).

◮ Restated more generally and using α = 0.5 and 1− β = 0.8:

Threshold + 95% CV× Standard Error = Assumed Mean− Φ(0.8)× Standard Error

where 95% CV = 1.96 and Φ(0.8) = 0.8416, so findings occur when Threshold and Assumed

Mean are statistically different.
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A Key Principle

◮ Substituting in the definitions of these quantities:

Threshold + 95% CV× Standard Error = Assumed Mean− Φ(0.8)× Standard Error

θ0 + 1.96× SE(ȳ) = θ − 0.84× SE(ȳ)

(with some rounding).

◮ And using JHSA:

2.8 = 1.96 + 0.84 =
θ − θ0
SE(ŷ)

which we will use repeatedly do to atheoretical but overwhelming conventions.
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A Key Issue

◮ Increasing the sample size decreases the standard error of statistics in proportion to 1/
√
n.

◮ We usually do not know the underlying variance from the future data generating process for

certain.

◮ Media survey researchers always have a good estimate of the variance due to repetition.

◮ Often we have a very good idea from previous work (ours or others).

◮ If we are concerned with proportions we can exploit the properties of the Bernoulli PMF to get

a variance estimate.
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Sample Size Calculation To Get a Specified Standard Error, Proportions

◮ Objective # 1: we want to estimate the population proportion, p̂, who are technically overweight

or obese (BMI >25) specifying a standard error (accuracy) that is no worse than σp̂ = 0.05.

◮ Suppose we suspect that the population percentage is around 60%, so the tested effect size is p̂−p0
where p0 = 0.6.

◮ The standard error of the estimated proportion is

σp̂ =
√

p̂(1− p̂)/n,

with a mathematical upper bound of 0.5/
√
n.

◮ Using our suspected value (specified effect size), p0 = 0.6,

σp̂ = 0.05 =
√

0.6(1− 0.6)/n = 0.4899/
√
n.

◮ Rewriting this algebraically means: n = (0.4899/0.05)2 = 96.

◮ Or we could more conservatively use: n = (0.5/0.05)2 = 100 from the upper bound.
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Sample Size Calculations For Power, Proportions

◮ Objective # 2: we want evidence that more than half the population is overweight or obese

(p ≥ 0.5) using p̂ = y/n.

◮ The classical approach using the conservative standard error,

σp̂ =
√

(0.5)(0.5)/n =
0.5√
n

gives the 95% confidence interval (CI):
[

p̂± (1.96)
(0.5)√

n

]

.

◮ We really care that the lower bound of this CI, Lα, is greater than one-half, so rearranging gives:

L = p̂− (1.96)
0.5√
n

−→ n =

(

0.98

L− p̂

)2

,

so at p̂ = 0.55 we need n = 384, and at p̂ = 0.65 we need only n = 43

◮ This hightlights a big principle: the bigger the tested effect size the small the sample needed.
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Sample Size Calculations For Power, Proportions

◮ What is the power of the test that the 95% CI will be completely above the comparison point of

0.5?

◮ Using simple Monte Carlo simulation in R with 10,000,000 draws, hypothesizing p0 = 0.6, and

using n = 96, we calculate:

# SET THE SIMULATION SAMPLE SIZE

m <- 10000000

# GENERATE m NORMALS WITH MEAN 0.6 AND STANDARD DEVIATION sqrt(0.6*(1-0.6)/96)

p.hat <- rnorm(m,0.6,sqrt(0.6*(1-0.6)/96))

# CREATE A CONFIDENCE INTERVAL MATRIX THAT IS m * 2 BIG

p.ci <- cbind(p.hat - 1.96*0.5/sqrt(96), p.hat + 1.96*0.5/sqrt(96))

# GET THE PROPORTION OF LOWER BOUNDS GREATER THAN ONE-HALF

sum(p.ci[,1] > 0.5)/m

[1] 0.4997

showing that the probability that the complete CI is greater than 0.5 is 0.4997.

◮ Note that we fixed the sample size (96), fixed the effect size (0.6 − 0.5), fixed the significance

level (α = 0.05), got the standard error by assumption, but let power be realized.
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Sample Size Calculations 80% Power, Proportions

◮ Objective # 3: we want n such that 0.8 of the 95% CIs do not cover 0.5 (80% power).

◮ First calculate n by solving the equation:

Threshold + 95% CV× Standard Error = Assumed Mean− Φ(0.8)× Standard Error

0.5 + 1.96(0.5/
√
n) = 0.6− 0.84162(0.5/

√
n)

meaning that (from JHSA) n = 196.22 (but rounding up to 197), using the conservative σp̂ = 0.5,

with qnorm(0.8) [1] 0.84162, equivalent to Φ(0.8) =
∫ 0.84162

−∞ fN(x)dx.

◮ R code to check this probability calculation:

n <- 197

m <- 10000000

p.hat <- rnorm(m,0.6,sqrt(0.5*0.5/n))

p.ci <- cbind(p.hat - 1.96*0.5/sqrt(n),p.hat + 1.96*0.5/sqrt(n))

sum(p.ci[,1] > 0.5)/m

[1] 0.8013 # POWER IS A LITTLE BETTER THAN 0.8 BECAUSE WE ROUNDED-UP

◮ Note that we fixed the power level (1 − β = 0.8), fixed the effect size (using 0.6), fixed the

significance level (α = 0.05), got the standard error by assumption, but let the sample size be

realized.
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Wait! Where Did You Get That Last Equation?

◮ The 0.8 CDF of a standard normal is:

qnorm(0.8)

[1] 0.8416212
but we can pick other levels obviously.

