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Preface to the Third Edition

General Comments

Welcome to the third edition of BMSBSA. When the first edition appeared in 2002

Bayesian methods were still considered a bit exotic in the social sciences. Many distrusted

the use of prior distributions and some mysterious simulation process that involved non-iid

sampling and uncertainty about convergence. The world is completely different now, and

Bayesian modeling has become standard and MCMC is well-understood and trusted. Of

course it helps that Moore’s Law (doubling of computing power every two years, presumably

until we reach the 7 nanometer threshold) continues without pause making our computers

notably faster and allowing longer sampling procedures and parallel process without an

agonizingly long wait. In this context the third edition spends less time justifying proce-

dures and more time providing implementation details on these procedures. This is also an

opportunity to expand the set of examples.

Changes from the Second Edition

As expected there are a number of additions in the new edition. First, and most labo-

riously, the number of exercises has been doubled such that there are now twenty in each

chapter. The former exercises are now the odd-numbered exercises with the answer key be-

ing fully publicly distributed (not just to instructors). The new exercises emphasize recent

developments in Bayesian inference and Bayesian computing as a way to include more mod-

ern material. All of the chapters have been refreshed, although some more than others. The

basic material has not changed in over a century, so there is no need to dramatically alter ba-

sic material. Conversely, Bayesian stochastic simulation (MCMC) has undergone dramatic

developments in the last decade, including having become routine in applied settings. New

MCMC material includes Hamiltonian Monte Carlo and expanded model implementation.

Second, there are two new chapters. A chapter on Bayesian decision theory is long overdue,

and this is now Chapter 8. It includes discussion of both Bayesian and frequentist decision

theory since this is where the two paradigms are most intertwined. Included topics are: loss
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functions, risk, decision rules, and regression-model applications. The chapter finishes with

two important topics not featured in previous editions: James-Stein estimation and empir-

ical Bayes. While empirical Bayes was briefly covered in the second edition, its connection

with James-Stein estimation was ignored. This section now covers the important topics in

this area and provides Bayesian context. Also new is a chapter on practical implementation

of MCMC methods (Chapter 11). This covers mechanical issues with the BUGS language,

including calling the software from R. The goal is to provide a detailed introduction to the

essential software for running Bayesian hierarchical regression models. Relatedly the chap-

ter on hierarchical models is greatly expanded. This is an area of great applied interest

right now and provides a strong motivation for the Bayesian paradigm. Finally, on a more

practical side, there is a wealth of new examples and applications. These are chosen from

a variety of social science disciplines and are intended to illustrate the key principles of the

relevant chapter. In addition, the BaM package in R that accompanies this manuscript has

been greatly expanded with new datasets and new code. This includes new procedures for

calling BUGS packages from R.

Course Plans

The recommended course plans remain essentially the same as outlined in the preface to

the second edition. The one critical difference is adding Chapter 11 (Implementing Bayesian

Models with Markov Chain Monte Carlo) to a basic course or comprehensive course. The

longer length of the text means that not all chapters are practical in a one-semester course.

For a standard introductory Bayesian social science graduate course, the most succinct set

of chapters are:

⊲ Chapter 1: Background and Introduction

⊲ Chapter 2: Specifying Bayesian Models

⊲ Chapter 3: The Normal and Students’-t Models

⊲ Chapter 4: The Bayesian Prior

⊲ Chapter 5: The Bayesian Linear Model

⊲ Chapter 10: Basics of Markov Chain Monte Carlo

⊲ Chapter 11: Implementing Bayesian Models with Markov Chain Monte Carlo

⊲ Chapter 12: Bayesian Hierarchical Models

⊲ Chapter 14: Utilitarian Markov Chain Monte Carlo.

This assumes some knowledge of basic Monte Carlo methods of the students. Chapter 11

and Chapter 14 could also be assigned reading rather than part of lectures since the focus

is on very practical concerns.
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Support

As done in the last two editions of this text, there is a dedicated website provided

to support readers: http://stats.wustl.edu/BMSBSA3. This site has software, errata,

comments, and the answer key for odd-numbered exercises. All of the code is also provided

in the associated R package, BaM, which has been substantially updated to include new

code and data. Where possible BUGS code is included in this package. Note that in many

cases the code relies on multiple R packages, as well as stand-alone software such as JAGS

and WinBUGS, so changes over time may introduce incompatibilities that need to be worked

out. In many cases this amounts to downloading the most recent version of some software.

Relevant updates will be posted at the dedicated webpage when they come to my attention.
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Starters

Wow, over five years have elapsed since the first edition appeared. Bayesian methods in

the social sciences have grown and changed dramatically. This is a positive and encouraging

development. When I was writing the first version I would often get questions from social

science colleagues about why I would write on a seemingly obscure branch of statistics. This

is clearly no longer an issue and Bayesian approaches appear to have a prominent role in

social science methodology. I hope that the first edition contributed to this development.

Bayesian methods continue to become more important and central to statistical analysis,

broadly speaking. Seemingly, no issue of the Journal of the American Statistical Association

arrives without at least one Bayesian application or theoretical development. While this

upward trend started in the 1990s after we discovered Markov chain Monte Carlo hiding

in statistical physics, the trend accelerates in the 21st century. A nice foretelling is found

in the 1999 Science article by David Malakoff, “Bayesian Boom,” complete with anecdotes

about popular uses in biology and computing as well as quotes from John Geweke. Back

in 1995, the Bayesian luminary Bruno de Finetti predicted that by the year 2020 we would

see a paradigm shift to Bayesian thinking (quoted in Smith [1995]). I believe we are fully

on track to meet this schedule.

Bayesian computing is broader and more varied than it was at the writing of the first

edition. In addition to BUGS and WinBUGS, we now routinely use MCMCpack, JAGS, openbugs,

bayesm, and even the new SAS MCMC procedure. The diagnostic routines in R, BOA, and

CODA continue to be useful and are more stable than they were. Of the course the lingua

franca of R is critical, and many researchers use C or C++ for efficiency. Issues of statistical

computing remain an important component of the book. It is also necessary to download

and use the R packages CODA and BOA for MCMC diagnostics.

Bayesian approaches are also increasingly popular in related fields not directly addressed

in this text. There is now an interesting literature in archaeology that is enjoyable to read

(Reese 1994, Freeman 1976, Laxton et al. 1994), and the best starting point is the seminal

paper by Litton and Buck (1995) that sets the agenda for Bayesian archaeometrics. Re-

searchers in this area have also become frustrated with the pathetic state of the null hypoth-

esis significance test in the social and behavioral sciences (Cowgill 1977). One area where

xix
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Bayesian modeling is particularly useful is in archaeological forensics, where researchers

make adult-age estimates of early humans (Lucy et al. 1996, Aykroyd et al. 1999).

Changes from the First Edition

A reader of the first edition will notice many changes in this revision. Hopefully these

constitute improvements (they certainly constituted a lot of work). First, the coverage of

Markov chain Monte Carlo is greatly expanded. The reason for this is obvious, but bears

mentioning. Modern applied Bayesian work is integrally tied to stochastic simulation and

there are now several high-quality software alternatives for implementation. Unfortunately

these solutions can be complex and the theoretical issues are often demanding. Coupling

this with easy-to-use software, such as WinBUGS and MCMCpack, means that there are users

who are unaware of the dangers inherent in MCMC work. I get a fair number of journal and

book press manuscripts to review supporting this point. There is now a dedicated chapter

on MCMC theory covering issues like ergodicity, convergence, and mixing. The last chapter

is an extension of sections from the first edition that now covers in greater detail tools like:

simulated annealing (including its many variants), reversible jump MCMC, and coupling

from the past. Markov chain Monte Carlo research is an incredibly dynamic and fast growing

literature and the need to get some of these ideas before a social science audience was strong.

The reader will also note a substantial increase on MCMC examples and practical guidance.

The objective is to provide detailed advice on day-to-day issues of implementation. Markov

chain Monte Carlo is now discussed in detail in the first chapter, giving it the prominent

position that it deserves. It is my belief that Gibbs sampling is as fundamental to estimation

as maximum likelihood, but we (collectively) just do not realize it yet. Recall that there

was about 40 years between Fisher’s important papers and the publication of Birnbaum’s

Likelihood Principle. This second edition now provides a separate chapter on Bayesian

linear models. Regression remains the favorite tool of quantitative social scientists, and

it makes sense to focus on the associated Bayesian issues in a full chapter. Most of the

questions I get by email and at conferences are about priors, reflecting sensitivity about

how priors may affect final inferences. Hence, the chapter on forms of prior distributions is

longer and more detailed. I have found that some forms are particularly well-suited to the

type of work that social and behavioral researchers do. One of the strengths of Bayesian

methods is the ease with which hierarchical models can be specified to recognize different

levels and sources in the data. So there is now an expanded chapter on this topic alone,

and while Chapter ?? focuses exclusively on hierarchical model specifications, these models

appear throughout the text reflecting their importance in Bayesian statistics.

Additional topics have crept into this edition, and these are covered at varied levels

from a basic introduction to detailed discussions. Some of these topics are older and well-
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known, such as Bayesian time-series, empirical Bayes, Bayesian decision theory, additional

prior specifications, model checking with posterior data prediction, the deviance information

criterion (DIC), methods for computing highest posterior density (HPD) intervals, conver-

gence theory, metropolis-coupling, tempering, reversible jump MCMC, perfect sampling,

software packages related to BUGS, and additional models based on normal and Student’s-t

assumptions.

Some new features are more structural. There is now a dedicated R package to accom-

pany this book, BaM (for “Bayesian Methods”). This package includes data and code for

the examples as well as a set of functions for practical purposes like calculated HPD in-

tervals. These materials and more associated with the book are available at the dedicated

Washington University website: http://stats.wustl.edu/BMSBSA. The second edition in-

cludes three appendices covering basic maximum likelihood theory, distributions, and BUGS

software. These were moved to separate sections to make referencing easier and to preserve

the flow of theoretical discussions. References are now contained in a single bibliography

at the end for similar reasons. Some changes are more subtle. I’ve changed all instances

of “noninformative” to “uninformative” since the first term does not really describe prior

distributions. Markov chain Monte Carlo techniques are infused throughout, befitting their

central role in Bayesian work. Experience has been that social science graduate students

remain fairly tepid about empirical examples that focus on rats, lizards, beetles, and nuclear

pumps. Furthermore, as of this writing there is no other comprehensive Bayesian text in

the social sciences, outside of economics (except the out-of-print text by Phillips [1973]).

Road Map

To begin, the prerequisites remain the same. Readers will need to have a basic working

knowledge of linear algebra and calculus to follow many of the sections. My math text,

Essential Mathematics for Political and Social Research (2006), provides an overview of

such material. Chapter 1 gives a brief review of the probability basics required here, but

it is certainly helpful to have studied this material before. Finally, one cannot understand

Bayesian modeling without knowledge of maximum likelihood theory. I recognize graduate

programs differ in their emphasis on this core material, so Appendix A covers these essential

ideas.

The second edition is constructed in a somewhat different fashion than the first. The

most obvious difference is that the chapter on generalized linear models has been recast as an

appendix, as mentioned. Now the introductory material flows directly into the construction

of basic Bayesian statistical models and the procession of core ideas is not interrupted by

a non-Bayesian discussion of standard models. Nonetheless, this material is important to

have close at hand and hopefully the appendix approach is convenient. Another notable
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change is the “promotion” of linear models to their own chapter. This material is important

enough to stand on its own despite the overlap with Bayesian normal and Student’s-t models.

Other organization changes are found in the computational section where considerable extra

material has been added, both in terms of theory and practice. Markov chain Monte Carlo

set the Bayesians free, and remains an extremely active research field. Keeping up with this

literature is a time-consuming, but enjoyable, avocation.

There are a number of ways that a graduate course could be structured around this

text. For a basic-level introductory course that emphasizes theoretical ideas, the first seven

chapters provide a detailed overview without considering many computational challenges.

Some of the latter chapters are directed squarely at sophisticated social scientists who have

not yet explored some of the subtle theory of Markov chains. Among the possible structures,

consider the following curricula.

