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Anecdotal Story

◮ Recently I was asked to answer two questions for a then forthcoming (summer 2023) workshop (“An

Introduction to Machine Learning and Big Data”) that I am giving at the Universidad Católica del

Uruguay. . .

◮ Why is this course important for academics?

This course is very important to researchers who use empirical data analysis in their research in the

21st century. Data science problems in academia now often involve large data sets which provide

challenges related to variable selection, clustering among a large number of cases, missing data

issues, and prediction classification. New tools in this area such as machine learning algorithms,

neural networks, nonparametric clustering, penalized regression, imputation methods, and more will

be covered.

◮ Why is it important for the labor market?

This course provides the most important set of skills available today. There is no more valued

expertise in the global labor market than machine learning and big data analysis, and these are in

high demand by corporations, government, and academia. The labor market for data scientists in

every modern country in the world exceeds the number of job candidates.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [2]

What Is Big Data

◮ Basically what anyone wants it to be

◮ Classic definition: volume, variety, velocity, value, and

veracity

◮ My definition: large enough to challenge available com-

putational resources

◮ By this definition self-aware humans have always been

in a “big data era”

◮ The current digital universe stored is at least 64

zettabytes (1, 0007)

◮ Sometime before 2025 463 exabytes (1, 0006 bytes) of

stored data will be created every day

◮ By 2024 149 zettabytes of data will stored compared to

the 2 zettabytes in 2010
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What is Machine Learning?

◮ Machine Learning is a collection of tools mostly for classification and prediction.

◮ Most of these you already know or are close to something you already know, and the vocabulary is

simply different (logit).

◮ The focus is mostly on prediction, regression, and classification.

◮ The term is not as new as one would think (Samuel, IBM Journal of Research and Development,

1959).

◮ Modern definition: “A computer program is said to learn from experience E with regard to some

class of tasks T and performance measure P , if its performance at tasks T , as measured by P ,

improves with experience E.” (Mitchell, Machine Learning, 1997).

◮ Common applications: credit card data analysis, speech recognition, text analysis, fraud detection,

self-driving cars, website ads, and many more.

◮ A lot of these applications were previously addressed with rigid rule-based systems.
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Machine Learning Specifics

◮ One answer is that it is a simple classifier

◮ It is actually just statistics with an empha-

sis on prediction and accuracy

◮ Basically five tools: Random Forests ,

Support Vector Machines ,

Neural Networks (in countless varia-

tions now, where the name comes from

resembling how the neuro-cranial system

works), and Regularization (LASSOs,

elastic nets, ridge,. . . ) Logit (!)

◮ ML is most effective when automated with

many hopefully reliable examples to adapt

to tasks independently, which is not how

social scientists typically use it due to data

limitations
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What is Artificial Intelligence

◮ AI was actually born in the

1950s and used to solve to prob-

lems for the most part.

◮ This led to Symbolic AI, up

through the 1980s, including the

development of expert systems.

◮ In one sense AI can be thought

of as the real-world application

of algorithms produced by ma-

chine learning, although there

are other sources/pathways.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [6]

What is an Artificial Neural Network

◮ Not a model of brain functions, but

a computational method for using

training data to classify and cluster

on testing data at high speed

◮ Comprised of a node layers: an input

layer, one or more hidden layers, and

an output layer

◮ Each node (artificial neuron) con-

nects to another and has an associ-

ated weight and threshold

◮ If the output of any individual node is

above the specified threshold value,

that node is activated sending data

to the next layer of the network (oth-

erwise not)
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What is Deep Learning

◮ One view: AI ⊃ Machine Learning ⊃ Deep Learning

◮ Deep learning algorithms establish initial parameters from the data and then train the computer to

learn independently by recognizing data patterns using multiple layers of processing.

◮ These multiple layers can be in the single digits or the millions and each is a form of a neural network

that are connected together and jointly estimated with “backpropogation”

◮ The goal is to establish an optimal set of weights for each connection between each layer in total

◮ Using a training dataset the key is minimizing the classification difference between y and ŷ.