◮ We want the scaled difference of the lower bound and the threshold to be equal to the 0.8 CDF:

0.84162 =
L− 0.5

σ/
√
n
.

which means that there 80% of separation on between these values in terms of a standard normal

distribution for the difference.

◮ Rewriting this gives:
L = 0.5 + 0.84162(σ/

√
n).

◮ Since L = p̂− zα/2(σ/
√
n) by definition of a confidence interval for the mean, then:

p̂− zα/2(σ/
√
n) = p0 + 0.84162(σ/

√
n)

0.6− 1.96(σ/
√
n) = 0.5 + 0.84162(σ/

√
n)

0.5 + 1.96(0.5/
√
n) = 0.6− 0.84162(0.5/

√
n)
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Sample Size Calculations With Proportions, Summary

◮ Proportions allow us to exploit the Bernoulli variance calculation: p̂(1− p̂)/n.

◮ If the goal is a specific standard error :

⊲ Conservative Approach: σp̂ = 0.5/
√
n −→ n =

(

0.5
σp̂

)2

.

⊲ If you have more information: n =

(

p(1−p)

σ2p̂

)

.

◮ If the goal is 80% power to distinguish p from a specified value p0:

⊲ Conservative Approach: n =
(

(2.8)(0.5)
p−p0

)2

.

⊲ If you have more information: n = p(1− p)
(

2.8
p−p0

)2

.

◮ Repeated use of 2.8 comes from rounding 1.96(zα/2=0.025)
+ 0.84(z1−β=0.8) in the calculation:

0.5 + 1.96(0.5/
√
n) = 0.6− 0.84(0.5/

√
n)

1.96(0.5/
√
n) + 0.84(0.5/

√
n) = 0.6− 0.5

2.8(0.5/
√
n) = 0.1
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Sample Size Calculation for Comparing Two Proportions

◮ Now the effect size of interest is the difference between two population proportions.

◮ From Stat-101, the standard error for the difference of proportions is:

σprop =

√

p1(1− p1)

n1
+

p2(1− p2)

n2
, or conservatively σprop = 0.5

√

1

n1
+

1

n2
.

◮ Restricting the sample sizes to be equal, n1 = n2 = n, gives:

σprop = 0.5

√

1

n/2
+

1

n/2
= 1/

√
n,

meaning that n = 1/σ2
prop.

◮ Then for α = 0.05 and 1− β = 0.8, with effect size p1 − p2:

⊲ very conservative Approach: n = [2.8/(p1 − p2)]
2,

⊲ or if we have more information: n = 2[p1(1− p1) + p2(1− p2)][2.8/(p1 − p2)]
2

(see G&H page 442).
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Sample Size Calculation for Comparing Two Proportions, Example

◮ We suspect that the proportion of overweight and obese is 10% higher in the US than in Sweden.

◮ If the surveys are equal size, n/2, how big must the total sample size be such that there is 80%

power and significance at 0.05, if the true difference in proportions is hypothesized to be 10%.

◮ So for the 10% to be 2.8 standard errors from zero we need: n > (2.8/0.10)2 = 784.

◮ What if the true difference in proportions is hypothesized to be 20%?

◮ Now for the 20% to be 2.8 standard errors from zero we need: n > (2.8/0.20)2 = 196.

◮ Going the other way, what about a hypothesized 5%?

◮ Then n > (2.8/0.05)2 = 3136

◮ Note the important principle that as the hypothesized percent difference (effect size) goes down,

the required sample size goes up.
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What About Unequal Sample Sizes?

◮ We have a study where 20% are in the treatment group and 80% are in the control group.

◮ Using:

σprop =

√

p1(1− p1)

0.2n
+

p2(1− p2)

0.8n
,

which has an upper bound of

0.5
√

1/0.2n + 1/0.8n = 1.25/
√
n,

giving

n = (1.25/σprop)
2

(from JHSA).

◮ What sample size is needed to get 80% power to find a 10% group difference?

◮ Using the upper bound for the standard error, for 10% to be 2.8 standard errors from zero we

need:

n > [(2.8)(1.25)/0.10]2 = 1225,

giving n1 = 245, and n2 = 980.
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What About Unequal Sample Sizes, More Generally?

◮ More generally, suppose we have arbitrary proportional sample sizes, q and (1− q).

◮ Then

σprop =

√

p1(1− p1)

qn
+

p2(1− p2)

(1− q)n
,

which has an upper bound of

σprop,max = 0.5[q(1− q)]−
1

2/
√
n.

◮ With a little rearranging, we get:

√
n =

0.5[q(1− q)]−
1

2

σprop,max

n =

(

[q(1− q)]−
1

2/2

σprop,max

)2

.
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What About Unequal Sample Sizes, More Generally?

◮ If we consider information on p1 and p2 as accurate:

n =

(

[q(1− q)]−
1

2/[p1(1− p1)(1− q) + p2(1− p2)q]
1

2

σprop

)2

.

◮ But this has σprop on the RHS, which would rely on some information about sample size besides

proportional difference.

◮ So use the Fleiss Equation (1981) as an estimate:

n ≈ 1

δ2

[

z1−α/2

√

(p1 + p2)

(

1− 1

2
(p1 + p2)

)

+ z1−β

√

p1(1− p1) + p2(1− p2)

]2

,

where δ is the desired effect size.
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Sample Size Calculations With a Single Continuous Outcome

◮ Continuous outcomes are more challenging than dichotomous outcomes.

◮ Suppose we want to determine if a population mean θ is statistically distinct from some fixed value

θ0, giving δ = θ − θ0.

◮ We will use the mean of a sample, ȳ, to estimate θ for this test.