Basic Introductory Course

⊲ Chapter 1: Background and Introduction

⊲ Chapter ??: Specifying Bayesian Models

⊲ Chapter ??: The Normal and Student’s-t Models

⊲ Chapter ??: The Bayesian Linear Model

⊲ Chapter ??: Bayesian Hierarchical Models

Thorough Course without an Emphasis on Computing

⊲ Chapter 1: Background and Introduction

⊲ Chapter ??: Specifying Bayesian Models

⊲ Chapter ??: The Normal and Student’s-t Models

⊲ Chapter ??: The Bayesian Linear Model

⊲ Chapter ??: The Bayesian Prior

⊲ Chapter ??: Assessing Model Quality

⊲ Chapter ??: Bayesian Hypothesis Testing and the Bayes Factor

⊲ Chapter ??: Bayesian Hierarchical Models

A Component of a Statistical Computing Course

⊲ Chapter ??: Specifying Bayesian Models

⊲ Chapter ??: Monte Carlo and Related Iterative Methods

⊲ Chapter ??: Basics of Markov Chain Monte Carlo

⊲ Chapter ??: Some Markov Chain Monte Carlo Theory
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⊲ Chapter ??: Utilitarian Markov Chain Monte Carlo

⊲ Chapter ??: Markov Chain Monte Carlo Extensions

A Component of an Estimation Course

⊲ ??: Generalized Linear Model Review

⊲ Chapter 1: Background and Introduction

⊲ Chapter ??: Specifying Bayesian Models

⊲ Chapter ??: The Bayesian Linear Model

⊲ Chapter ??: Bayesian Hypothesis Testing and the Bayes Factor

Of course I am eager to learn about how instructors use these chapters independent of

any advice here.
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Contextual Comments

This book is intended to fill a void. There is a reasonably wide gap between the back-

ground of the median empirically trained social or behavioral scientist and the full weight of

Bayesian statistical inference. This is unfortunate because, as we will see in the forthcoming

chapters, there is much about the Bayesian paradigm that suits the type of data and data

analysis performed in the social and behavioral sciences. Consequently, the goal herein is to

bridge this gap by connecting standard maximum likelihood inference to Bayesian methods

by emphasizing linkages between the standard or classical approaches and full probability

modeling via Bayesian methods.

This is far from being an exclusively theoretical book. I strongly agree that “theoretical

satisfaction and practical implementation are the twin ideals of coherent statistics” (Lindley

1980), and substantial attention is paid to the mechanics of putting the ideas into practice.

Hopefully the extensive attention to calculation and computation basics will enable the

interested readers to immediately try these procedures on their own data. Coverage of var-

ious numerical techniques from detailed posterior calculations to computational-numerical

integration is extensive because these are often the topics that separate theory and realistic

practice.

The treatment of theoretical topics in this work is best described as “gentle but rigorous”:

more mathematical derivation details than related books, but with more explanation as well.

This is not an attempt to create some sort of “Bayes-Lite” or “Bayes for Dummies” (to

paraphrase the popular self-help works). Instead, the objective is to provide a Bayesian

methods book tailored to the interests of the social and behavioral sciences. It therefore

features data that these scholars care about, focuses more on the tools that they are likely

to require, and speaks in a language that is more compatible with typical prerequisites in

associated departments.

There is also a substantial effort to put the development of Bayesian methods in a

historical context. To many, the principles of Bayesian inference appear to be something

that “came out of left field,” and it is important to show that not only are the fundamentals

of Bayesian statistics older than the current dominant paradigms, but that their history and

development are actually closely intertwined.

xxvii
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Outline of the Book

This book is laid out as follows. Chapter 1 gives a high-level, brief introduction to the

basic philosophy of Bayesian inference. I provide some motivations to justify the time and

effort required to learn a new way of thinking about statistics through Bayesian inference.

Chapter 2 (now Appendix A) provides the necessary technical background for going on:

basic likelihood theory, the generalized linear model, and numerical estimation algorithms.

Chapter 1 describes the core idea behind Bayesian thinking: updating prior knowledge

with new data to give the posterior distribution. Examples are used to illustrate this process

and some historical notes are included. The normal model and its relatives are no less

important in Bayesian statistics than in non-Bayesian statistics, and Chapter ?? outlines

the key basic normal models along with extensions.

Specifying prior distributions is a key component of the Bayesian inference process and

Chapter ?? goes through the typology of priors. The Bayesian paradigm has a cleaner and

more introspective approach to assessing the quality of fit and robustness of researcher-

specified models, and Chapter ?? outlines procedures so that one can test the performance

of various models. Chapter ?? is a bit more formal about this process; it outlines a number

of ways to explicitly test models against each other and to make decisions about unknown

parameters.

The most modern component of this book begins with Chapter ??, which is an intro-

duction to Monte Carlo and related methods. These topics include the many varieties of

numerical integration and importance sampling, and culminating with the EM algorithm.

While none of these tools are exclusively Bayesian in nature, Bayesians generally make

more use of them than others. Chapter ?? formally introduces Markov chain Monte Carlo

(MCMC). These are the tools that revolutionized Bayesian statistics and led to the cur-

rent renaissance. This chapter includes both theoretical background on Markov chains as

well as practical algorithmic details. Chapter ?? discusses hierarchical models that give

the Bayesian researcher great flexibility in specifying models through a general framework.

These models often lead to the requirement of MCMC techniques and the examples in this

chapter are illustrated with practical computing advice. Finally, Chapter 11 (in the first

edition) discusses necessary details about the mechanics of running and testing MCMC

inferences.

The structure of each chapter is reasonably uniform. The basic ideas are enumerated

early in the chapter and several of the chapters include an advanced topics section to further

explore ideas that are unlikely to be of interest to every reader or to the first-time reader.

All chapters have exercises that are intended to give practice developing the central ideas

of each topic, including computer-based assignments.

There are unfortunately several topics that I have not had the space to cover here.

Foremost is Bayesian decision theory. Many social and behavioral scientists do not operate
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in a data-analytic environment where the explicit cost of making a wrong decision can be

quantified and incorporated into the model. This may be changing and there are a number

of areas that are currently oriented toward identifying loss and risk, such as applied public

policy. In the meantime, readers who are focused accordingly are directed to the books by

Berger (1985), Winkler (1972), Robert (2001), and the foundational work of Wald (1950).

The second major topic that is mentioned only in passing is the growing area of empirical

Bayes. The best introduction is the previously noted text of Carlin and Louis (2001). See

also the extensive empirical Bayes reference list in Section ??. I would very much have liked

to cover the early, but exciting developments in perfect sampling (coupling from the past).

See the original work by Propp and Wilson (1996).

Bayesian game theory is an important topic that has been omitted. Some of the better

known citations are Raiffa (1982), Blackwell and Girshick (1954), Savage (1954), and Bayarri

and DeGroot (1991). The Bayesian analysis of survival data as a distinct subspecialty is

somewhat understudied. The recent book by Ibrahim, Chen, and Sinha (2001) goes a long

way toward changing that. Chapter ?? provides the essentials for understanding Markov

chains in general. The study of Markov chains extends well beyond basic MCMC and

the mathematical references that I often find myself reaching for are Meyn and Tweedie

(1993), Norris (1997), and Nummelin (1984). The Bayesian hierarchical models covered in

Chapter ?? naturally and easily extend into meta-analysis, a subject well-covered in the

social sciences by Cooper and Hedges (1994), Hunter and Schmidt (1990), and Lipsey and

Wilson (2001).

Background and Prerequisites

This is not a book for a first-semester course in social and behavioral statistics. Instead,

it is intended to extend the training of graduate students and researchers who have already

experienced a one-year (roughly) sequence in social statistics. Therefore good prerequisites

include intermediate-level, regression-oriented texts such as Fox (1997), Gujarati (1995),

Hanushek and Jackson (1977), Harrell (2001), Neter et al. (1996), and Montgomery et

al. (2001). Essentially it is assumed that the reader is familiar with the basics of the linear

model, simple inference, multivariate specifications, and some nonlinear specifications.

A rudimentary understanding of matrix algebra is required, but this does not need to

go beyond the level of Chapter 1 in Greene (2000), or any basic undergraduate text. The

essential manipulations that we will use are matrix multiplication, inversion, transposition,

and segmentation. The calculus operations done here are more conceptual than mechanical;

that is, it is more important to understand the meaning of differentiation and integration

operations rather than to be an expert on the technicalities. A knowledge at the level of

Kleppner and Ramsey’s (1985) self-teaching primer is sufficient to follow the calculations.
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The core philosophical approach taken with regard to model specification comes from

the generalized linear model construct of Nelder and Wedderburn (1972), elaborated in

McCullagh and Nelder (1989). This is an integrated theoretical framework that unifies

disparate model specifications by re-expressing models based on making the appropriate

choice of model configuration based on the structure of the outcome variable and the nature

of the dispersion. This fundamental way of thinking is independent of whether the model

is Bayesian (see Dey, Ghosh, and Mallick 2000) or classical (see Fahrmeir and Tutz 2001).

Software

The concepts and procedures in this book would be of little practical value without a

means of directly applying them. Consequently, there is an emphasis here on demonstrating

ideas with statistical software. All code in R and BUGS and all data are posted at the

dedicated webpage:

http://web.clas.ufl.edu/~jgill/BMSBSA.

A great deal of the material in this book focuses on developing examples using the R and

BUGS statistical packages. Not only are these extremely high-quality analytical tools, they

are also widely distributed free of charge.

It is hard to overstate the value of the R statistical environment. R is the Open Source

implementation of the S statistical language (from AT&T-Bell Labs), which has become the

de facto standard computing language in academic statistics because of its power, flexibility,

and sense of community. R was initially written by Robert Gentleman and Ross Ihak at

the University of Auckland, but is now supported by a growing group of dedicated scholars.

An important aspect of R is the user community itself, and the user-written packages have

been shown to be an effective way for scholars to share and improve new methods.

The homesite for R (see the details in Chapter 2, now Appendix A), contains documen-

tation on installation and learning the language. In addition, because R is “non-unlike” S,

any published book on S-Plus will be useful. The standard text for statistical modeling

in S is the work of Venables and Ripley (1999). The forthcoming book by Fox (2002) is

a particularly helpful and well-written introduction to doing applied work in S. In addi-

tion, an increasing number of applied methodology books that feature the S language have

appeared, and I try to keep up with these on a webpage:

http://web.clas.ufl.edu/~jgill/s-language.help.html.

Any applied Bayesian today that wants to feel good about the state of the world with

regard to software need only look at Press’ 1980 summary of available Bayesian analysis pro-

grams. This is a disparate, even tortured, list of mainframe-based programs that generally

only implement one or two procedures each and require such pleasantries as “Raw data on
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Paper tape.” In contrast, the BUGS package makes Bayesian analysis using MCMC pleasant

and engaging by taking the odious mechanical aspects away from the user, allowing one to

focus on the more interesting aspects of model specification and testing. This unbelievable

gift to the Bayesian statistical community was developed at the MRC Biostatistics Unit in

Cambridge:

http://www.mrc-bsu.cam.ac.uk/bugs/.
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Chapter 1

Background and Introduction

1.1 Introduction

Vitriolic arguments about the merits of Bayesian versus classical approaches seem to have

faded into a quaint past of which current researchers in the social sciences are, for the most

part, blissfully unaware. In fact, it almost seems odd well into the 21st century that deep

philosophical conflicts dominated the last century on this issue. What happened? Bayesian

methods always had a natural underlying advantage because all unknown quantities are

treated probabilistically, and this is the way that statisticians and applied statisticians really

prefer to think. However, without the computational mechanisms that entered into the field

we were stuck with models that couldn’t be estimated, prior distributions (distributions

that describe what we know before the data analysis) that incorporated uncomfortable

assumptions, and an adherence to some bankrupt testing notions. Not surprisingly, what

changed all this was a dramatic increase in computational power and major advances in the

algorithms used on these machines. We now live in a world where there are very few model

limitations, other than perhaps our imaginations. We therefore live in world now where

researchers are for the most part comfortable specifying Bayesian and classical models as it

suits their purposes.

It is no secret that Bayesian methods require a knowledge of classical methods as well

as some additional material. Most of this additional material is either applied calculus or

statistical computing. That is where this book comes in. The material here is intended

to provide an introduction to Bayesian methods all the way from basic concepts through

advanced computational material. Some readers will therefore be primarily interested in

different sections. Also it means that this book is not strictly a textbook, a polemic, nor a

research monograph. It is intended to be all three.

Bayesian applications in medicine, the natural sciences, engineering, and the social sci-

ences have been increasing at a dramatic rate since the middle of the early 1990s. In-

terestingly, the Mars Rovers are programmed to think Bayesianly while they traverse that

planet. Currently seismologists perform Bayesian updates of aftershocks based on the main-

shock and previous patterns of aftershocks in the region. Bayesian networks are built in

computational biology, and the forefront of quantitative research in genomics is now firmly

Bayesian.

1
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So why has there been a noticeable increase in interest in Bayesian statistics? There are

actually several visible reasons. First, and perhaps most critically, society has radically in-

creased its demand for statistical analysis of all kinds. A combined increase in clinical trials,

statistical genetics, survey research, general political studies, economic analysis, government

policy work, Internet data distribution, and marketing research have led to golden times for

applied statisticians. Second, many introspective scholars who seriously evaluate available

paradigms find that alternatives to Bayesian approaches are fraught with logical inconsis-

tencies and shortcomings. Third, until recent breakthroughs in statistical computing, it

was easy to specify realistic Bayesian statistical models that could not provide analytically

tractable summary results.

There is therefore ample motivation to understand the basics of Bayesian statistical

methodology, and not just because it is increasingly important in mainstream analysis

of data. The Bayesian paradigm rests on a superior set of underlying assumptions and

includes procedures that allow researchers to include reliable information in addition to the

sample, to talk about findings in intuitive ways, and to set up future research in a coherent

manner. At the core of the data-analytic enterprise, these are key criteria to producing

useful statistical results.