◮ Achievements: near-human image classification, near-human speech transcription, near-human hand-

writing transcription, high quality text to speech, successful commercialization (Assistant and Alexa),

autonomous driving, better search results, superhuman GO competing.
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Supervised Learning

◮ There is a target variable Y that we want to predict given feature variables X by learning a function

such that F (X) = Y .

◮ When Y is interval measured this is regression and when Y is categorical this is classification.

◮ A key goal is to find the best F possible to estimate/predict future (unseen) data.

◮ This is a different than classical statistical inference that focuses on the data at hand.
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Unsupervised Learning

◮ Here there is an identified target Y .

◮ The goal is to identify groupings within the data in different ways.

◮ Cluster identification, principal components analysis, are the classic examples.

◮ Note that this dichotomy is not strict and there are lots of tools in between supervised and unsu-

pervised learning: weakly supervised and hybrids/combinations.
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More Differences from Classic Statistical Inference

◮ In most social science settings the first emphasis is on selecting a parsimonious set of control variables

(“under the horizon”) and set of theory-based variables (“over the horizon”).

◮ But in ML the typical strategy is to have start with many explaining variables and reduce the number

with a hold-out/test strategy to winnow the number down possibly.

◮ There usually is not a concern about how many are left, unlike regular statistical inference (AIC,

BIC, DIC, etc.).

◮ A primary reason for this is that ML is most often used with big data so the p ≫ n is unlikely to be

a concern.

◮ A lot of the work in ML is done to “process” the data with transformations of the data as part of

the fitting process and then have a relatively simple F ().

◮ This is different trend than statistics.
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Vocabulary (this is important!)

◮ Features: explanatory variables.

◮ Labels: outcome variables.

◮ Examples: the subjects (data).

◮ Learning: training with the data, estimating a function, building a model (the process).

◮ Deep Learning: a hierarchical process wherein complex representations (models) are created in the

algorithm from simple representations in a dynamic process (F () is created from combining many

far simpler f () functions in multilevel structure).

◮ Overfitting: a sin in ML, the model is too closely aligned with a single dataset, including it’s error

component, ruining generality (application to future datasets).

◮ Underfitting: the model does not adequately explain the underlying phenomenon.
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Models: The Necessity of Simplification

◮ Everything in machine learning, statistical analysis, and AI is focused on modeling

◮ We learn about human and human group behavior in data science and statistics through models

◮ But we do not learn without simplification of natural phenomenon using statistics and machine

learning

◮ Every model is a simplification/approximation and is thus actually wrong (huh?)

◮ Therefore models are never “true,” but good ones extract important features

◮ This distinction sometimes confuses journalists, policy-makers, and the public when models are

reported

◮ Model: a necessarily unrealistic picture of nature, a formal representation and simplification using

symbology and assumptions
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On Models

◮ Formal/Mathematical Model: a mathematical and logical construct.

◮ Statistical Model: a probabilistic construct (has an error term).

Yi = Xiβ + ei e ∼ f (σ2)

◮ Two models of humans...
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Models: Characteristics

◮ Advantages of restrictive models:

⊲ clear, parsimonious, easy to understand and explain, abstract,

◮ Advantages of non-restrictive models:

⊲ detailed, contextual, realistic

◮ Quantitative models:

⊲ looking at underlying trends and principles

⊲ usually symbolic and abstract

⊲ note: the quantification process produces precision but not necessarily accuracy since there is

always measurement error

◮ Qualitative models:

⊲ good at seeing causality, but often not generalizable

⊲ complements description

⊲ provides nuance and detail otherwise unobservable
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Models: Machine Learning/Big Data Context

◮ Describe the Objective:

⊲ Formulate an exact statement of the problem to be solved: classifying types, searching for

patterns, sorting scores, scoping, etc.

⊲ Moving from a vague goal (“understanding credit card transactions”), to a clear question (“why

do consumers spend more with prestige cards?”), to specific tasks (“we want to use FRED credit

card data to model spending by card type looking for important features”).