◮ Objective #4: estimate the sample size for an effect size of δ = θ − θ0, requiring 80% power and

α = 0.05 to distinguish δ from zero, using ȳ as an estimate of θ.

◮ Since we do not have the Bernoulli trick available anymore with continuous data, we now need

one more piece of information: an estimate of the population standard deviation: σ.

◮ Getting this estimate is often more “art” than sharp procedure, but looking at previous work that

you have done, similar data analyzed in your literature, pre-testing, and even just intuition.
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Sample Size Calculations With a Single Continuous Outcome

◮ We can use the fact that SE(ȳ) = σ/
√
n (σ a population parameter), to get n = (σ/SE(ȳ))2.

◮ For 80% power and α = 0.05, a conservative estimate based on a normal approximations is:

SE(ȳ) =
θ − θ0
2.8

,

again using 2.8 = 1.96[zα/2=0.025]
+ 0.84[z1−β=0.8] from a normal approximation.

◮ A more conservative students-t version (say with 5 degrees of freedom) can be calculated by:

qt(0.975,df=5) + qt(0.8,df=5)

[1] 3.490126

◮ Therefore:

n =

[

σ

(θ − θ0)/2.8

]2

.

◮ So if we have some reasonable estimate for σ, then this is quite simple.

◮ Notice again that bigger hypothesized δ = θ − θ0 requires smaller samples.
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Sample Size Calculations With a Single Continuous Outcome, Example

◮ The NOV gene, encoding a cysteine-rich glycoprotein NOVH, is suspected to be associated with

certain cancers (in renal carcinomas for human prostate cell lines and prostatic tumors, the NOVH

gene is overexpressed: the switching on of genes in aging cells).

◮ For a mouse model we have NOVH concentration from a lean mouse mom’s umbilical cord blood

as 354 ng/ml.

◮ The research hypothesis is that mouse moms on a high-fat diet will have a NOVH concentration

that is 20% higher.

◮ So the question is how many mice do we need in the study for power 80% power and α = 0.05?

◮ We need an estimate of σ, which comes from a study by Thibout et al. (Characterization

of Human NOV in Biological Fluids: An Enzyme Immunoassay for the Quantification of

Human NOV in Sera from Patients with Diseases of the Adrenal Gland and of the Nervous

System, 2003): σ2 = 18357.

◮ Simple R code:

( delta <- 354*1.20 - 354 ) [1] 70.8

( sigma <- sqrt(18357*1.5) ) [1] 165.94 #1.5 MULTIPLIER TO BE MORE CONSERVATIVE

( n <- (sigma/(delta/2.8))^2 ) [1] 43.067
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Sample Size Calculations for Comparison of Two Means, Unequal and Equal
Variances

◮ The standard error of the difference of two means is:

SEȳ1−ȳ2 =
√

σ2
1/n1 + σ2

2/n2.

◮ With equal sample sizes, n1 = n2 = n/2, this simplifies to

SEȳ1−ȳ2 =
√

2(σ2
1 + σ2

2)/n.

◮ If we are willing to assume σ1 = σ2 = σ, then

SEȳ1−ȳ2 = 2σ/
√
n

and the total required sample size is:

n = (2σ/SEȳ1−ȳ2)
2.

◮ If we want 80% power and α = 0.05 to detect a difference of δ with equal sample sizes, then the

total sample size required is:

n = 2(σ2
1 + σ2

2)(2.8/δ)
2,

which simplifies to n = (5.6σ/δ)2 with equal variances.



JEFF GILL: Sample Size and Power Calculations [28]

Difference of Means, Example Calculations

◮ From the paper: Muller, O., Becher, H., van Zweeden, A. B., Ye, Y., Diallo, D. A., Konate, A. T.,

Gbangou, A., Kouate, B, and Gareene, M. (2001). Effect of Zinc Supplementation On Malaria

and Other Causes of Morbidity In West African Children: Randomized Double Blind Placebo

Controlled Trial. British Medical Journal 322, 1567-1573. (G&H pages 249, 277, 449.)

◮ The authors provide evidence that adding zinc to the diet of HIV-positive children in West Africa

helps to control diarrhea.

◮ They also find that zinc can improve growth by 0.5 standard deviations (δ = 0.5σ), over the

control group.

◮ Suppose we wanted to design a similar study, what is the total required sample size to get 80%

power at α = 0.05:

n = (5.6σ/(δ))2 = (5.6σ/(0.5σ))2 = (5.6/0.5)2 = 125.44 ≈ 126

assuming equal sample variances.

◮ Using the samplesize package in R:

n.ttest(power = 0.8, alpha = 0.05, mean.diff = 0.5, sd1 = 1.0, sd2 = 1.0)
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Case Study: Blood Conservation in STL Children’s Hospital

◮ This is an example where the observational data already exists but it is necessary to show that

there is enough of it.

◮ Katherine Steffen, Allan Doctor, Julie Hoerr, Jeff Gill, Chris Markham, Sarah M. Brown,

Daniel Cohen, Rose Hansen, Emily Kryzer, Jessica Richards, Sara Small, Stacey Valentine,

Jennifer L. York, Enola K. Proctor, Philip C. Spinella. “Controlling Phlebotomy Volume Dimin-

ishes PICU Transfusion: Implementation Processes and Impact.” Pediatrics, Vol. 140(2), 2017.

◮ We calculate sample estimates separately using the two intended outcome variables: (1) the sum

of overdrawn blood and (2) proportion transfused, requiring a minimal effect size of 20% lower

levels of these measures than the pre-intervention period in both cases and two-tailed tests.