Statistical analysis is the process of “data reduction” with the goal of separating out

underlying systematic effects from the noise inherent in all sets of observations. Obviously

there is a lot more to it than that, but the essence of what we do is using models to distill

findings out of murky data. There are actually three general steps in this process: collection,

analysis, and assessment. For most people, data collection is not difficult in that we live in

an age where data are omnipresent. More commonly, researchers possess an abundance of

data and seek meaningful patterns lurking among the various dead-ends and distractions.

Armed with a substantive theory, many are asking: what should I do now? Furthermore,

these same people are often frustrated when receiving multiple, possibly conflicting, answers

to that question.

Suppose that there exists a model-building and data analysis process with the following

desirable characteristics:

⊲ overt and clear model assumptions,

⊲ a principled way to make probability statements about the real quantities of theoretical

interest,

⊲ an ability to update these statements (i.e., learn) as new information is received,

⊲ systematic incorporation of previous knowledge on the subject,

⊲ missing information handled seamlessly as part of the estimation process,

⊲ recognition that population quantities can be changing over time rather than forever

fixed,

⊲ the means to model all data types including hierarchical forms,

⊲ straightforward assessment of both model quality and sensitivity to assumptions.
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As the title of this book suggests, the argument presented here is that the practice of

Bayesian statistics possesses all of these qualities. Press (1989) adds the following practical

advantages to this list:

⊲ it often results in shorter confidence/credible intervals,

⊲ it often gives smaller model variance,

⊲ predictions are usually better,

⊲ “proper” prior distributions (Chapter ??) give models with good frequentist proper-

ties,

⊲ reasonably “objective” assumptions are available,

⊲ hypotheses can be tested without pre-determination of testing quality measures.

This text will argue much beyond these points and assert that the type of data social and

behavioral scientists routinely encounter makes the Bayesian approach ideal in ways that

traditional statistical analysis cannot match. These natural advantages include avoiding the

assumption of infinite amounts of forthcoming data, recognition that fixed-point assump-

tions about human behavior are dubious, and a direct way to include existing expertise in

a scientific field.

What reasons are there for not worrying about Bayesian approaches and sticking with

the, perhaps more comfortable, traditional mindset? There are several reasons why a reader

may not want to worry about the principles in this text for use in their research, including:

⊲ their population parameters of interest are truly fixed and unchanging under all real-

istic circumstances,

⊲ they do not have any prior information to add to the model specification process,

⊲ it is necessary for them to provide statistical results as if data were from a controlled

experiment,

⊲ they care more about “significance” than effect size,

⊲ computers are slow or relatively unavailable for them,

⊲ they prefer very automated, “cookbook” type procedures.

So why do so-called classical approaches dominate Bayesian usage in the social and be-

havioral sciences? There are several reasons for this phenomenon. First, key figures in

the development of modern statistics had strong prejudices against aspects of Bayesian in-

ference for narrow and subjective reasons. Second, the cost of admission is higher in the

form of additional mathematical formalism. Third, until recently realistic model specifica-

tions sometimes led to unobtainable Bayesian solutions. Finally, there has been a lack of

methodological introspection in a number of disciplines. The primary mission of this text

is to make the second and third reasons less of a barrier through accessible explanation,

detailed examples, and specific guidance on calculation and computing.

It is important to understand that the Bayesian way does not mean throwing away one’s
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comfortable tools, and it is not itself just another tool. Instead it is a way of organizing one’s

toolbox and is also a way of doing statistical work that has sharply different philosophical

underpinnings. So adopting Bayesian methods means keeping the usual set of methods,

such as linear regression, ANOVA, generalized linear models, tabular analysis, and so on. In

fact, many researchers applying statistics in the social sciences are not actually frequentists

since they cannot assume an infinite stream of iid (independent and identically distributed)

data coming from a controlled experimental setup. Instead, most of these analysts can be

described as “likelihoodists,” since they obtain one sample of observational data that is

contextual and will not be repeated, then perform standard likelihood-based (Fisherian)

inference to get coefficient estimates.

Aside from underlying philosophical differences, many readers will be comforted in find-

ing that Bayesian and non-Bayesian analyses often agree. There are two important instances

where this is always true. First, when the included prior information is very uninformative

(there are several ways of providing this), summary statements from Bayesian inference will

match likelihood point estimates. Therefore a great many researchers are Bayesians who

do not know it yet. Second, when the data size is very large, the form of the prior informa-

tion used does not matter and there is agreement again. Other circumstances also exist in

which Bayesian and non-Bayesian statistical inferences lead to the same results, but these

are less general than the two mentioned. In addition to these two important observations,

all hierarchical models are overtly Bayesian since they define distributional assumptions at

levels. These are popular models due to their flexibility with regard to the prevalence of

different levels of observed aggregation in the same dataset. We will investigate Bayesian

hierarchical models in Chapter ??.

We will now proceed to a detailed justification for the use of modern Bayesian methods.

1.2 General Motivation and Justification

With Bayesian analysis, assertions about unknown model parameters are not expressed

in the conventional way as single point estimates along with associated reliability assessed

through the standard null hypothesis significance test. Instead the emphasis is on making

probabilistic statements using distributions. Since Bayesians make no fundamental distinc-

tion between unobserved data and unknown parameters, the world is divided into: imme-

diately available quantities, and those that need to be described probabilistically. Before

observing some data, these descriptions are called prior distributions , and after observing

the data these descriptions are called posterior distributions. The quality of the modeling

process is the degree to which a posterior distribution is more informed than a prior distribu-

tion for some unknown quantity of interest. Common descriptions of posterior distributions

include standard quantile levels, the probability of occupying some affected region of the
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sample space, the predictive quantities from the posterior, and Bayesian forms of confidence

intervals called credible intervals.

It is important to note here that the pseudo-frequentist null hypothesis significance

test (NHST) is not just sub-optimal, it is wrong. This is the dominant hypothesis testing

paradigm as practiced in the social sciences. Serious problems include: a logical inconsis-

tency coming from probabilistic modus tollens, confusion over the order of the conditional

probability, chasing significance but ignoring effect size, adherence to completely arbitrary

significance thresholds, and confusion about the probability of rejection. There is a general

consensus amongst those that have paid attention to this issue that the social sciences have

been seriously harmed by the NHST since it has led to fixations with counting stars on

tables rather than looking for effect sizes and general statistical reliability. See the recent

discussions in Gill (1999) and Denis (2005) in particular for detailed descriptions of these

problems and how they damage statistical inferences in the social sciences. Serious criti-

cism of the NHST began shortly after its creation in the early 20th century by textbook

writers who blended Fisherian likelihoodism with Neyman and Pearson frequentism in an

effort to offend neither warring and evangelical camp. An early critic of this unholy union

was Rozeboom (1960) who noticed its “strangle-hold” on social science inference. In 1962

Arthur Melton wrote a parting editorial in the Journal of Experimental Psychology reveal-

ing that he had held authors to a 0.01 p-value standard: “In editing the Journal there has

been a strong reluctance to accept and publish results related to the principal concern of

the research when those results were significant at the .05 level, whether by one- or two-

tailed test!” This had the effect of accelerating the criticism and led to many analytical

and soul-searching articles discussing the negative consequences of this procedure in the so-

cial sciences, including: Barnett (1973), Berger (2003), Berger, Boukai, and Wang (1997),

Berger and Sellke (1987), Berkhardt and Schoenfeld (2003), Bernardo (1984), Brandstätter

(1999), Carver (1978, 1993), Cohen (1962, 1977, 1988, 1992, 1994), Dar, Serlin and Omer

(1994), Falk and Greenbaum (1995), Gigerenzer (1987, 1998a, 1998b, 2004), Gigerenzer

and Murray (1987), Gliner, Leech and Morgan (2002), Greenwald (1975), Greenwald, et

al. (1996), Goodman (1993, 1999), Haller and Krauss (2002), Howson and Urbach (1993),

Hunter (1997), Hunter and Schmidt (1990), Kirk (1996), Krueger (2001), Lindsay (1995),

Loftus (1991, 1993), Macdonald (1997), McCloskey and Ziliak (1996), Meehl (1978, 1990,

1997), Moran and Soloman (2004), Morrison and Henkel (1969, 1970), Nickerson (2000),

Oakes (1986), Pollard (1993), Pollard and Richardson (1987), Robinson and Levin (1997),

Rosnow and Rosenthal (1989), Schmidt (1996), Schmidt and Hunter (1977), Schervish

(1996), Sedlmeier and Gigerenzer (1989), Thompson (1996, 1997, 2002a, 2002b, 2004),

Wilkinson (1977), Ziliak and McCloskey (2007). And this is only a small sample of the

vast literature describing the NHST as bankrupt. Conveniently some of the more influential

articles listed above are reprinted in Harlow et al. (1997). We will return to this point in

Chapter ?? (starting on page ??) in the discussion of Bayesian hypothesis testing and model

comparison.

This focus on distributional inference leads to two key assumptions for Bayesian work.
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First, a specific parametric form is assumed to describe the distribution of the data given

parameter values. Practically, this is used to construct a likelihood function (??) to incorpo-

rate the contribution of the full sample of data. Note that this is an inherently parametric

setup, and although nonparametric Bayesian modeling is a large and growing field, it exists

beyond the scope of the basic setup. Second, since unknown parameters are treated as

having distributional qualities rather than being fixed, an assumed prior distribution on the

parameters of interest unconditional on the data is given. This reflects either uncertainty

about a truly fixed parameter or recognition that the quantity of interest actually behaves

in some stochastic fashion.

With those assumptions in hand, the essentials of Bayesian thinking can be stated in

three general steps:

1. Specify a probability model that includes some prior knowledge about the parameters

for unknown parameter values.

2. Update knowledge about the unknown parameters by conditioning this probability

model on observed data.

3. Evaluate the fit of the model to the data and the sensitivity of the conclusions to the

assumptions.

Notice that this process does not include an unrealistic and artificial step of making a

contrived decision based on some arbitrary quality threshold. The value of a given Bayesian

model is instead found in the description of the distribution of some parameter of interest

in probabilistic terms. Also, there is nothing about the process contained in the three steps

above that cannot be repeated as new data are observed. It is often convenient to use the

conventional significance thresholds that come from Fisher, but Bayesians typically do not

ascribe any major importance to being barely on one side or the other. That is, Bayesian

inference often prescribes something like a 0.05 threshold, but it is rare to see work where

a 0.06 finding is not taken seriously as a likely effect.

Another core principle of the Bayesian paradigm is the idea that the data are fixed once

observed. Typically (but not always) these data values are assumed to be exchangeable; the

model results are not changed by reordering the data values. This property is more general

than, and implied by, the standard assumption that the data are independent and identically

distributed (iid): independent draws from the same distribution, and also implies a common

mean and variance for the data values (Leonard and Hsu 1999, p.1). Exchangeability allows

us to say that the data generation process is conditional on the unknown model parameters

in the same way for every data value (de Finetti 1974, Draper et al. 1993, Lindley and

Novick 1981). Essentially this is a less restrictive version of the standard iid assumption.

Details about the exchangeability assumption are given in Chapter ??. We now turn to a

discussion of probability basics as a precursor to Bayesian mechanics.
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1.3 Why Are We Uncertain about Uncertainty?

The fundamental principles of probability are well known, but worth repeating here.

Actually, it is relatively easy to intuitively define the properties of a probability function:

(1) its range is bounded by zero and one for all the values in the applicable domain, (2) it

sums or integrates to one over this domain, and (3) the sum or integral of the functional

outcome (probability) of disjoint events is equal to the functional outcome of the union of

these events. These are the Kolmogorov axioms (1933), and are given in greater detail in Gill

(2006), Chapter 7. The real problem lies in describing the actual meaning of probability

statements. This difficulty is, in fact, at the heart of traditional disagreements between

Bayesians and non-Bayesians.

The frequentist statistical interpretation of probability is that it is a limiting relative fre-

quency: the long-run behavior of a nondeterministic outcome or just an observed proportion

in a population. This idea can be traced back to Laplace (1814), who defined probability as

the number of successful events out of trials observed. Thus if we could simply repeat the

experiment or observe the phenomenon enough times, it would become apparent what the

future probability of reoccurrence will be. This is an enormously useful way to think about

probability but the drawback is that frequently it is not possible to obtain a large number

of outcomes from exactly the same event-generating system (Kendall 1949, Placket 1966).

A competing view of probability is called “subjective” and is often associated with the

phrase “degree of belief.” Early proponents included Keynes (1921) and Jeffreys (1961), who

observed that two people could look at the same situation and assign different probability

statements about future occurrences. This perspective is that probability is personally

defined by the conditions under which a person would make a bet or assume a risk in

pursuit of some reward. Subjective probability is closely linked with the idea of decision-

making as a field of study (see, for instance, Bernardo and Smith [1994, Chapter 2]) and

the principle of selecting choices that maximize personal utility (Berger 1985).