See https://fred.stlouisfed.org

⊲ This process sounds obvious but almost all big data work is done in teams (social scientists,

computer scientists, data scientists, managers), so agreement is essential

◮ CMU Data Science Project Scoping Guide Initial Screening Criteria

⊲ Impactful: The problem we’re solving is real, important, and has social impact

⊲ Solvable: Data can play a role in solving the problem, and the organization has access to the

right data

⊲ Actionable: The organization has prioritized this problem, is ready to take actions based on the

work, and is willing to commit resources to validate and implement it
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Machine Learning/Big Data Models, Step #1

◮ Formulate the Method:

⊲ What type of machine learning task is needed?

⊲ Regression? Classification? Outlier detection in new data? Risk determination? Path analysis?

⊲ This will narrow the set of tools down to a manageable set of alternatives

⊲ SVM, random forests, neural networks, regularization, categorical outcomes regression, regular-

ization, etc.
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Machine Learning/Big Data Models, Step #2

◮ Data Preparation and Exploration:

⊲ Data acquisition: government, academic, or corporate sourced? Web scraping? Experimenta-

tion?

⊲ The usual data cleaning, labeling, recoding, dealing with missingness, and documenting

⊲ Visual and descriptive exploration

⊲ Identification of possibly important variables

⊲ Determining the levels of measurement for variables to be included in the analysis

⊲ Data storage and preservation are often a challenge for very big data



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [20]

Machine Learning/Big Data Models, Step #3

◮ Feature Engineering

⊲ What is the outcome variables of interest?

⊲ What are the features of interest?

⊲ Are temporal effects important?

⊲ Are spatial effects important?

⊲ Are interactions of possible importance?

⊲ Are hierarchies (levels of aggregation) important?
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Machine Learning/Big Data Models, Step #4

◮ Multiple Model Specification

⊲ Determine a set of competing model approaches since it is not known in advance which will

perform the best with this specific dataset

⊲ Apply this suite of models to these data at hand

⊲ This includes evaluation methods to judge fit, prediction accuracy, reliability,. . .

⊲ Subsetting, recoding, or combining data units may be needed after this step
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Machine Learning/Big Data Models, Step #5

◮ Selection and Optimization

⊲ Which models, model features, and model tunings are best?

⊲ What are the implications of specific features?

⊲ Robustness and Resistance evaluation

⊲ Determination of errors and risks

⊲ What are the tradeoffs?

⊲ This step is also called interpretation because we are interpreting the implications of approaches

and features
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Machine Learning/Big Data Models, Step #6

◮ Validation

⊲ After picking a model (or possibly several) on historical/validation/test data (more on this later),

then validate it on out-of-sample data (either new data or a subset of the current data)

⊲ Part of this approach can be simulation, experiments, or new data acquisition

⊲ There are lots of approaches here and lots of definitions of valid
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Machine Learning/Big Data Models, Step #7

◮ Fielding as AI

⊲ Suppose now that there is a selection of the best model and it has been validated on out-of-

sample data

⊲ Usually the process is not a one-off endeavor in the corporate or governmental setting

⊲ Now the model is applied to new data that comes in over time or by broadening the scope of

the question

⊲ Putting the model into practice can produce huge non-human analytical feats

⊲ But it is important to realize that the data generation process can change over time
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Clustering

◮ The most common unsupervised learning method: asserting/inferring substantive groups in the data

cases.

◮ This is hardly new/modern, e.g. statisticians have been arguing about the number of clusters in the

“galaxy” data for at least 50 years.

◮ Most often the determination of clusters is done spatially with respect to fixed data points based on

a distance measure like Euclidean, Manhattan, or Mahalanobis (d(x,y) =
√

(x− y)COV(x− y)).

◮ Not always so though, e.g. text analysis, genetics, social network analysis.

◮ Two different settings: users specifies the number of clusters in advance (relatively easy), or the

number of clusters is not known in advance (relatively hard).

◮ We often get different cluster arrangements with different algorithms.
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Example of Cluster Configurations
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Notes On Cluster Configurations

◮ So for this n = 4 illustration in each of the cluster classes, p = (1, 2, 3, 4), there are: b(n, p) =

(1, 2, 1, 1) configuration classes, and (1, 7, 6, 1) partition types.