◮ For the interval-measured overdrawn outcome (θ in cc/kg/day) we stipulate a conservative estimate

of the sample size based on a Student’s-t approximation with small degrees of freedom for a 20%

difference: θ − θ0.
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Case Study: Blood Conservation in STL Children’s Hospital

◮ We seek 80% power and α = 0.05, so that the standard error is SE(ȳ) = θ−θ0
3.08 (using 3.08 =

2.23[tα/2=0.975,df=10]
+ 0.86[t1−β=0.8,df=10]), rearranged to get:

n =

[

σ

(θ − θ0)/3.08

]2

using the fact that SE(ȳ) = σ/
√
n, meaning that n = (σ/SE(ȳ))2.

◮ With σ̂ = 0.22 cc/kg/day as found in Valentine and Bateman (2013) and θ0 = 0.498 is 20% below

the preintervention overdraw mean of θ = 0.623 cc/kg/day, the required sample size is:

n =

[

0.22

(0.623− 0.498)/3.08

]2

= 29.58 ≈ 30.

◮ For the dichotomous outcome of transfusion yes/no we start with the proportion of pre-intervention

transfusions as a population estimate, p = 0.321, where we want a value that is 20% lower:

p̂ = 0.257, with a standard error of:

SE = σp̂ =
√

p̂(1− p̂)/n = 0.191/
√
n.
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Case Study: Blood Conservation in STL Children’s Hospital

◮ Again we use conservative Student’s-t approximation with small degrees of freedom (10).

◮ Power of 0.8 and a 95% confidence interval bounded below p = 0.321 means that:
∫ +∞

0.8

f (t)dt =
p−H

SE
,

where the CI upper bound is H = p̂ + tα/2,10SE by definition.

◮ We can easily get the integral and tail values from:

1-qt(0.8,df=10)

[1] 0.12094

pt(0.95,df=10,lower.tail=FALSE)

[1] 0.18225

◮ Substituting into:

SE = σp̂ =
√

p̂(1− p̂)/n = 0.191/
√
n.

and solving gives n = 85.945 ≈ 86.
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Ordered Outcomes

◮ Usually ordered outcomes need an approximation, such as the Wilcoxon-Mann-Whitney test.

◮ We use the two-sided Wilcoxon test comparing two independent samples where the outcomes are

ordered categories.

◮ The outcome for R is a pair of vectors with the proportions, testing if they are different:

p <- c(0.25,0.20,0.10,0.45); q <- c(0.20,0.15,0.15,0.50)

◮ Parameters: t = n/N , where n is the size of the second group and N is the total size.

◮ Running the function for 55% in the first group and 45% in the second group:

n.wilcox.ord(power = 0.8, alpha = 0.05, t = 0.45, p, q)

[1] 1446

$m

[1] 795

$n

[1] 651

from the samplesize package, returning N , n1, and n2.
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Ordered Outcomes

n.wilcox.ord(power=0.8,alpha=0.05,t=0.5,p=rep(0.2,5),q=rep(0.2,5))

$‘total sample size‘ $m $n

[1] 2.038e+32 [1] 1.019e+32 [1] 1.019e+32

p <- c(0.1,0.1,0.1,0.1,0.6)

q <- c(0.6,0.1,0.1,0.1,0.1)

n.wilcox.ord(power=0.8,alpha=0.05,t=0.5,p,q)

$‘total sample size‘ $m $n

[1] 23 [1] 12 [1] 12

p <- c(0.1,0.1,0.1,0.1,0.4,0.1,0.1)

q <- c(0.4,0.1,0.1,0.1,0.1,0.1,0.1)

n.wilcox.ord(power=0.8,alpha=0.05,t=0.5,p,q)

$‘total sample size‘ $m $n

[1] 93 [1] 46 [1] 46
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Required Adjustments for Multilevel Power Calculations

◮ Consider data from cluster sampling: estimating µ by ȳ with J equally sized (m) clusters selected

at random creating a total sample size of n = J ×m.

◮ If the number of actual clusters in the population is large relative to J and the number of population

units in these clusters is large relative m, then:

SEȳ =

√

σ2
y

n
+

σ2
α

J

where we can get σy and σα from regression output (such as lmer in R).

◮ This can be rewritten using the intraclass correlation :

SEȳ =

√

σ2
total

n
[1 + (m− 1)ζ ], ζ = ICC =

σ2
α

σ2
α + σ2

y

where σ2
total = σ2

α + σ2
y.

◮ Note that ICC gives the proportion of total variance that comes from between-group variation

and is therefore a rough measure of how group distinctiveness affects the reliability of the mean

estimate.
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Multilevel Variance Calculations

◮ Snyders (2005) gives the following structure for J groups/clusters with fixed cluster/group size m,

so the total data size is J ×m.

◮ As usual data variance is denoted σ2
y and group level variance is denoted σ2

α.

◮ Model 1:

Yij = µ + β0j + ǫij

(an overall mean, a group-level random effect, and a residual) which gives the following variance:

Var(µ̂) =
mσ2

α + σ2
y

Jm
.
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Multilevel Variance Calculations

◮ Model 2:

Yij = β0 + β1X1i + β2X2i + · · · + βkXki + Uij + ǫij

(level one variables, a vague definition of a group effect Uij, and a residual) with the assumptions:

⊲ X1 is an individual level effect with no group, and is uncorrelated with other level-one variables,

⊲ σ2
y is constant in groups (e.g. lmer).