These two characterizations are necessarily simplifications of the perspectives and de

Finetti (1974, 1975) provides a much deeper and more detailed categorization, which we

will return to in Chapter ??. To de Finetti, the ultimate arbiter of subjective probabil-

ity assignment is the conditions under which individuals will wager their own money. In

other words, a person will not violate a personal probability assessment if it has financial

consequences. Good (1950) makes this idea more axiomatic by observing that people have

personal probability assessments about many things around them rather than just one, and

in order for these disparate comparative statements to form a body of beliefs they need to be

free of contradictions. For example, if a person thinks that A is more likely to occur than B,

and B is more likely to occur than C, then this person cannot coherently believe that C is

more likely than A (transitivity). Furthermore, Good adds the explicitly Bayesian idea that

people are constantly updating these personal probabilities as new information is observed,
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although there is evidence that people have subadditive notions of probability when making

calculations (the probability of some event plus the probability of its complement do not

add to certainty).

The position underlying nearly all Bayesian work is the subjective probability charac-

terization, although there have been many attempts to “objectify” Bayesian analysis (see

Chapter ??). Prior information is formalized in the Bayesian framework and this prior

information can be subjective in the sense that the researcher’s experience, intuition, and

theoretical ideas are included. It is also common to base the prior information on previous

studies, experiments, or just personal observations and this process is necessarily subject to

a limited (although possibly large) number of observations rather than the infinite number

assumed under the frequentist view. We will return to the theme of subjectivity contained

in prior information in Chapter ?? and elsewhere, but the principal point is that all statis-

tical models include subjective decisions, and therefore we should ceteris paribus prefer one

that is the most explicit about assumptions. This is exactly the sense that the Bayesian

prior provides readers with a specific, formalized statement of currently assumed knowledge

in probabilistic terms.

1.3.1 Required Probability Principles

There are some simple but important principles and notational conventions that must

be understood before proceeding. We will not worry too much about measure theory until

Chapter ??, and the concerned reader is directed to the first chapter of any mathematical

statistics text or the standard reference works of Billingsley (1995), Chung (1974), and Feller

(1990, Volumes 1 and 2). Abstract events are indicated by capital Latin letters: A, B, C,

etc. A probability function corresponding to some event A is always indicated by p(A). The

complement of the event A is denoted Ac, and it is a consequence of Kolmogorov’s axioms

listed above that p(Ac) = 1− p(A). The union of two events is indicated by A ∪B and the

intersection by A ∩ B. For any two events: p(A ∪ B) = p(A) + p(B) − p(A ∩ B). If two

events are independent, then p(A ∩ B) = p(A)p(B), but not necessarily the converse (the

product relationship does not imply independence).

Central to Bayesian thinking is the idea of conditionality. If an event B is material

to another event A in the sense that the occurrence or non-occurrence of B affects the

probability of A occurring, then we say that A is conditional on B. It is a basic tenet of

Bayesian statistics that we update our probabilities as new relevant information is observed.

This is done with the definition of conditional probability given by: p(A|B) = p(A∩B)/p(B),

which is read as “the probability of A given B is equal to the probability of A and B divided

by the probability of B.”

In general the quantities of interest here are random variables rather than the simple

discrete events above. A random variable X is defined as a measurable function from

a probability space to a state space. This can be defined very technically (Shao 2005,

p.7), but for our purposes it is enough to understand that the random variable connects
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possible occurrences of some data value with a probability structure that reflects the relative

“frequency” of these occurrences. The function is thus defined over a specific state space of

all possible realizations of the random variable, called support. Random variables can be

discrete or continuous. For background details see Casella and Berger (2002), Shao (2005),

or the essay by Doob (1996). The expression p(X ∩ Y ) is usually denoted as p(X,Y ), and

is referred to as the joint distribution of random variables X and Y . Marginal distributions

are then simply p(X) and p(Y ). Restating the principle above in this context, for two

independent random variables the joint distribution is just the product of the marginals,

p(X,Y ) = p(X)p(Y ). Typically we will need to integrate expressions like p(X,Y ) to get

marginal distributions of interest. Sometimes this is done analytically, but more commonly

we will rely on computational techniques.

We will make extensive use of expected value calculations here. Recall that if a random

variable X is distributed p(X), the expected value of some function of the random variable,

h(X), is

E[h(X)] =















k
∑

i=1

h(xi)p(xi) k-category discrete case

∫

X
h(X)p(X)dx continuous case.

(1.1)

Commonly h(X) = X , and we are simply concerned with the expectation of the random

variable itself. In the discrete case this is a very intuitive idea as the expected value can be

thought of as a probability-weighted average over possible events. For the continuous case

there are generally limits on the integral that are dictated by the support of the random

variable, and sometimes these are just given by [−∞,∞] with the idea that the PDF

(probability density function) indicates zero and non-zero regions of density. Also p(X)

is typically a conditional statement: p(X |θ). For the k × 1 vector X of discrete random

variables, the expected value is: E[X] =
∑

Xp(X). With the expected value of a function

of the continuous random vector, it is common to use the Riemann-Stieltjes integral form

(found in any basic calculus text): E[f(X)] =
∫

X
f(X)dF (X), where F (X) denotes the

joint distribution of the random variable vector X. The principles now let us look at Bayes’

Law in detail.

1.4 Bayes’ Law

The Bayesian statistical approach is based on updating information using what is called

Bayes’ Law (and synonymously Bayes’ Theorem) from his famous 1763 essay. The Rev-

erend Thomas Bayes was an amateur mathematician whose major contribution (the others

remain rather obscure and do not address the same topic) was an essay found and pub-

lished two years after his death by his friend Richard Price. The enduring association of

an important branch of statistics with his name actually is somewhat of an exaggeration of



10 Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition

the generalizeability of this work (Stigler 1982). Bayes was the first to explicitly develop

this famous law, but it was Laplace (1774, 1781) who (apparently independently) provided

a more detailed analysis that is perhaps more relevant to the practice of Bayesian statistics

today. See Stigler (1986) for an interesting historical discussion and Sheynin (1977) for

a detailed technical analysis. Like Bayes, Laplace assumed a uniform distribution for the

unknown parameter, but he worried much less than Bayes about the consequences of this

assumption. Uniform prior distributions are simply “flat” distributions that assign equal

probability for every possible outcome.

Suppose there are two events of interest A and B, which are not independent. We know

from basic axioms of probability that the conditional probability of A given that B has

occurred is given by:

p(A|B) =
p(A,B)

p(B)
, (1.2)

where p(A|B) is read as “the probability of A given that B has occurred, p(A,B) is the

“the probability that both A and B occur” (i.e., the joint probability) and p(B) is just the

unconditional probability that B occurs. Expression (1.2) gives the probability of A after

some event B occurs. If A and B are independent here then p(A,B) = p(A)p(B) and (1.2)

becomes uninteresting.

We can also define a different conditional probability in which A occurs first:

p(B|A) =
p(B,A)

p(A)
. (1.3)

Since the probability that A and B occur is the same as the probability that B and A occur

(p(A,B) = p(B,A)), then we can rearrange (1.2) and (1.3) together in the following way:

p(A,B) = p(A|B)p(B)

p(B,A) = p(B|A)p(A)

p(A|B)p(B) = p(B|A)p(A)

p(A|B) =
p(A)

p(B)
p(B|A). (1.4)

The last line is the famous Bayes’ Law. This is really a device for “inverting” conditional

probabilities. Notice that we could just as easily produce p(B|A) in the last line above by

moving the unconditional probabilities to the left-hand side in the last equality.

We can also use Bayes’ Law with the use of odds, which is a common way to talk about

uncertainty related to probability. The odds of an event is the ratio of the probability of

an event happening to the probability of the event not happening. So for the event A, the

odds of this event is simply:

Odds =
p(A)

1− p(A)
=

p(A)

p(¬A)
, (1.5)
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which is this ratio expressed in two different ways. Note the use of “¬A” for “not A,” which

is better notation when the complement of A isn’t specifically defined and we care only that

event A did not happen. Since this statement is not conditional on any other quantity, we

can call it a “prior odds.” If we make it conditional on B, then it is called a “posterior

odds,” which is produced by multiplying the prior odds by the reverse conditional with

regard to B:
p(A|B)

p(¬A|B)
=

p(A)

p(¬A)

p(B|A)

p(B|¬A)
. (1.6)

The last ratio, p(B|A)/p(B|¬A) is the “likelihood ratio” for B under the two conditions for

A. This is actually the ratio of two expressions of Bayes’ Law in the sense of (1.4), which

we can see with the introduction of the ratio p(B)/p(B):

p(A|B)

p(¬A|B)
=

p(A)/p(B)

p(¬A)/p(B)

p(B|A)

p(B|¬A)
. (1.7)

This ratio turns out to be very useful in Bayesian model consideration since it implies a

test between the two states of nature, A and ¬A, given the observation of some pertinent

information B.

� Example 1.1: Testing with Bayes’ Law. How is this useful? As an example, hy-

pothetically assume that 2% of the population of the United States are members of

some extremist Militia group (p(M) = 0.02), a fact that some members might at-

tempt to hide and therefore not readily admit to an interviewer. A survey is 95%

accurate on positive Classification, p(C|M) = 0.95, (“sensitivity”) and the uncondi-

tional probability of classification (i.e., regardless of actual militia status) is given by

p(C) = 0.05. To illustrate how p(C) is really the normalizing constant obtained

by accumulating over all possible events, we will stipulate the additional knowl-

edge that the survey is 97% accurate on negative classification, p(Cc|M c) = 0.97

(“specificity”). The unconditional probability of classifying a respondent as a mili-

tia member results from accumulation of the probability across the sample space of

survey events using the Total Probability Law: p(C) = p(C ∩ M) + p(C ∩ M c) =

p(C|M)p(M) + [1− p(Cc|M c)]p(M c) = (0.95)(0.02) + (0.03)(0.98) ∼= 0.05.

Using Bayes’ Law, we can now derive the probability that someone positively classified

by the survey as being a militia member really is a militia member:

p(M |C) =
p(M)

p(C)
p(C|M) =

0.02

0.05
(0.95) = 0.38. (1.8)

The startling result is that although the probability of correctly classifying an individ-

ual as a militia member given they really are a militia member is 0.95, the probability

that an individual really is a militia member given that they are positively classified

is only 0.38.

The highlighted difference here between the order of conditional probability is often

substantively important in a policy or business context. Consider the problem of
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designing a home pregnancy test. Given that there exists a fundamental business

trade-off between the reliability of the test and the cost to consumers, no commercially

viable product will have perfect or near-perfect test results. In designing the chemistry

and packaging of the test, designers will necessarily have to compromise between the

probability of PRegnancy given positive Test results, p(PR|T), and the probability

of positive test results given pregnancy, p(T|PR). Which one is more important?

Clearly, it is better to maximize p(T|PR) at the expense of p(PR|T), as long as the

reduction in the latter is reasonable: it is preferable to give a higher number of false

positives, sending women to consult their physician to take a more sensitive test, than

to fail to notify many pregnant women. This reduces the possibility that a woman

who does not realize that she is pregnant might continue unhealthy practices such

as smoking, drinking, or maintaining a poor diet. Similarly, from the perspective

of general public health, it is better to have preliminary tests for deadly contagious

diseases designed to be similarly conservative with respect to false positives.

1.4.1 Bayes’ Law for Multiple Events

It would be extremely limiting if Bayes’ Law only applied to two alternative events.

Fortunately the extension to multiple events is quite easy. Suppose we observe some data

D and are interested in the relative probabilities of three events A, B, and C conditional

on these data. These might be rival hypotheses about some social phenomenon for which

the data are possibly revealing. Thinking just about event A, although any of the three

could be selected, we know from Bayes’ Law that:

p(A|D) =
p(D|A)p(A)

p(D)
. (1.9)

We also know from the Total Probability Law and the definition of conditional probability

that:

p(D) = p(A ∩D) + p(B ∩D) + p(C ∩D)

= p(D|A)p(A) + p(D|B)p(B) + p(D|C)p(C). (1.10)

This means that if we substitute the last line into the expression for Bayes’ Law, we get:

p(A|D) =
p(D|A)p(A)

p(D|A)p(A) + p(D|B)p(B) + p(D|C)p(C)
, (1.11)

which demonstrates that the conditional distribution for any of the rival hypotheses can be

produced as long as there exist unconditional distributions for the three rival hypotheses,

p(A), p(B), and p(C), and three statements about the probability of the data given these

three hypotheses, p(D|A), p(D|B), p(D|C). The first three probability statements are called

prior distributions because they are unconditional from the data and therefore presumably

determined before observing the data. The second three probability statements are merely
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PDF (probability density function) or PMF (probability mass function) statements in the

conventional sense. All this means that a posterior distribution, p(A|D), can be determined

through Bayes’ Law to look at the weight of evidence for any one of several rival hypotheses

or claims.