◮ The number of partition types, for a given n and p is a Stirling number of the second kind from:
{

n

p

}

=
1

p!

p
∑

j=0

(−1)p−j

(

p

j

)

jn.

◮ In the example there are 15 total possible partitions (models), the Bell number for n = 4 from:

Bn =
1

e

∞
∑

j=0

jn

j!

◮ We connect these because a Bell number can be expressed as the sum of Stirling numbers of the

second kind:

Bn =

n
∑

p=0

{

n

p

}

◮ For a fixed m, the number of configuration classes b(n,m) grows as nm−1

m!(m−1)! with increasing n.
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A Typology of Clustering

◮ Agglomerative Clustering: at the beginning each data point is its own cluster then the algorithm

combines the points into clusters (e.g. K-Means).

◮ Divisive: at the beginning all the data points are in the same cluster then the algorithm breaks the

apart into a number of clusters (e.g. Mean Shift).

◮ We can actually get very different cluster configurations based on which algorithm is used.
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K-Means Clustering Algorithm

◮ This the oldest and most common method.

◮ It is basically a variance minimizer in the ANOVA sense (sum of squares).

◮ Guaranteed to converge (always “works”).

◮ You have to assume the number of clusters in advance.

◮ Process:

⊲ distribute k centroids in the data space, randomly, uniformly, or purposefully

⊲ each data point gets assigned to the nearest centroid creating clusters

⊲ within each cluster move the centroid to the spatial mean of the data points and calculate the

variance around this point

⊲ since the centroids have moved repeat the last two steps

⊲ continue until the centroids do not move anymore.

◮ Users often do this process multiple times with different starting points to gain confidence.

◮ K-Means is very fast and therefore very useful with big data.
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K-Means in R

# GET FISHER’S IRIS DATA

data(iris)

head(iris, 10)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

# REMOVE SPECIES LABEL

iris2 <- iris[,-5]
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K-Means in R

# LOAD PACKAGES

library(ClusterR); library(cluster)

# RUN K-MEANS, centers is k, nstarts is the number of random starts

set.seed(1234)

( k.means.out <- kmeans(x=iris2, centers = 3, nstart = 25) )

K-means clustering with 3 clusters of sizes 50, 62, 38

Cluster means:

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000

2 5.901613 2.748387 4.393548 1.433871

3 6.850000 3.073684 5.742105 2.071053
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K-Means in R

Clustering vector:

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[35] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[69] 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2

[103] 3 3 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3

[137] 3 3 2 3 3 3 2 3 3 3 2 3 3 2

Within cluster sum of squares by cluster:

[1] 15.15100 39.82097 23.87947

(between_SS / total_SS = 88.4 %)

# CONFUSION MATRIX

table(iris$Species, k.means.out$cluster)

1 2 3

setosa 50 0 0

versicolor 0 48 2

virginica 0 14 36
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K-Means in R

# PLOT 1

par(mfrow=c(1,1),mar=c(5,5,2,2),lwd=2,col.axis="white",col.lab="white",

col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)

plot(iris2[c("Sepal.Length", "Sepal.Width")], col = k.means.out$cluster,

main = "K-Means Assignments", pch="+")

points(k.means.out$centers[, c("Sepal.Length", "Sepal.Width")],

col = 1:3, pch = 19, cex = 2)
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K-Means Plot 1
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K-Means in R

# PLOT 2

clusplot(iris2[, c("Sepal.Length", "Sepal.Width")], k.means.out$cluster,

lines = 1, shade = TRUE, color = TRUE, labels = 2, plotchar = TRUE,

span = FALSE, main = paste("K-Means Assignments"),

xlab = "Sepal.Length", ylab = "Sepal.Width")
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K-Means Plot 2
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Limitations of K-Means

◮ The need to choose k in advance.

◮ A heavy dependence on initial centroid locations.

◮ Performs poorly when real clusters are of very different sizes as it makes cluster sizes equal.

◮ Sensitivity to spatial outliers.

◮ Does poorly in high dimensions.

◮ Assumes that the variance within each cluster is the same.