Then:

Var(βℓ) =
σ2
y

JmVar(Xℓ)
.
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Multilevel Variance Calculations

◮ Model 3:

Yij = β0 + (β01 + β11Zj)X1ij + β2X2i + · · · + βkXki + Uij + ǫij

(same as before except now there is a hierarchy on X1) where the variance of the random slope

is τ 21 . Then:

Var(β01) =
mτ 21Var(X1) + σ2

y

JmVar(X1)
.

and:

Var(β11) =
mτ 21 + σ2

y

JmVar(X1)
.

◮ Recall that with this is calculated with J equally sized (m) clusters.
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Incontinence After Radical Prostatectomy, Survival Modeling

◮ Objective #5: Use a previous study to help inform a sample size for a survival model.

◮ The studies look at urinary incontinence as one of the most commonly reported and distressing

side effects of radical prostatectomy for prostate carcinoma.

◮ The key explanatory variables of interest are exercise and obesity status.

◮ See Kathleen Y. Wolin, Jason Luly, Siobhan Sutcliffe, Gerald L. Andriole and Adam S. Kibel.

(February 2010). Risk of Urinary Incontinence Following Prostatectomy: The Role of Physical

Activity and Obesity. The Journal of Urology 183, 629-633.

◮ This is related to some of the 2011-2016 Washington University TREC work, see

http://www.obesity-cancer.wustl.edu/.

◮ How can we use this study to calculate sample sizes to go into a grant proposal to perform a

similar study?
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Incontinence After Radical Prostatectomy, the Data in R

◮ Recreating the relevant data using R:

( obs <- data.frame("freq"=c(8,6,6,10,8,23,21,59),

"PtDry.12mos"=gl(n=2,k=4,labels=c("no","yes")),

"Status"=c("obese.inactive","obese.active",

"nonobese.inactive","nonobese.active")) )

freq PtDry.12mos Status

1 8 no obese.inactive

2 6 no obese.active

3 6 no nonobese.inactive

4 10 no nonobese.active

5 8 yes obese.inactive

6 23 yes obese.active

7 21 yes nonobese.inactive

8 59 yes nonobese.active
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Incontinence After Radical Prostatectomy, Tabular Summary in R

xtabs(freq ~ PtDry.12mos + Status, data=obs)

Status

PtDry.12mos nonobese.active nonobese.inactive obese.active obese.inactive

no 10 6 6 8

yes 59 21 23 8

summary(xtabs(freq ~ PtDry.12mos + Status, data=obs))

Call: xtabs(formula = freq ~ PtDry.12mos + Status, data = obs)

Number of cases in table: 141

Number of factors: 2

Test for independence of all factors:

Chisq = 9.8, df = 3, p-value = 0.020
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Incontinence After Radical Prostatectomy, Subset of interest

◮ Let’s concentrate on the group that is obese and active since it is the most difficult category and

therefore more conservative to analyze for sample size calculations, giving the 2× 2 table:

Dry at 12 Months Obese + Active Obese + Inactive

No 6 8

Yes 23 8

◮ We will use a proportional hazards model for “not dry” with the goal of obtaining α = 0.05 and

1− β = 0.8.

◮ Recall that the hazard function gives the instantaneous hazard (probability) of death at time t

given survival until time t.

◮ Here we model the hazard of being “not dry” instead of the typical context of death.
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Incontinence After Radical Prostatectomy, Hazard Models Basics

◮ From a PDF for the event over time, f (t), define the cumulative distribution function (CDF) of

time t and the corresponding survival function :

F (t) =

∫ t

0

f (t)dt = p(T < t) S(t) = p(T ≥ t) = 1− F (t).

The hazard rate is created by:

h(t) = lim
δt→0

[

p(t ≤ T < t + δt|T ≥ t)

δt

]

(also called the hazard function, the instantaneous death rate, the intensity rate, and the force

of mortality).

◮ These terms are further related by:

h(t) =
f (t)

S(t)
= − d

dt
(logS(t)) S(t) = exp(−H(t)), where H(t) =

∫ t

0

h(u)du

◮ The model focus is on the ratio of hazards under two different exposures/treatments:

HR =
h(t1)

h(t0)
.
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Incontinence After Radical Prostatectomy, Test Values

◮ Our null hypothesis to test is H0 : p(not dry|active and obese) = p(not dry|inactive and obese)

at 12 months.

◮ Looking down the columns of the two-by-two table we get p1 =
a

a+b =
6

6+23 = 0.22 and p2 =
c

c+d =
8

8+8 = 0.50 as empirical evidence of these two quantities.

◮ Use these to build the log hazard ratio under the proportional hazards assumption: log(HR) =

log
[

log(p1)
log(p2)

]

as our testable effect size.

◮ The calculation of n in this context is given by the scaled difference of z-scores that we care about:

n = (z1−β − zα/2)
2 σ̂2

log(HR)2

from rearranging:

log(HR) = (z1−β − zα/2)(σ̂/
√
n),

which is the definitional form for the test.

◮ We can later scale n for the 45 obese cases to the 96 non-obese cases for the full sample; this

provides the “conservative” part of the inference.
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Incontinence After Radical Prostatectomy, Getting a Variance

◮ What we have so far. . .

⊲ significance level: α = 0.05

⊲ power level: 1− β = 0.8

⊲ parametric form for the test statistic: log(HR) = log
[

log(p1)
log(p2)

]

= 0.82 (effect size).

◮ What we lack. . . an estimate of σ2.

◮ Using the standard approach, σ̂2 = np(1− p), we can plug-in values from the group of interest:

σ̂2 = (nobese+active)× (pobese+active)× (1− pobese+active).

◮ Or we could use the conservative estimate:

σ̂2 = ngroup of interest0.5(1− 0.5).