There is a more efficient method for making statements like (1.11) when the number

of outcomes increases. Rather than label the three hypotheses as we have done above, let

us instead use θ as an unknown parameter whereby different regions of its support define

alternative hypotheses. So statements may take the form of “Hypothesis A: θ < 0,” or any

other desired statement. To keep track of the extra outcome, denote the three hypotheses

as θi, i = 1, 2, 3. Now (1.11) is given more generally for i = 1, 2, 3 as:

p(θi|D) =
p(D|θi)p(θi)

∑3
j=1 p(D|θj)p(θj)

(1.12)

for the posterior distribution of θi. This is much more useful and much more in line with

standard Bayesian models in the social and behavioral sciences because it allows us to

compactly state Bayes’ Law for any number of discrete outcomes/hypotheses, say k for

instance:

p(θi|D) =
p(θi)p(D|θi)

∑k
j=1 p(θj)p(D|θj)

. (1.13)

Consider also that the denominator of this expression averages over the θ variables and

therefore just produces the marginal distribution of the sample data, which we could overtly

label as p(D). Doing this provides a form that very clearly looks like the most basic form

of Bayes’ Law: p(θi|D) = p(θi)p(D|θi)/p(D). We can contrast this with the standard like-

lihood approach in the social sciences (King 1989, p.22), which overtly ignores information

available through a prior and has no use for the denominator above: L(θ̂|y) ∝ p(y|θ̂), in

King’s notation using proportionality since the objective is simply to find the mode and

curvature around this mode, thus making constants unimportant. Furthermore, in the con-

tinuous case, where the support of θ is over some portion of the real line, and possibly all

of it, the summation in (1.13) is replaced with an integral. The continuous case is covered

in the next chapter.

� Example 1.2: Monty Hall. The well-known Monty Hall problem (Selvin 1975) can

be analyzed using Bayes’ Law. Suppose that you are on the classic game show Let’s

Make a Deal with its personable host Monty Hall, and you are to choose one of three

doors, A, B, or C. Behind two of the doors are goats and behind the third door is a

new car, and each door is equally likely to award the car. Thus, the probabilities of

selecting the car for each door at the beginning of the game are simply:

p(A) =
1

3
, p(B) =

1

3
, p(C) =

1

3
.

After you have picked a door, say A, before showing you what is behind that door

Monty opens another door, say B, revealing a goat. At this point, Monty gives you
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the opportunity to switch doors from A to C if you want to. What should you

do? The psychology of this approach is to suggest the idea to contestants that they

must have picked the correct door and Monty is now trying to induce a change. A

näıve interpretation is that you should be indifferent to switching due to a perceived

probability of 0.5 of getting the car with either door since there are two doors left.

To see that this is false, recall that Monty is not a benign player in this game. He is

deliberately trying to deny you the car. Therefore consider his probability of opening

door B. Once you have picked door A, success is clearly conditional on what door

of the three possibilities actually provides the car since Monty has this knowledge

and the contestant does not. After the first door selection, we can define the three

conditional probabilities as follows:

The probability that Monty opens door B,

given the car is behind A: p(BMonty|A) =
1
2

The probability that Monty opens door B,

given the car is behind B: p(BMonty|B) = 0

The probability that Monty opens door B,

given the car is behind C: p(BMonty|C) = 1.

Using the definition of conditional probability, we can derive the following three joint

probabilities:

p(BMonty, A) = p(BMonty|A)p(A) =
1

2
×

1

3
=

1

6

p(BMonty, B) = p(BMonty|B)p(B) = 0×
1

3
= 0

p(BMonty, C) = p(BMonty|C)p(C) = 1×
1

3
=

1

3
.

Because there are only three possible events that cover the complete sample space, and

these events are non-overlapping (mutually exclusive), they form a partition of the

sample space. Therefore the sum of these three events is the unconditional probability

of Monty opening door B, which we obtain with the Total Probability Law:

p(BMonty) = p(BMonty, A) + p(BMonty, B) + p(BMonty, C)

=
1

6
+ 0 +

1

3
=

1

2
.
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Now we can apply Bayes’ Law to obtain the two probabilities of interest:

p(A|BMonty) =
p(A)

p(BMonty)
p(BMonty|A) =

1
3
1
2

×
1

2
=

1

3

p(C|BMonty) =
p(C)

p(BMonty)
p(BMonty|C) =

1
3
1
2

× 1 =
2

3
.

Therefore you are twice as likely to win the car if you switch to door C! This example

demonstrates that Bayes’ Law is a fundamental component of probability calculations,

and the principle will be shown to be the basis for an inferential system of statistical

analysis. For a nice generalization to N doors, see McDonald (1999).

1.5 Conditional Inference with Bayes’ Law

To make the discussion more concrete and pertinent, consider a simple problem in

sociology and crime studies. One quantity of interest to policy-makers is the recidivism rate

of prisoners released after serving their sentence. The quantity of interest is the probability

of committing an additional crime and returning to prison. Notice that this is a very elusive

phenomenon. Not only are there regional, demographic, and individualistic differences,

but the aggregate probability is also constantly in flux, given entries and exits from the

population as well as exogenous factors (such as the changing condition of the economy).

Typically, we would observe a change in law or policy at the state or federal level, and

calculate a point estimate from observed recidivism that follows.

Perhaps we should not assume that there is some fixed value of the recidivism proba-

bility, A, and that it should be estimated with a single point, say Ā. Instead, consider this

unknown quantity in probabilistic terms as the random variable A, which means concep-

tualizing a distribution for the probability of recidivism. Looking at data from previous

periods, we might have some reasonable guess about the distribution of this probability

parameter, p(A), which is of course the prior distribution since it is not conditional on the

information at hand, B.

In all parametric statistical inference, a model is proposed and tested in which an event

has some probability of occurring given a specific value of the parameter. This is the case for

both Bayesian and traditional approaches, and is just a recognition that the researcher must

specify a data generation model. Let us call this quantity p(B|A), indicating that for posited

values of recidivism, we would expect to see a particular pattern of events. For instance, if

recidivism suddenly became much higher in a particular state, then there might be pressure

on the legislature to toughen sentencing and parole laws. This is a probability model and we

do not need to have a specific value of A to specify a parametric form (i.e., PMF or PDF).

Of course what we are really interested in is p(A|B), the (posterior) distribution of A after
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having observed an event, which we obtain using Bayes’ Law: p(A|B) = p(A)
p(B)p(B|A). From

a public policy perspective, this is equivalent to asking how do recidivism rates change for

given statutes.

We are still missing one component of the right-hand-side of Bayes’ Law here, the

unconditional probability of generating the legal or policy event, p(B). This is interpretable

as the denominator of (1.13), but to a Bayesian this is an unimportant probability statement

since B has already been observed and therefore has probability one of occurring. Recall

that for Bayesians, observed quantities are fixed and unobserved quantities are assigned

probability statements. So there is no point in treating B probabilistically if the actual

facts are sitting on our desk right now. This does not mean that everything is known about

all possible events, missing events, or events occurring in the future. It just means that

everything is known about this event. So the only purpose for p(B) in this context is to

make sure that p(A|B) sums or integrates to one.

This last discussion suggests simply treating p(B) as a normalizing constant since it

does not change the relative probabilities for A. Maybe this is a big conceptual leap, but

if we could recover unconditional p(B) later, it is convenient to just use it then to make

the conditional statement, p(A|B), a properly scaled probability statement. So if p(A|B)

summed or integrated to five instead of one, we would simply divide everywhere by five and

lose nothing but the agony of carrying p(B) through the calculations. If we temporarily

ignore p(B), then:

p(A|B) ∝ p(A)p(B|A), (1.14)

where “∝” means “proportional to” (i.e., the relative probabilities are preserved). So the

final estimated probability of recidivism (in our example problem) given some observed

behavior, is proportional to prior notions about the distribution of the probability times

the parametric model assumed to be generating the new observed event. The conditional

probability of interest on the left-hand side of (1.14) is a balance between things we have

already seen or believe about recidivism, p(A), and the contribution from the new observa-

tion, p(B|A). It is important to remember that there are occasions where the data are more

influential than the prior and vice-versa. This is comforting since if the data are poor in size

or information we want to rely more on prior knowledge, prior research, researcher or prac-

titioner information and so on. Conversely, if the data are plentiful and highly informed,

then we should not care much about the form of the prior information. Remarkably, the

Bayesian updating process in (1.14) has this trade-off automatically built-in to the process.

As described, this is an ideal paradigm for inference in the social and behavioral sciences,

since it is consentaneously desirable to build models that test theories with newly observed

events or data, but also based on previous research and knowledge. We never start a data

analysis project with absolutely no a priori notions whatsoever about the state of nature (or

at least we should not!). This story actually gets better. As the number of events increases,

p(B|A) becomes progressively more influential in determining p(A|B). That is, the greater

the number of our new observations, the less important are our previous convictions: p(A).
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Also, if either of the two distributions, p(A) and p(B|A), are widely dispersed relative to the

other, then this distribution will have less of an impact on the final probability statement.

We will see this principle detailed-out in Chapter ??. The natural weighting of these two

distributions suitably reflects relative levels of uncertainty in the two quantities.

1.5.1 Statistical Models with Bayes’ Law

The statistical role of the quantities in (1.14) has not yet been identified since we have

been talking abstractly about “events” rather than conventional data. The goal of inference

is to make claims about unknown quantities using data currently in hand. Suppose that we

designate a generic Greek character to denote an unobserved parameter that is the objective

of our analysis. As is typical in these endeavors, we will use θ for this purpose. What we

usually have available to us is generically (and perhaps a little vaguely) labeled D for data.

Therefore, the objective is to obtain a probabilistic statement about θ given D: p(θ|D).

Inferences in this book, and in the majority of Bayesian and non-Bayesian statistics, are

made by first specifying a parametric model for the data generating process. This defines

what the data should be expected to look like given a specific probabilistic function con-

ditional on unknown variable values. These are the common probability density functions

(continuous data) and probability mass functions (discrete data) that we already know,

such as normal, binomial, chi-square, etc., denoted by p(D|θ).

Now we can relate these two conditional probabilities using (1.14):

π(θ|D) ∝ p(θ)p(D|θ), (1.15)

where p(θ) is a formalized statement of the prior knowledge about θ before observing the

data. If we know little, then this prior distribution should be a vague probabilistic statement

and if we know a lot then this should be a very narrow and specific claim. The right-

hand side of (1.15) implies that the post -data inference for θ is a compromise between

prior information and the information provided by the new data, and the left-hand side of

(1.15) is the posterior distribution of θ since it provides the updated distribution for θ after

conditioning on the data.

Bayesians describe π(θ|D) to readers via distributional summaries such as means, modes,

quantiles, probabilities over regions, traditional-level probability intervals, and graphical

displays. Once the posterior distribution has been calculated via (1.15), everything about

it is known and it is entirely up to the researcher to highlight features of interest. Often it

is convenient to report the posterior mean and variance in papers and reports since this is

what non-Bayesians do by default. We can calculate the posterior mean using an expected

value calculation, confining ourselves here to the continuous case:

E[θ|D] =

∞
∫

−∞

θπ(θ|D)dθ (1.16)
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and the posterior variance via a similar process:

Var[θ|D] = E
[

(θ − E[θ|D])2|D
]

=

∞
∫

−∞

(θ − E[θ|D])2π(θ|D)dθ

=

∞
∫

−∞

(

θ2 − 2θE[θ|D]) + E[θ|D]2
)

π(θ|D)dθ

=

∞
∫

−∞

θ2π(θ|D)dθ − 2E[θ|D]

∞
∫

−∞

θπ(θ|D)dθ +





∞
∫

−∞

θπ(θ|D)dθ





2

= E[θ2|D]− E[θ|D]2 (1.17)

given some minor regularity conditions about switching the order of integration (see Casella

and Berger 2002, Chapter 1). An obvious summary of this posterior would then be the

vector (E[θ|D],
√

Var[θ|D]), although practicing Bayesians tend to prefer reporting more

information.

Researchers sometimes summarize the Bayesian posterior distribution in a deliberately

traditional, non-Bayesian way in an effort to communicate with some readers. The posterior

mode corresponds to the maximum likelihood point estimate and is calculated by:

M(θ) = argmax
θ

π(θ|D), (1.18)

where argmax function specifies the value of θ that maximizes π(θ|D). Note that the

denominator of Bayes’ Law is unnecessary here since the function has the same mode with or

with including it. The accompanying measure of curvature (e.g., Fisher Information, defined

in Appendix ??) can be calculated with standard analytical tools or more conveniently from

MCMC output with methods introduced in Chapter ??. The posterior median is a slightly

less popular choice for a Bayesian point estimate, even though its calculation from MCMC

output is trivial from just sorting empirical draws and determining the mid-point.

� Example 1.3: Summarizing a Posterior Distribution from Exponential Data.