◮ Will find clusters even if there aren’t any in the data.
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Mean Shift Clustering

◮ A somewhat different approach that starts with the points rather than the centroids and is based on

density.

◮ Instead of k we have to define a bandwidth parameter h.

◮ Algorithm:

⊲ create a circular window around every data point of radius h so every data point defines a cluster

⊲ get the mean position of the points inside each window, make this a centroid

⊲ move the center of the window to this centroid, meaning all of the points in the original circular

windows get a new assignment around this centroid

⊲ apply a kernel density estimator (smoother) to create a response surface around the new centroids

⊲ repeat until convergence to a finite number of clusters.

◮ Eventually all points in the same cluster will end up with basically the same steps towards conver-

gence.

◮ This is conditional on a reasonable bandwidth value, which must be chosen carefully.
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Mean Shift in R

library(meanShiftR)

( ms.out <- meanShift(queryData = as.matrix(iris2),trainData = as.matrix(iris2),

algorithm="LINEAR") )

t(ms.out$assignment)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38] [,39]

[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50] [,51] [,52] [,53] [,54] [,55] [,56] [,57] [,58]

[1,] 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

[,59] [,60] [,61] [,62] [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,72] [,73] [,74] [,75] [,76] [,77]

[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[,78] [,79] [,80] [,81] [,82] [,83] [,84] [,85] [,86] [,87] [,88] [,89] [,90] [,91] [,92] [,93] [,94] [,95] [,96]

[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[,97] [,98] [,99] [,100] [,101] [,102] [,103] [,104] [,105] [,106] [,107] [,108] [,109] [,110] [,111] [,112]

[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[,113] [,114] [,115] [,116] [,117] [,118] [,119] [,120] [,121] [,122] [,123] [,124] [,125] [,126] [,127] [,128]

[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[,129] [,130] [,131] [,132] [,133] [,134] [,135] [,136] [,137] [,138] [,139] [,140] [,141] [,142] [,143] [,144]

[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[,145] [,146] [,147] [,148] [,149] [,150]

[1,] 2 2 2 2 2 2
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Mean Shift in R

# PLOT

par(mfrow=c(1,1),mar=c(5,5,2,2),lwd=2,col.axis="white",col.lab="white",

col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)

plot(iris2[c("Sepal.Length", "Sepal.Width")][ms.out$assignment==1,], col = "white",

xlim=c(4,8), ylim=c(2,4.5),main = "Mean Shift Assignments", pch="+")

points(iris2[c("Sepal.Length", "Sepal.Width")][ms.out$assignment==2,], col = "red",

pch="+")

points(ms.out$value[c(1,150),], col = c("white","red"), pch = 19, cex = 2)
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Mean Shift Plot



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [42]

Limitations of Mean Shift

◮ Due to the cycling through the points and then cycling through the clusters on each iteration it can

be very compute-intensive, especially with big data.

◮ The choice of h is critical: too small and convergence may not happen, too large and distinct actual

clusters in the data get be merged.

◮ Cluster distinctions are “sharp” and not overlapping, which makes this method popular in computer

vision, but that may be less appropriate in the social sciences.
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Spectral Clustering

◮ Spectral clustering works very differently than what we’ve seen so far by valuing “connectivity” over

convex boundaries.

◮ Spectral clustering can find non-convex clusters.

◮ It uses a graph (network) setup where the data are nodes and the edges are similarity.
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Spectral Clustering

◮ Algorithm:

⊲ Create the similarity matrix from the distance between each pair of data points: which is square

with values n(n− 1)/2 that we care about.

⊲ Perform graph partitioning whereby the edges between clusters are given low weights and the

edges within clusters are given high weights.

⊲ Compute the eigenvalues and eigenvectors.

⊲ The k eigenvectors are treated as data and supplied to k-means to create the clusters for the

original data.

◮ SC performs well but is slower with big data.

◮ There are also some important selection parameters and algorithmic decisions to be made.
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Spectral Clustering Technical Details

◮ We have n points x. in R
p, where p is the dimension of the data (two so far in the slides).

◮ And dij is the distance between xi and xj (generally Euclidean but any type).