◮ There are many other methods in the survival modeling literature using different assumptions/conditions.
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Incontinence After Radical Prostatectomy, Calculations

◮ Using the functional relationship between sample size and detectable log hazard rate,

log(HR) = (z1−β − zα/2)(σ̂/
√
n),

we can perform these operations in R with some data.

◮ If we use the previous data/paper:

p.1 <- 6/(6+23); p.2 <- 8/(8+8)

( sigma.sq <- (6+23)*(6/(6+23))*(23/(6+23)) )

[1] 4.7586

( log.HR <- log(log(p.1)/log(p.2)) )

[1] 0.82111

( n.1 <- (qnorm(0.8)-qnorm(0.025))^2 * sigma.sq/(log.HR^2) )

[1] 55.397

( n.needed.obese.nonobese <- n.1*(1+96/45) )

[1] 173.58

where the last statement scales n for the 45 obese cases to the 96 non-obese cases in the full sample

◮ But what if we want other values? What does the relationship look like graphically?
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Incontinence After Radical Prostatectomy

obese sample size required
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Sample Size Calculation for Superiority, Setup

◮ The objective is calculate a sample size for the test of superiority of the blood substitute (Ery-

throMer, EM) over colloid.

◮ The experiment is setup to hemorrhage 40% blood loss then perform resuscitation by returning

the volume back with either of the substitutes.

◮ The test can be generalized to 50% or 70% blood loss as well until one half of the sample dies to

establish a benchmark.

◮ When this occurs it is equivalent to a “lethal dose 50” (LD50) experiment.

◮ To obtain a benchmark clinical level we calculate from the output of a logit regression model:

p(y = 1|x) = 1

2
= [1 + exp(−β0 − β1x)]

−1 −→ 2 = 1 + exp(−β0 − β1x)

−→ 0 = −β0 − β1x

−→ L̂D50 = −β̂0/β̂1

where β̂0 and β̂1 are the intercept and coefficient estimate for some explanatory variable.
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Sample Size Calculation for Superiority, Setup

◮ We require a pilot study or similar work to obtain these estimates.

◮ Using logit regression model 2 from Lee et al. (2009, page 126),

β̂0 = −15.143, and β̂systolic blood pressure = 0.326

(SBP measured blood pressure waves in mmHg).

◮ This provides L̂D50 = 46.451, which is positive implying an upward sloping logit curve for lower

to higher SBP values and therefore supporting the principled comparison of different survival rates

based on blood volume status.

◮ The test is specified by comparing λA(t) = 0.5 = the death rate with colloid only to λB(t) = 0.25 =

the death rate with EM, for H0 :µA < µB versus H1 :µA ≥ µB at t = 48 hours, meaning that the

death rate is lower with EM under the alternative hypothesis.
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Sample Size Calculation for Superiority, Survival Model

◮ Specify random survival time, T , as exponentially distributed such that the survival function is

S(t) = p(T ≥ t) = exp[−λ(t)t exp(Xβ)], for some time t.

◮ We are interested in incorporating the explanatory effects such as the systolic blood pressure into

the sample size calculations to make the comparison, but there are no suitable mice findings in

the literature to get directly comparable results for inclusion here.

◮ From Choi et al. (2015, p.364) we see that in their similar study using rats the systolic blood

pressure for postbleeding is X = 32.3 (with a reliable difference from resting in their model; page

364, Table 1).

◮ Using the logistic regression model for survival on rats with hemorrhagic shock from Lee et al.

(2009, p.1276) we get a coefficient estimate for this variable, β̂ = 0.326, providing exp[Xβ̂] to

express the effect of SBP directly into our calculation of the hazard ratio (HR).
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Sample Size Calculation for Superiority, Basic Calculations

◮ Assuming such exponential survival times over t = 48 hours (time affecting both groups equally),

the hazard rate for EM versus colloid only is given by:

HR =
λA(t)t exp[Xβ̂]

λB(t)t exp[Xβ̂]
=

0.5(48) exp[10.53]

0.25(48) exp[10.53]
= 2

meaning that equal application of covariate contributions does not change the effect of the death

rate in the hazard ratio calculation.

◮ If the effect of other Xβ̂ contributions are unequal then this calculation will change, but there is

no evidence from rat studies applied here to make this claim.
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Sample Size Calculation for Superiority, Final Calculations

◮ The expected number of events required in each arm of the experiment is then given by:

E = (2(Z1−α + Z1−β)
2)/((log(HR))2)

(Machin et al. 2011).

◮ Setting the significance level to α = 0.05 for a one-tail test and power to 1− β = 0.8 gives:

E = (2(1.645 + 0.84)2)/(log(1.5)2) = 17.818.

◮ Therefore the sample size required in arm B is:

nB =
2E

2− exp[log(λB(2)/HR)]− λB(2)
= 21.93.

◮ Rounding up, 22 animals are required in the EM group with an additional 22 mice in the colloid

only group for balance for a total of 44.
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Sample Size Calculation for Non-Inferiority, Mean Comparison

◮ Now consider the hemorrhage then insertion of the blood substitute ErythroMer (EM) group.

◮ Using the second results from Terajima etal. (2006) we calculate our sample size estimates by

comparing the HbV/rHSA (hemoglobin volume to recombinant human serum albumin) value from

the mean baseline of 146 (with a standard error of 64) to the final observed time 2 hours later.

◮ Our objective is to recover the baseline mean across the n animals such that µA = µB, where the

first term is the baseline and the second term is the goal.

◮ We perform the same test of non-inferiority with d as 20% of baseline for d = 29.2 HbV/rHSA.