Suppose we had generic data, D, distributed p(D|θ) = θe−θD, which can be either a

single scalar or a vector for our purposes. Thus D is exponentially distributed with the

support [0:∞); see Appendix ?? for details on this probability density function. We

also need to specify a prior distribution for θ: p(θ) = 1, where θ ∈ [0:∞). Obviously

this prior distribution does not constitute a “proper” distribution in the Kolmogorov

sense since it does not integrate to one (infinity, in fact). We should not let this

bother us since this effect is canceled out due to its presence in both the numerator

and denominator of Bayes’ Law (a principle revisited in Chapter ?? in greater detail).
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This type of prior is often used to represent high levels of prior uncertainty, although

it is not completely uninformative. Using (1.15) now, we get:

π(θ|D) ∝ p(θ)p(D|θ) = (1)θe−θD = θe−θD. (1.19)

This posterior distribution has mean:

E[θ|D] =

∞
∫

0

(θ)
(

θe−θD
)

dθ =
2

D3
, (1.20)

which is found easily using two iterations of integration-by-parts. Also, the expecta-

tion of θ2|D is:

E[θ2|D] =

∞
∫

0

(θ2)
(

θe−θD
)

dθ =
6

D4
, (1.21)

which is found using three iterations of integration-by-parts now. So the posterior

variance is:

Var[θ|D] = E[θ2|D]− E[θ|D]2 = 6D−4 − 4D−6. (1.22)

The notation would be slightly different if D were a vector.

Using these quantities we can perform an intuitive Bayesian hypothesis test, such

as asking what is the posterior probability that θ is positive p(θ|D) > 0. In the

context of a regression coefficient, this would be the probability that increases in

the corresponding X explanatory variable have a positive affect on the Y outcome

variable. Testing will be discussed in detail in Chapter ??. We can also use these

derived quantities to create a Bayesian version of a confidence interval, the credible

interval for some chosen α level:

[

E[θ|D]−
√

Var[θ|D]fα/2 :E[θ|D] +
√

Var[θ|D]f1−α/2

]

, (1.23)

where fα/2 and f1−α/2 are lower and upper tail values for some assumed or empirically

observed distribution for θ (Chapter ??).

The purpose of this brief discussion is to highlight the fact that conditional probability

underlies the ability to update previous knowledge about the distribution of some unknown

quantity. This is precisely in line with the iterative scientific method, which postulates

theory improvement through repeated specification and testing with data. The Bayesian

approach combines a formal structure of rules with the mathematical convenience of prob-

ability theory to develop a process that “learns” from the data. The result is a powerful

and elegant tool for scientific progress in many disciplines.
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1.6 Science and Inference

This is a book about the scientific process of discovery in the social and behavioral

sciences. Data analysis is best practiced as a theory-driven exploration of collected obser-

vations with the goal of uncovering important and unknown effects. This is true regardless

of academic discipline. Yet some fields of study are considered more rigorously analytical

in this pursuit than others.

The process described herein is that of inference: making probabilistic assertions about

unknown quantities. It is important to remember that “in the case of uncertain inference,

however, the very uncertainty of uncertain predictions renders question of their proof or

disproof almost meaningless” (Wilkinson 1977). Thus, confusion sometimes arises in the

interpretation of the inferential process as a scientific, investigative endeavor.

1.6.1 The Scientific Process in Our Social Sciences

Are the social and behavioral sciences truly “scientific”? This is a question asked about

fields such as sociology, political science, economics, anthropology, and others. It is not

a question about whether serious, rigorous, and important work has been done in these

endeavors; it is a question about the research process and whether it conforms to the

empirico-deductive model that is historically associated with the natural sciences. From a

simplistic view, this is an issue of the conformance of research in the social and behavioral

sciences to the so-called scientific method. Briefly summarized, the scientific method is

characterized by the following steps:

⊲ Observe or consider some phenomenon.

⊲ Develop a theory about the cause(s) of this phenomenon and articulate it in a specific

hypothesis.

⊲ Test this hypothesis by developing a model to fit experimentally generated or collected

observational data.

⊲ Assess the quality of the fit to the model and modify the theory if necessary, repeating

the process.

This is sometimes phrased in terms of “prediction” instead of theory development, but we

will use the more general term. If the scientific method as a process were the defining

criterion for determining what is scientific and what is not, then it would be easy to classify

a large proportion of the research activities in the social and behavioral sciences as scientific.

However useful this typology is in teaching children about empirical investigation, it is a

poor standard for judging academic work.

Many authors have posited more serviceable definitions. Braithwaite (1953, p.1) notes:

The function of a science, in this sense of the word, is to establish general laws covering the
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behavior of the empirical events or objects with which the science in question is concerned,

and thereby to enable us to connect together our knowledge of the separately known events,

and to make reliable predictions of events as yet unknown.

The core of this description is the centrality of empirical observation and subsequent ac-

cumulation of knowledge. Actually, “science” is the Latin word for knowledge. Legendary

psychologist B. F. Skinner (1953, p.11) once observed that “science is unique in showing

a cumulative process.” It is clear from the volume and preservation of published research

that social and behavioral scientists are actively engaged in empirical research and knowl-

edge accumulation (although the quality and permanence of this foundational knowledge

might be judged to differ widely by field). So what is it about these academic pursuits that

makes them only suspiciously scientific to some? The three defining characteristics about

the process of scientific investigation are empiricism, objectivity, and control (Singleton and

Straight 2004). This is where there is lingering and sometimes legitimate criticism of the

social and behavioral sciences as being “unscientific.”

The social and behavioral sciences are partially empirical (data-oriented) and partially

normative (value-oriented), the latter because societies develop norms about human behav-

ior, and these norms permeate academic thought prior to the research process. For instance,

researchers investigating the onset and development of AIDS initially missed the effects of

interrelated social factors such as changes in behavioral risk factors, personal denial, and

reluctance to seek early medical care on the progress of the disease as a sociological phe-

nomenon (Kaplan et al. 1987). This is partially because academic investigators as well as

health professionals made normative assumptions about individual responses to sociological

effects. Specifically, researchers investigating human behavior, whether political, economic,

sociological, psychological, or otherwise, cannot completely divorce their prior attitudes

about some phenomenon of interest the way a physicist or chemist can approach the study

of the properties of thorium: atomic number 90, atomic symbol Th, atomic weight 232.0381,

electron configuration [Rn]7s26d2. This criticism is distinct from the question of objectivity;

it is a statement that students of human behavior are themselves human.

We are also to some extent driven by the quality and applicability of our tools. Many

fields have radically progressed after the introduction of new analytical devices. Therefore,

some researchers may have a temporary advantage over others, and may be able to answer

more complex questions: “It comes as no particular surprise to discover that a scientist

formulates problems in a way which requires for their solution just those techniques in

which he himself is especially skilled” (Kaplan 1964). The objective of this book is to “level

the pitch” by making an especially useful tool more accessible to those who have thus far

been accordingly disadvantaged.
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1.6.2 Bayesian Statistics as a Scientific Approach to Social and

Behavioral Data Analysis

The standard frequentist interpretation of probability and inference assumes an infinite

series of trials, replications, or experiments using the same research design. The “objec-

tivist” paradigm is typically explained and justified through examples like multiple tosses

of a coin, repeated measurements of some physical quantity, or samples from some ongoing

process like a factory output. This perspective, which comes directly from Neyman and

Pearson (1928a, 1928b, 1933a, 1933b, 1936a, 1936b), and was formalized by Von Mises

(1957) among others, is combined with an added Fisherian fixation with p-values in typical

inference in the social and behavioral sciences (Gill 1999). Efron (1986), perhaps overly

kindly, calls this a “rather uneasy alliance.”

Very few, if any, social scientists would be willing to seriously argue that human behav-

ior fits this objectivist long-run probability model. Ideas like “personal utility,” “legislative

ideal points,” “cultural influence,” “mental states,” “personality types,” and “principal-

agent goal discrepancy” do not exist as parametrically uniform phenomena in some phys-

ically tangible manner. In direct contrast, the Bayesian or “subjective” conceptualization

of probability is the degree of belief that the individual researcher is willing to personally

assign and defend. This is the idea that an individual personally assigns a probability

measure to some event as an expression of uncertainty about some event that may only be

relevant to one observational situation or experiment.

The central idea behind subjective probability is the assignment of a prior probability

based on what information one currently possesses and under what circumstances one would

be willing to place an even wager. Naturally, this probability is updated as new events

occur, therefore incorporating serial events in a systematic manner. The core disagreement

between the frequentist notion of objective probability and the Bayesian idea of subjective

probability is that frequentists see probability measure as a property of the outside world

and Bayesians view probability as a personal internalization of observed uncertainty. The

key defense of the latter view is the inarguable point that all statistical models are subjective:

decisions about variable specifications, significance thresholds, functional forms, and error

distributions are completely nonobjective.1 In fact, there are instances when Bayesian

subjectivism is more “objective” than frequentist objectivism with regard to the impact

of irrelevant information and arbitrary decision rules (e.g., Edwards, Lindman, and Savage

1963, p.239).

1As a brief example, consider common discussions of reported analyses in social science journals and

books that talk about reported model parameters being “of the wrong sign.” What does this statement

mean? The author is asserting that the statistical model has produced a regression coefficient that is positive

when it was a priori expected to be negative or vice versa. What is this statement in effect? It is a prior

statement about knowledge that existed before the model was constructed. Obviously this is a form of the

Bayesian prior without being specifically articulated as such.
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Given the existence of subjectivity in all scientific data analysis endeavors,2 one should

prefer the inferential paradigm that gives the most overt presentation of model assump-

tions. This is clearly the Bayesian subjective approach since both prior information and

posterior uncertainty are given with specific, clearly stated model assumptions. Conversely,

frequentist models are rarely presented with caveats such as “Caution: the scientific conclu-

sions presented here depend on repeated trials that were never performed,” or “Warning:

prior assumptions made in this model are not discussed or clarified.” If there is a single

fundamental scientific tenet that underlies the practice and reporting of empirical evidence,

it is the idea that all important model characteristics should be provided to the reader. It

is clear then which of the two approaches is more “scientific” by this criterion. While this

discussion specifically contrasts Bayesian and frequentist approaches, likelihood inference is

equally subjective in every way, and as already explained, ignores available information.

These ideas of what sort of inferences social scientists make are certainly not new or

novel. There is a rich literature to support the notion that the Bayesian approach is more

in conformance with widely accepted scientific norms and practices. Poirer (1988, p.130)

stridently makes this point in the case of prior specifications:

I believe that subjective prior beliefs should play a formal role so that it is easier

to investigate their impact on the results of the analysis. Bayesians must live

with such honesty whereas those who introduce such beliefs informally need not.

The core of this argument is the idea that if the prior contains information that pertains

to the estimation problem, then we are foolish to ignore it simply because it does not

neatly fit into some familiar statistical process. For instance, Theil and Goldberger (1961)

suggested “mixed” estimation some time ago, which is a way to incorporate prior knowledge

about coefficients in a standard linear regression model by mixing earlier estimates into the

estimation process and under very general assumptions is found to be simultaneously best

linear unbiased with respect to both sample and prior information (see also Theil [1963]).

This notion of combining information from multiple sources is not particularly controversial

among statisticians, as observed by Samaniego and Reneau (1994, p.957):

If a prior distribution contains “useful” information about an unknown param-

eter, then the Bayes estimator with respect to that prior will outperform the

best frequentist rule. Otherwise, it will not.

A more fundamental advantage to Bayesian statistics is that both prior and posterior pa-

rameter estimates are assumed to have a distribution and therefore give a more realistic

picture of uncertainty that is also more useful in applied work:

With conventional statistics, the only uncertainty admitted to the analysis is

2See Press and Tanur (2001) for a fascinating account of the role of researcher-introduced subjectivity

in a number of specific famous scientific breakthroughs, including discoveries by Galileo, Newton, Darwin,

Freud, and Einstein.
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sampling uncertainty. The Bayesian approach offers guidance for dealing with

the myriad sources of uncertainty faced by applied researchers in real analyses.

Western (1999, p.20). Lindley (1986, p.7) expresses a more biting statement of preference:

Every statistician would be a Bayesian if he took the trouble to read the litera-

ture thoroughly and was honest enough to admit he might have been wrong.

This book rests on the perspective, sampled above, that the Bayesian approach is not only

useful for social and behavioral scientists, but it also provides a more compatible methodol-

ogy for analyzing data in the manner and form in which it arrives in these disciplines. As we

describe in subsequent chapters, Bayesian statistics establishes a rigorous analytical plat-

form with clear assumptions, straightforward interpretations, and sophisticated extensions.

For more extended discussions of the advantages of Bayesian analysis over alternatives,

see Berger (1986b), Dawid (1982), Efron (1986), Good (1976), Jaynes (1976), and Zellner

(1985). We now look at how the Bayesian paradigm emerged over the last 250 years.