◮ As a similarity graph S use the radial-kernel grain matrix, whose elements are defined by:

sij = exp

[

−dij
c

]

where positive c is a (selection) scale parameter.

◮ Alternatively we could use as a similarity graph the mutual K-nearest neighbor graph that starts

with defining NK as the symmetric set of nearby points: sij is positive in NK if i is in the K-nearest

neighbors of j. Then assemble the sets of nearest neighbors and assign them the edge weight wij

and the excluded relationships are assigned zero.

◮ There are many other alternatives.
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Spectral Clustering Technical Details

◮ Generally the result of the similarity process with its edge weights is called an adjacency matrix and

denoted W with elements wij.

◮ Vertex i has degree that is the sum of its weights:

gi =
∑

i=1:n,¬i

wij.

◮ Now define the diagonal matrix G that collects gi, i = 1 . . . n.

◮ The standardized graph Laplacian is given by:

L = I−G−1W

◮ Now find the m smallest eigenvectors (selection parameter) of L corresponding to the m smallest

eigenvalues: En×m.

◮ Cluster the rows of En×m with K-Means (or some alternative).
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Eigen-Analysis of Matrices

◮ Every p× p matrix X has p scalar values, λi, i = 1, . . . , p, such that

Xei = λiei

for some corresponding vector ei.

◮ In this decomposition, λi is called an eigenvalue of X and ei is called an eigenvector of X.

◮ These eigenvectors are linearly independent.

◮ These are also called the characteristic roots and characteristic vectors of X, and the process is also

called spectral decomposition.

◮ The full eigen-decomposition of the original square matrix is given by: X = E(λI)E−1 where E is

a matrix with the eigenvectors down columns.

◮ The eigenvalues and eigenvectors are only guaranteed to be real-valued if the original square matrix

is symmetric.

◮ The characteristic equation is given by: diag((X− λI)E) = 0.

◮ The eigenvalues and eigenvectors are found by solving the characteristic equation.
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Basic Eigenanalysis

◮ A (contrived) symmetric square matrix X is given by: X =





1.000 0.880 0.619

0.880 1.000 0.716

0.619 0.716 1.000



 .

◮ Using R (note the descending order of the eigenvalues given):

X <- matrix(c(1,0.88,0.619,0.88,1,0.716,0.619,0.716,1),3,3)

( eigen.X <- eigen(X) )

eigen() decomposition

$values

[1] 2.4820708 0.4100160 0.1079132

$vectors

[,1] [,2] [,3]

[1,] 0.5850593 0.5127477 0.6283274

[2,] 0.6071390 0.2367286 -0.7585128

[3,] 0.5376688 -0.8252571 0.1728089

◮ Note: in the eigenvector matrix returned by R the eigenvectors are the columns.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [49]

Basic Eigenanalysis

◮ Returning to the Eigen-analysis definition:

Xei = λiei

◮ Test for i = 1 in Xei = λiei:

cbind(

X %*% eigen.X$vectors[,1],

t(eigen.X$values[1] %*% eigen.X$vectors[,1])

)

[,1] [,2]

[1,] 1.452159 1.452159

[2,] 1.506962 1.506962

[3,] 1.334532 1.334532
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Eigenanalysis Uniqueness

◮ Eigenvalues and eigenvectors are associated.

◮ For each set of eigenvectors of a given matrix X there is exactly one corresponding eigenvalue vector

such that

λ =
e′Xe

e′e
.

diag(t(eigen.X$vectors) %*% X %*% eigen.X$vectors)

/diag((t(eigen.X$vectors) %*% eigen.X$vectors))

[1] 2.4820708 0.4100160 0.1079132

> eigen.X$values

[1] 2.4820708 0.4100160 0.1079132

◮ But for each eigenvalue vector of the matrix there is an infinite number of eigenvectors, all determined

by scalar multiplication.

◮ Meaning that if e is an eigenvector corresponding to the eigenvalue λ, then se is also an eigenvector

corresponding to this same eigenvalue where s is any nonzero scalar.
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Eigenanalysis General Properties

◮ The number of nonzero eigenvalues is the rank of the X.