◮ From Terajima etal. we set SE(µA) = 64 for the baseline and SE(µB) = 31 using their study

endpoint.
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Sample Size Calculation for Non-Inferiority, Mean Comparison

◮ The sample size for the treatment group is then given by:

nA =
[1.96 · 64 + 0.84 · 31]2

d2
= 26.91193 ≈ 27,

again setting the significance level to α = 0.05 and power to 1− β = 0.8.

◮ Therefore for a balanced experimental design 54 mice are required for 27 in each group.

◮ If we were restricted to 20 nA = nB = 20, algebraically rearranging the equation above means

that power drops dramatically to 0.17.
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Calculation of Sample Size for Clinical Trials

◮ Sample size calculation is important in this context since samples are expensive and time-consuming.

◮ There may also be ethical issues that affect the calculation by putting bounds on the size that are

not statistical in nature.

◮ Other objectives that can affect sample size: superiority, non-inferiority, equivalence, bioequiva-

lence, or precision.

◮ Endpoint assumptions may be: normal, binary, ordinal, time-to-event.

◮ See also the Bayesian stopping rules literature.
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Calculation of Sample Size for a Single Clinical Trial

◮ Under the simplest scenario with two groups, treatment and control, we test an hypothesized null

difference against an expected difference to be observed:

f (µ) = µT − µC S = X̄T − X̄C

with standard conditions the difference of sample means, S, is normal with variance Var(S), and:

S − f (µ)
√

Var(S)
∼ N(0, 1).

under the null hypothesis.

◮ Thus the two-tailed, alpha-level critical region for testing f (µ) = 0 is:

|S| > z1−α/2

√

Var(S).

◮ For this critical region to have power, 1− β, against a specific alternative f (µ) we need:

S − z1−β

√

Var(S) = z1−α/2

√

Var(S)

◮ Rearranging gives:

Var(S) =
S2

(z1−β + z1−α/2)2
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Sample Size Calculation When Population Variance Known

◮ Knowing the variance, σ2, (a seemingly rare event) allows non-controversial use of the normal

distribution.

◮ Again S is the observed difference of sample means, scaled by our α and 1− β criteria:

Var(S) =
S2

(z1−β + z1−α/2)2
,

but this expression is not a function of n.

◮ Assuming equal variance in the two groups, we get:

Var(S) =
σ2

nT
+

σ2

nC
=

r + 1

r

σ2

nT
,

where r = nC/nT .

◮ Combining these statements together and rearranging for the sample size gives:

nT =
(r + 1)(z1−β + z1−α/2)

2σ2

rS2
.
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Sample Size Calculation When Population Variance Not Known

◮ This is the more typical case replacing σ2 with s2, and changing the normal to a students-t gives:

nT =
(r + 1)(z1−β + t1−α/2,nT (r+1)−2)

2s2

rS2
.

but nT is on both sides of the equation and cannot be algebraically combined since it is in the

degrees of freedom calculation for the students-t.

◮ Also don’t confuse s2 (the sample standard error) with S2 (the squared observed mean difference).

◮ Power is confirmed with redefining in terms of cumulative non-central t:

1− β = CDFt

(

level = 1− α/2, df = nT (r + 1)− 2, ncp =

√

rnTS2

(r + 1)s2

)

which can be obtained easily in R.

◮ One approach is to iterate between these forms from some historical starting point.
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Sample Size Calculation When Population Variance Not Known

◮ For example with s2 = 1, D = S = 0.3, and r = 1, we can iterate for a sample size that gets 80%

power, with two-tailed alpha at 0.05:

s.2 <- 1; d <- 0.3; r <- 1

# NORMAL APPROXIMATION

sample.size <- function(r,alpha,beta,d,S2)

((r+1)*(qnorm(beta)+qnorm(1-alpha/2))^2*S2)/(r*d^2)+qnorm(1-alpha/2)

( n <- sample.size(r,0.05,0.8,d,s.2) )

[1] 176.38

power.size <- function(r,alpha,beta,d,S2,N) {

DF <- N*(r+1)-2

NCP <- sqrt((r*N*d^2)/((r+1)*s.2))

TVAL <- qt(1-alpha/2,DF)

1-pt(q=TVAL, df=DF, ncp=NCP)

}

power.size(r,0.05,0.8,d,s.2,n)

[1] 0.80138
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Sample Size Calculation When Population Variance Not Known

◮ Let’s make the conditions less favorable: larger variance (s2 = 3), smaller required effect size

(δ = 0.1), and differing sample sizes (r = 1.5), then see the effects.

◮ This makes the sample size blow-up:

s.2 <- 3; d <- 0.1; r <- 1.5

( n <- sample.size(r,0.05,0.8,d,s.2) )

[1] 3926.4

power.size(r,0.05,0.8,d,s.2,n)

[1] 0.80012



JEFF GILL: Sample Size and Power Calculations [60]

Calculation of Sample Size for a Multiple Clinical Trials

◮ We have k clinical investigations and we need an estimate of the eventual treatment effect.

◮ The overall response across the studies is estimated by:

ds =

∑k
i=1wisi
∑k

i=1wi

,

where wi is the precision (inverse of variance) and si is the effect size, from study i.

◮ We need a distributional assumption, such as si ∼ N(ds, w
−1
i ), so that:

k
∑

i=1

wisi = N

(

ds

k
∑

i=1

wi,
k
∑

i=1

w−1
i

)

,

which uses the average within-study variance.

◮ This allows simple calculation of a CI:

ds ± z1−α/2

[

k
∑

i=1

wi

]−1

2

.
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Calculation of Sample Size for a Multiple Clinical Trials

◮ But this does not account for variation between studies, which is given by:

τ 2 =

∑k
i=1wi(si − ds)

2 − (k − 1)
∑k

i=1wi −
∑k

i=1
w2
i

∑k
i=1

wi

.