1.7 Introducing Markov Chain Monte Carlo Techniques

In this section we briefly discuss Bayesian computation and give a preview of later

chapters. The core message is that these algorithms are relatively simple to understand in

the abstract.

Markov chain Monte Carlo (MCMC) set the Bayesians free. Prior to 1990, it was rela-

tively easy to specify an interesting and realistic model with actual data whereby standard

results were unobtainable. Specifically, faced with a high dimension posterior resulting from

a regression-style model, it was often very difficult or even impossible to perform multiple

integration across the parameter space to produce a regression table of marginal summaries.

The purpose of MCMC techniques is to replace this difficult analytical integration process

with iterative work by the computer. When calculations similar to (1.16) are multidimen-

sional, there is a need to summarize each marginal distribution to provide useful results

to readers in a table or other format for journal submission. The basic principle behind

MCMC techniques is that if an iterative chain of computer-generated values can be set up

carefully enough, and run long enough, then empirical estimates of integral quantities of

interest can be obtained from summarizing the observed output. If each visited multidimen-

sional location is recorded as a row vector in a matrix, then the marginalization for some

parameter of interest is obtained simply by summarizing the individual dimension down

the corresponding column. So we replace an analytical problem with a sampling problem,

where the sampling process has the computer perform the difficult and repetitive processes.

This is an enormously important idea to Bayesians and to others since it frees researchers
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from having to make artificial simplifications to their model specifications just to obtain

describable results.

These Markov chains are successive quantities that depend probabilistically only on the

value of their immediate predecessor: the Markovian property. In general, it is possible to

set up a chain to estimate multidimensional probability structures (i.e., desired probability

distributions), by starting a Markov chain in the appropriate sample space and letting it

run until it settles into the target distribution. Then when it runs for some time confined

to this particular distribution, we can collect summary statistics such as means, variances,

and quantiles from the simulated values. This idea has revolutionized Bayesian statistics by

allowing the empirical estimation of probability distributions that could not be analytically

calculated.

1.7.1 Simple Gibbs Sampling

As a means of continuing the discussion about conditional probability and covering some

basic principles of the R language, this section introduces an important, and frequently used

Markov chain Monte Carlo tool, the Gibbs sampler. The idea behind a Gibbs sampler is to

get a marginal distribution for each variable by iteratively conditioning on interim values

of the others in a continuing cycle until samples from this process empirically approximate

the desired marginal distribution. Standard regression tables that appear in journals are

simply marginal descriptions. There will be much more on this topic in Chapter ?? and

elsewhere, but here we will implement a simple but instructive example.

As outlined by Example 2 in Casella and George (1992), suppose that we have two

conditional distributions, where they are conditional on each other such that the parameter

of one is the variable of interest in the other:

f(x|y) ∝ y exp[−yx], f(y|x) ∝ x exp[−xy], 0 < x, y < B < ∞. (1.24)

These conditional distributions are both exponential probability density functions (see Ap-

pendix ?? for details). The upper bound, B, is important since without it there is no finite

joint density and the Gibbs sampler will not work. It is possible, but not particularly pleas-

ant, to perform the correct integration steps to obtain the desired marginal distributions:

f(x) and f(y). Instead we will let the Gibbs sampler do the work computationally rather

than us do it analytically.

The Gibbs sampler is defined by first identifying conditional distributions for each pa-

rameter in the model. These are conditional in the sense that they have dependencies on

other parameters, and of course the data, which emerge from the model specification. The

“transition kernel” for the Markov chain is created by iteratively cycling through these dis-

tributions, drawing values that are conditional on the latest draws of the dependencies. It

is proven that this allows us to run a Markov chain that eventually settles into the desired

limiting distribution that characterizes the marginals. In other language, it is an iterative

process that cycles through conditional distributions until it reaches a stable status whereby
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future samples characterize the desired distributions. The important theorem here assures

us that when we reach this stable distribution, the autocorrelated sequence of values can

be treated as an iid sample from the marginal distributions of interest. The amazing part

is that this is accomplished simply by ignoring the time index, i.e., putting the values in a

“bag” and just “shaking it up” to lose track of the order of occurrence. Gibbs sampling is

actually even more general than this. Chib (1995) showed how Gibbs sampling can be used

to compute the marginal distribution of the sample data, i.e., the denominator of (1.13),

by using the individual parameter draws. This quantity is especially useful in Bayesian

hypothesis testing and model comparison, as we shall see in Chapter ??. The second half

of this text applies this tool and similar methods of estimation.

For two parameters, x and y, this process involves a starting point, [x0, y0], and the

cycles are defined by drawing random values from the conditionals according to:

x1 ∼ f(x|y0), y1 ∼ f(y|x1)

x2 ∼ f(x|y1), y2 ∼ f(y|x2)

x3 ∼ f(x|y2), y3 ∼ f(y|x3)

: :

: :

xm ∼ f(x|ym−1), ym ∼ f(y|xm).

If we are successful, then after some reasonable period the values xj , yj are safely assumed

to be empirical samples from the correct marginal distribution. There are many theoretical

and practical concerns that we are ignoring here, and the immediate objective here is to

give a rough overview.

The following steps indicate how the Gibbs sampler is set up and run:

⊲ Set the initial values: B = 10, and m = 50, 000. B is the parameter that ensures that

the joint distribution is finite, and m is the desired number of generated values for x

and y.

⊲ Create x and y vectors of length m where the first value of each is a starting point

uniformly distributed over the support of x and y, and all other vector values are filled

in with unacceptable entries greater than B.

⊲ Run the chain for m = 50, 000 − 1 iterations beginning at the starting points. At

each iteration, fill-in and save only sampled exponential values that are less than B,

repeating this sampling procedure until an acceptable value is drawn to replace the

unacceptable B + 1 in that position.

⊲ Throw away some early part of the chain where it has not yet converged.

⊲ Describe the marginal distributions of x and y with the remaining empirical values.

This leads to the following R code, which can be retyped verbatim, obtained from the

book’s webpage, or the book’s R package BaM to replicate this example:
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B <- 10; m <- 50000

gibbs.expo <- function(B,m) {

x <- c(runif(1,0,B),rep((B+1),length=(m-1)))

y <- c(runif(1,0,B),rep((B+1),length=(m-1)))

for (i in 2:m) {

while(x[i] > B) x[i] <- rexp(1,y[i-1])

while(y[i] > B) y[i] <- rexp(1,x[i])

}

return(cbind(x,y))

}

gibbs.expo(B=5, m=500)
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FIGURE 1.1: Gibbs Sampling, Marginal Exponentials

These samples are summarized by histograms of the empirical results for x and y in

Figure 1.1, where m = 50, 000 samples are drawn and the first 40, 000 are discarded (these

are called “burn-in” values). It is clear from the figure that the marginal distributions

are exponentially distributed. We can recover parameters by using the empirical draws to

calculate sample statistics. This part of the MCMC process is actually quite trivial once

we are convinced that there has been convergence of the Markov chain. In later chapters

we will see this process in a more realistic, and therefore detailed, setting. This example

is intended to give an indication of activities to come and to reinforce the linkage between

Bayesian inference and modern statistical computing.

1.7.2 Simple Metropolis Sampling

Another Markov chain Monte Carlo tool with wide use is the Metropolis algorithm from

statistical physics (Metropolis et al. 1953). The Metropolis algorithm is more flexible than
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Gibbs sampling because it works with the joint distribution rather than a full listing of

conditional distributions for the parameters in the model. As a result, many variations

have been developed to satisfy particular sampling challenges posed by complicated models

and ill-behaved target functions. Later chapters will cover these extensions in detail.

The essential idea behind the Metropolis algorithm is that, while we cannot easily gen-

erate values from the joint (posterior) distribution of interest, we can often find a “similar”

distribution that is easy to sample from. Obviously we need to make sure that this alterna-

tive distribution is defined over the same support as the target distribution and that it does

not radically favor areas of low density of this target. Once a candidate point in multivariate

space has been produced by this candidate-generating distribution we will accept or reject

it based upon characteristics of the target distribution. The algorithm is characterized by

the following steps.

1. The candidate-generating distribution proposes that we move to some other point by

drawing a point from its generating mechanism.

2. If this point produces a step on the target distribution that is of higher density, then

we will always go there.

3. If this point produces a step on the target distribution that is of lower density, then

we will go there probabilistically proportional to how much lower the step is in density.

Thus it is easy to see that the Markov chain “wanders around” the target density describing

it as it goes and favoring higher density regions. The nice part is that the Markov chain will

also explore other lower density regions as well, but with lower probability as we would want.

Analogously, consider locking a house cat in large room with features that are attractive to

cats (the high density regions of the posterior), and features that are unattractive to cats

(the low density regions of the posterior). Anyone who has spent time with house cats can

see at least some Markovian feature to their nature, as well as an innate curiosity. As our

feline Markov chain wanders the room in a memory-less state, we record the coordinates of

their travel. Over time we will find that the cat spends more time in the attractive areas, but

still occasionally investigates the unattractive areas. If this attractiveness is proportional to

density we want to describe, then the cat eventually produces description of the posterior

distribution.

We can more precisely describe this algorithm. Suppose we have a two-dimensional

target distribution, p(x, y), which can be a posterior distribution from a Bayesian model, or

any other form that is hard to marginalize, i.e., produce individual distributions p(x) and

p(y). A single Metropolis step is produced by:

1. Sample (x′, y′) from the candidate-generating distribution, q(x′, y′).

2. Sample a value u from u[0 : 1].

3. If

a(x′, y′|x, y) =
p(x′, y′)

p(x, y)
> u

then accept (x′, y′) as the new destination.

4. Otherwise keep (x, y) as the new destination.
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The result is a chain of values, [(x0, y0), (x1, y1), (x2, y2), . . .]. Note that unlike the Gibbs

sampler, the Metropolis algorithm does not necessarily have to move to a new position at

each iteration, and the decision to stay put is considered a Markovian step to the current

position (time is consumed by the step).

There are a few technical details that we will worry about in much more detail later

beginning in Chapter ??. Often the candidate-generating distribution produces values con-

ditional on the current position, q(x′, y′|x, y), but this is not strictly necessary. The basic

version described here requires that the candidate-generating distribution be symmetrical

in its arguments, q(x′, y′|x, y) = q(x, y|x′, y′). Also, the choice of candidate-generating dis-

tribution can be complicated by the need to match irregularities in the target distribution.

Finally, it is important in real applications to run the Markov chain for some initial period

to let it settle into the distribution of interest before recording values.

Consider a problem similar to that above, but where we have a joint distribution for the

parameters and not the desired marginals (or conditionals as used in the Gibbs sampler).

The bivariate exponential distribution for x, y ∈ [0:∞] is given by the function:

p(x, y) = exp[−(λ1 + λ)x − (λ2 + λ)y − λmax(x, y)], (1.25)

with non-negative parameters λ1, λ2, and λ. This model is common in reliability analysis

(Marshall and Olkin 1967), where the interpretation is that the first two parameters are

the event intensities for systems 1 and 2, and the non-subscripted parameter is the shared

intensity between systems. In this literature events are usually machine failures, but for

our purposes they can be death, graduation, cabinet dissolutions, divorce, cessation of war,

and so on. In this example we have the parameters:

λ1 = 0.5, λ2 = 0.5, λ = 0.01, B = max(x) = max(y) = 8,

which produces the bivariate distribution shown in the first panel of Figure 1.2. The maxi-

mum in the function makes it a little harder to analytically calculate marginal distributions

with integration, so we might want to apply MCMC to save trouble. This is exactly anal-

ogous to the process where complicated Bayesian model specifications sometimes make it

difficult to describe marginal posteriors for parameters of interest.

To implement the Metropolis algorithm we need a candidate-generating distribution

from which to draw potential destinations for the Markov chain. Typically researchers look

for some convenient distribution from the commonly used form since software such as R

makes drawing values trivial. Here we will exploit the stipulated bounds on the problem

and note that the bivariate exponential is enclosed in a big box with length and width equal

to B = 8 and maximum height equal to one from the form of (1.25). The process is further

covered in Chapter ??, but note here that it is easy to draw points inside this box from scaled

uniforms. Nicely, we do not have to rescale the distribution of q(x′, y′) because the values

are drawn from this distribution but inserted into p(). It is important to note, without

getting too far ahead of ourselves, that a better fitting candidate-generating distribution

could be found and that drawing from uniform boxes is not particularly efficient.
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To begin we define our function in R according to:

biv.exp <- function(x,y,L1,L2,L)

exp( -(L1+L)*x - (L2+L)*y -L*max(x,y) )

So it will return density values for given (x, y) pairs and specific parameters. The candidate-

generating function is:

cand.gen <- function(max.x,max.y)

c(runif(1,0,max.x),runif(1,0,max.y))

where we could have stipulated the B value but left the function slightly more general.

Markov chains require starting positions and we arbitrarily select (x = 0.5, y = 0.5 here.

The algorithm is now given to be the following R code, which (again) can be retyped

verbatim to replicate the example:

m <-5000; x<-0.5; y<-0.5; L1<-0.5; L2<-0.5; L<-0.01; B<-8

for (i in 1:m) {

cand.val <- cand.gen(B,B)

a <- biv.exp(cand.val[1],cand.val[2],L1,L2,L)

/ biv.exp(x[i],y[i],L1,L2,L)

if (a > runif(1)) {

x <- c(x,cand.val[1])

y <- c(y,cand.val[2])

}

else {

x <- c(x,x[i])

y <- c(y,y[i])

}

}

The resulting values are shown by the histograms in the second and third panels of Fig-

ure 1.2, where the algorithm has been run for m = 5, 000 iterations but the first 3, 000 are

discarded. We could also simply summarize the resulting marginals for x and y empirically

with means, quantiles, or other simple statistics. The Metropolis algorithm shown here

will be expanded and generalized in Chapter ?? by loosening restrictions on the candidate-

generating distribution and allowing for hybrid processes that accommodate difficult fea-

tures in the target distribution. The two MCMC algorithms described here form the basis

for all practical work needed to estimate complex Bayesian models in the social sciences.

1.8 Historical Comments

Statistics is a relatively new field of scientific endeavor. In fact, for much of its history

it was subsumed to various natural sciences as a combination of foster-child and household
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FIGURE 1.2: Metropolis Sampling, Bivariate Exponential

maid: unwanted by its natural parents (mathematics and philosophy), yet necessary to

clean things up. Beginning with the work of Laplace (1774, 1781, 1811), Gauss (1809, 1823,

1855), Legendre (1805), and de Morgan (1837, 1838, 1847), statistics began to emerge as

a discipline worthy of study on its own merits. The first renaissance occurred around the

turn of the last century due to the monumental efforts of Galton (1869, 1875, 1886, 1892),

Fisher (1922, 1925a, 1925b, 1934), Neyman and (Egon) Pearson (1928a, 1928b, 1933a,

1933b, 1936a, 1936b), Gossett (as Student, 1908a, 1908b), Edgeworth (1892a, 1892b, 1893a,

1893b), (Karl) Pearson (1892, 1900, 1907, 1920), and Venn (1866). Left out of the twin

intellectual developments of frequentist inference from Neyman and Pearson and likelihood

inference from Fisher (see Chapter ??, Section ?? for details), was the Bayesian paradigm.

Sir Thomas Bayes’ famous (and only) essay was published in 1763, two years after his death

(Bayes chose to perish before publishing), suggesting to some that he was ambivalent about

the approach of applying a uniform prior to a binomial probability parameter. This inge-

nious work unintendedly precipitated a philosophy about how researcher-specified theories

are fit to empirical observations. Interestingly, it was not until the early 1950s that Bayesian

statistics became a self-aware branch (Fienberg 2006).

Fisher in particular was hostile to the Bayesian approach and was often highly critical,

though not always with substantiated claims: Bayesianism “which like an impenetrable

jungle arrests progress towards precision of statistical concepts” (1922, p.311). Fisher also

worked to discredit Bayesianism and inverse probability (Bayesianism with an assumed

uniform prior) by pressuring peers and even misquoting other scholars (Zabell 1989). Yet

Fisher (1935) develops fiducial inference, which is an attempt to apply inverse probability



32 Bayesian Methods: A Social and Behavioral Sciences Approach, Third Edition

without uniform priors, but this approach fails; Efron (1998, p.105) calls this “Fisher’s

biggest blunder.” In fact, Lindley (1958) later proved that fiducial inference is consistent

only when it is made equivalent to Bayesian inference with a uniform prior. The Neyman-

Pearson paradigm was equally unkind to the development of Bayesian statistics, albeit on

a less vindictive level. If one is willing to subscribe to the idea of an infinite sequence of

samples, then the Bayesian prior is unimportant since the data will overwhelm this prior.

Although there are scenarios where this is a very reasonable supposition, generally these

are far more difficult to come by in the social and behavioral sciences.

Although Bayesianism had suffered “a nearly lethal blow” from Fisher and Neyman

by the 1930s (Zabell 1989), it was far from dead. Scholars such as Jeffreys (1961), Good

(1950), Savage (1954, 1962), de Finetti (1972, 1974, 1975), and Lindley (1961, 1965) re-

activated interest in Bayesian methods in the middle of the last century in response to

observed deficiencies in classical techniques. Lindley and Novick (1978, 1981) published

important applied work in education psychology that carefully studied exchangeability and

utility from a Bayesian perspective, and Novick et al. (1976) developed an early Bayesian

software program for estimating simple models: CADA, Computer Assisted Data Analy-

sis. Unfortunately many of the specifications developed by these modern Bayesians, while

superior in theoretical foundation, led to mathematical forms that were intractable.3 For-

tunately, this problem has been largely resolved in recent years by a revolution in statistical

computing techniques, and this has led to a second renaissance for the Bayesian paradigm

(Berger 2001).

Markov chain Monte Carlo (MCMC) techniques solve a lingering problem in Bayesian

analysis, and thus earn a special place in this work. Often Bayesian model specifications

considered either interesting or realistic produced inference problems that were analytically

intractable because they led to high-dimension integral calculations that were impossible

to solve analytically. Previous numerical techniques for performing these integrations were

often difficult and highly specialized tasks (e.g., Shaw 1988, Stewart and Davis 1986, van

Dijk and Kloek 1982, Tierney and Kadane 1986). Beginning with the foundational work

of Metropolis et al. (1953), Hastings (1970), Peskun (1973), Geman and Geman (1984),

and the critical synthesizing essay of Gelfand and Smith (1990), there is now a voluminous

literature on Markov chain Monte Carlo. In fact, modern Bayesian statistical practice is

intimately and intrinsically tied to stochastic simulation techniques and as a result, these

tools are an integral part of this book. We introduce these tools in this chapter in Section 1.7

and in much greater detail in Chapter ??.

Currently the most popular method for generating samples from posterior distributions

using Markov chains is the WinBUGS program and its Unix-based precursor BUGS and the

more recent functional equivalent JAGS. The name BUGS is a pseudo-acronym for Bayesian

inference Using Gibbs Sampling, referring to the most frequently used method for producing

Markov chains. In what constitutes a notable and noble contribution to the Bayesian

3This led one observer (Evans 1994) to compare Bayesians to “unmarried marriage guidance counselors.”
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statistical world, the Community Statistical Research Project at the MRC Biostatistics

Unit and the Imperial College School of Medicine at St. Mary’s, London provide this

high-quality software to users free of charge, and it can be downloaded from their web

page: http://www.mrc-bsu.cam.ac.uk/software/bugs/. These authors have even made

available extensive documentation at the same site by Spiegelhalter et al. (1996a, 1996b,

2000, 2012). Alternative ways to use WinBUGS with R as the interface are: BRugs, rbugs,

and R2WinBUGS. There are also facilities for calling WinBUGS from SAS, stata, and excel.

The JAGS program (Just Another Gibbs Sampler) is an engine for the BUGS language that has

nearly the same structure as WinBUGS, with only a few syntactical differences. Authored

by Martyn Plummer, it is extremely well-developed software that runs on non-windows

platforms and is command-line driven rather than point-and-click. It can be downloaded at

http://www-ice.iarc.fr/∼martyn/software/jags/. There are also facilities for calling

JAGS from R: R2jags, Rjags, and runjags. Most of the BUGS code in this text are run with

JAGS from the command window. Other high-quality R packages using or providing MCMC

computing include: BMS, dclone, eco, glmdm, HI, lmm, MasterBayes, mcmc, MCMCglmm,

MCMCpack, MNP, pscl, spBayes, tgp, and zic. Of these MCMCpack is the most general,

whereas most of the others are MCMC implementations to solve a specific problem. Given

the rapid pace of R package development, this list is growing rapidly.

1.9 Exercises

1.1 Restate the three general steps of Bayesian inference from page 6 in your own words.

1.2 Given k possible disjoint (non-overlapping) events labeled: E1, . . . , Ek where k

could even be infinity, denote p(Ei) as the mapping from events Ei to [0:1] space.

Write the Kolmogorov axioms of probability in technical detail.

1.3 Rewrite Bayes’ Law when the two events are independent. How do you interpret

this?

1.4 Equation (1.11) on page 12 showed that p(A|D) = p(D|A)p(A)/(p(D|A)p(A) +

p(D|B)p(B) + p(D|C)p(C)). Rewrite this expression for p(A|D) when there are

arbitrary k ∈ I+ events including A.

1.5 Suppose f(θ|X) is the posterior distribution of θ given the data X. Describe the

shape of this distribution when the mode, argmax
θ

f(θ|X), is equal to the mean,
∫

θ
θf(θ|X)dθ.

1.6 The Rényi countable additivity axiom is defined by: (1) for any events E1 and

E2, p(E1|E2) ≥ 0 (and reversed), p(Ei|Ei) = 1, (2) for disjoint sets E1, . . . and
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another arbitrary event D, p(∪∞

i=1Ei|D) =
∑∞

i=1 p(Ei|D), and (3) for every sub-

set of events, Ei, Ej , Ek, with Ej ⊆ Ek and p(Ej |Ek) > 0, we get p(Ei|Ej) =

p(Ei, Ej |Ek)/p(Ej |Ek). Show that the Kolmogorov axioms are a special case.

1.7 Using R run the Gibbs sampling function given on page 26. What effect do you see

in varying the B parameter? What is the effect of producing 200 sampled values

instead of 50,000?

1.8 Some authors have objected to the uniform prior, p(θ) = 1, θ ∈ [0 :1] to describe

unknown probabilities in a binomial model and suggested instead the Haldane prior:

p(θ) ∝ [θ−1(1 − θ)]−1 (Haldane [1938], Novick and Hall [1965], Villegas [1977], ).

Plot this prior and the uniform prior over [0:1] in the same graph.

1.9 Rerun the Metropolis algorithm on page 30 in R but replacing the uniform gen-

eration of candidate values in cand.gen with a normal truncated to fit in the

appropriate range. What differences do you observe?

1.10 The Gibbs sampler described in Section 1.7.1 from Casella and George (1992) was

originally done as follows: (1) set initial values for B = 5, k = 15, m = 5, 000, and

the set of accepted values (x, y) as an empty object, (2) run m chains of length

k + 1 where the first value is the uniformly distributed starting point [0 : B]) and

the rest are sampled conditional exponential values that are less than B, (3) save

only the last value from the x and y series, x16 and y16 to the stored Markov chain

until 5,000 of each are obtained. Implement this alternative algorithm in R and

compare it to the output shown in Figure 1.1 on page 27.

1.11 If p(D|θ) = 0.5, and p(D) = 1, calculate the value of p(θ|D) for priors p(θ),

[0.001, 0.01, 0.1, 0.9].

1.12 Buck, Cavanaugh, and Litton (1996) demonstrate the use of Bayesian statistics for

radiocarbon dating of Early Bronze Age archaeological samples (seeds and bones)

from St. Veit-Klinglberg, Austria. These ten age data points are produced by the

Oxford accelerator dating facilities:
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Context # µi σi

758 3275 75

814 3270 80

1235 3400 75

493 3190 75

925 3420 65

923 3435 60

1168 3160 70

358 3340 80

813 3270 75

1210 3200 70

Given the model Xi|µi, σi ∼ N (µi, σ
2
i ), (1) calculate the probability that sample

358 originates between 3300 to 3400 years ago, (2) generate 10,000 samples from

the distribution for sample 493 and sample 923 and plot a histogram of these in

the same figure (side-by-side), (3) give the proportion of values that overlap, and

(4) how do you interpret this overlap probabilistically with regard to the age of the

samples?

1.13 Sometimes Bayesian results are given as posterior odds ratios , which for two possible

alternative hypotheses is expressed as:

odds(θ1, θ2) =
p(θ1|D)

p(θ2|D)
.

If the prior probabilities for θ1 and θ2 are identical, how can this be re-expressed

using Bayes’ Law?

1.14 Using the posterior distribution in (1.19) on page 19, produce the posterior mean

for θ in (1.20) and the posterior variance for θ in (1.21).

1.15 Suppose we had data, D, distributed p(D|θ) = θe−θD as in Section 1.5.1 starting

on page 18, but now p(θ) = 1/θ, for θ ∈ (0:∞). Calculate the posterior mean.

1.16 Modify the Gibbs sampler in Section 1.7.1 starting on page 25 to sample from

two mutually conditional gamma distributions instead of exponential distributions.

The exponential distribution is a simplified form of the rate parameter gamma

distribution where the first (shape) parameter is 1 (Appendix B, page ??). Set the

two relevant shape parameters to values of your choosing α > 1. Produce a graphs

of the marginal draws.

1.17 Since the posterior distribution is a compromise between prior information and the

information provided by the new data, then it is interesting to compare relative

strengths. Perform an experiment where you flip a coin 10 times, recording the

data as zeros and ones. Produce the posterior expected value (mean) for two priors

on p (the probability of a heads): a uniform distribution between zero and one, and