◮ So the corrected precision is:

w∗
i = (w−1

i + τ 2)−1

which is obviously wi when τ 2 = 0.

◮ The corrected CI is:

ds ± z1−α/2

[

k
∑

i=1

w∗
i

]−1

2

.

◮ This now gives us a reasonable range of effect sizes for sample size calculations.
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Calculation of Sample Size for a Multiple Clinical Trials

◮ For 80% power and α = 0.05 to detect a difference of

δ ∈ ds ± z1−α/2

[

k
∑

i=1

w∗
i

]−1

2

with equal sample sizes, the total sample size required is:

n = k

(

k
∑

i=1

w∗
i

)−1

(2.8/δ)2,

◮ Complications: changes due to unequal drop-out rates across studies, heterogeneity of treatment,

adaptive designs, varying equipoise, and so on.
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Bartlett’s Test For Unwanted Heterogeneity In the Studies

◮ Another estimate of the overall variance across studies is:

s2p ≈
∑k

i=1 dfis
2
i

∑k
i=1 dfi

where dfi = ni − 1.

◮ Define:

M =

(

k
∑

i=1

dfi

)

log(s2p)−
k
∑

i=1

dfi log(s
2
i )

and:

C = 1 +
1

3(k − 1)

[

k
∑

i=1

(

1

dfi

)

− 1
∑k

i=1 dfi

]

.

◮ The test for heterogeneity is then:
M

C
∼ χ2

k−1

where tail values indicate differences.
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Models with Covariates

◮ Most models of course have covariates and this affects sample size calculation.

◮ Often this is done in the context of baseline measures : demographic and clinical variables designed

to affect some outcome.

◮ Frison and Pocock (1992) give an estimated variance correction:

σ2
bl = σ2

[

1− kρ2

1 + (k − 1)ρ

]

,

where ρ is the conventional Pearson’s product moment correlation coefficient between observations,

and k is the number of baseline measures taken on each case.

◮ Higher levels of correlation between cases mean lower variance.

◮ For fixed correlation the variance reduction tapers off after three.



JEFF GILL: Sample Size and Power Calculations [65]

Effects Over Time

◮ Drop-rates generally increase over time in longitudinal studies.

◮ If we have an estimated of the drop-out rate from previous studies, then we can degenerate all of

our sample size calculations to the final wave, as a conservative approach.

◮ But new post-treatment measures increase knowledge and decrease variance.

◮ Suppose we are testing a difference of means between two groups post-treatment.

◮ The new corrected variance estimate is:

σ2
pd =

σ2[1 + (r − 1)ρ]

r
,

where r is the number of post-treatment measures, and ρ is the correlation between these new

measures.

◮ Higher levels of correlation between variables mean higher variance.
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Clustering

◮ Cluster sampling leads naturally to multilevel models as the groups come to the analyst immedi-

ately identified.

◮ One Stage cluster sampling is when all units in a cluster are measured.

◮ Two Stage cluster sampling is when a sample is taken within the clusters.

◮ Treatments can be applied to an entire cluster or to individuals within clusters, where the appli-

cation to individuals gives more accurate estimates.
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Cluster Randomized Trials

◮ It is often the case that patients are clustered in hospitals, clinics, or primary care practices.

◮ This is a motivation for multilevel models of course.

◮ If there is between cluster variation, it reduces the effective sample size and gives lower power than

intended.

◮ The key is getting an estimate of the intracluster correlation coefficient between observations

at the same level:

ζ =
σ2
α

σ2
α + σ2

y

.

which is obviously another name for the intraclass correlation coefficient where clusters are classes.

◮ Here ζ gives the proportion of total variance that comes from between-group variation and is

therefore a rough measure of how group distinctiveness affects the reliability of the mean estimate.



JEFF GILL: Sample Size and Power Calculations [68]

Cluster Randomized Trials

◮ The cluster corrected variance estimate is:

σ2
icc =

σ2[1 + (m− 1)ζ ]

cm
,

where ζ is the intracluster correlation coefficient, c is the number of clusters, and m is the average

sample size per cluster.

◮ Now the sample size per arm goes from:

nT =
2(z1−β + z1−α/2)

2σ2

rS2
.

to:

nT =
2(z1−β + z1−α/2)

2σ2[1 + (m− 1)ζ ]

rS2cm
.

◮ The numerator difference, [1+(m−1)ζ ], is called the variance inflation factor, and when cluster

sizes are unequal this is [1 + ((cv2 + 1)m̃− 1)ζ ], where cv is the coefficient of variation (standard

deviation over the mean), and m̃ is the average cluster size.
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Cluster Randomized Trials

◮ Also to estimate the number of needed clusters per arm can be calculated:

c =
nT ([1 + (m− 1)ζ ]

m

for equal cluster sizes, and

c =
nT ([1 + ((cv2 + 1)m̃− 1)ζ ]

m
for unequal cluster sizes.



JEFF GILL: Sample Size and Power Calculations [70]

Recap

◮ The goal is to achieve desired: significance levels, effect sizes, subsetting ability, and power by

collecting a sufficiently large sample.

◮ These criteria compete with each other.

◮ In some settings the statistician does not participate in the design of the study, so others need to

be able to perform efficacious sample size calculations.

◮ Automated sample size calculators are okay, if you understand the theoretical underpinning, but

don’t rely upon them.

◮ This is all really about stipulating reasonable and defensible assumptions on the future data-

generating process, and is therefore fictional..