◮ The sum of the eigenvalues is the trace of X.

◮ The product of the eigenvalues is the determinant of X.

◮ A matrix is singular if and only if it has a zero eigenvalue (and thus the determinant is zero).

◮ If there are no zero-value eigenvalues, then the eigenvectors determine a basis for the space deter-

mined by the size of the matrix (R2, R3, etc.).

◮ Symmetric nonsingular matrices have eigenvectors that are perpendicular to each other (orthogonal).
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Spectral Clustering in R

library("speccalt")

kern.partitioning <- local.rbfdot(iris2) # USES A KDE TO DEFINE SIMILARITY THRESHOLD

speccalt(kern.partitioning) # AUTOMATIC CHOICE OF m CLUSTERS

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

[61] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[121] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

speccalt(kern.partitioning,5) # CHOOSE c

[1] 2 5 5 5 2 2 2 2 5 5 2 2 5 5 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 5 5 2 2 2 5 5 2 2 5 2 2 1 5 2 2 5 2 5 2 2 3 3 3 1 3 1 3 1 3 1

[61] 1 3 1 3 1 3 1 1 1 1 3 3 3 3 3 3 3 3 3 1 1 1 1 3 1 3 3 1 1 1 1 3 1 1 1 1 1 3 1 1 4 3 4 3 4 4 1 4 3 4 4 3 4 3 3 4 3 4 4 1

[121] 4 3 4 3 4 4 3 3 3 4 4 4 3 3 3 4 4 3 3 4 4 4 3 4 4 4 3 3 4 3
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Contrived Very Difficult Case
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Contrived Very Difficult Case

ruler <- seq(1.56,1.58,length=500)

y1 <- tan(ruler)/1000 + rnorm(500,0,1.0)

y1[y1 > 20] <- 10; y1[y1 < -20] <- -10

synth.dat <- cbind(ruler,y1)

kern.partitioning <- local.rbfdot(synth.dat)

sc.fit <- speccalt(kern.partitioning,2)

par(mfrow=c(1,1),mar=c(5,5,2,2),lwd=2,col.axis="white",col.lab="white",

col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)

plot(synth.dat[1:270,],pch="+",col="black", xlim=c(1.560,1.580), ylim=c(-15,12),

xlab="Explanatory Variable",ylab="Outcome Variable")

points(synth.dat[271:500,],pch="+",col="red")
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Principal Components Analysis

◮ Principal components analysis (PCA) is a means of data reduction with big data through rotation

in the sample space of observations.

◮ Principal components are the orthogonal directions in which the data varies and reduce the size of

the data down to a set of vectors that explain the variance: summarize the relationships among a

set of features with a smaller set of linear combinations.

◮ This is very useful in big data analysis where p ≫ n.

◮ PCA re-expresses the variability of the data such that the total amount of variance is preserved but:

⊲ Axes are enumerated in descending order of variance explained. That is, the first dimension

explains the most variance, the second dimension explains the second-most variance, and so on.

⊲ The new axes are uncorrelated with each other: they are orthogonal.

⊲ If there exists correlation in the original data then it is expressed as zero length along some

dimensions after the rotation of axes.
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Principal Components Analysis

◮ If there are p explanatory variables in the original data and there is some correlation between these

variables, then PCA produces a rotation in the p dimensions except that some number of these,

q, will be of zero length, where the magnitude of q indicates the extent of the correlation between

variables and p− q indicates the extent of orthogonal information in the data.

◮ NOTE: this is almost always the situation in the social sciences that variables are correlated: there

is no such thing as a real set of “independent variables.”

◮ Therefore if all p variables are uncorrelated then the axes are already orthogonal and there is no need

to perform PCA (let me know if you have a real dataset like this because it would be amazing).

◮ Conversely, if the p variables are perfectly correlated then there exists only one dimension worth of

information in the data and all but one of the axes will have data of zero-length after PCA.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [57]

Principal Components Analysis

◮ Consider for a moment only two variables: X1 and X2, which are assumed for simplicity to have

mean zero each and unit variance.

◮ With this variance assumption the correlation reduces to covariance.

◮ If the correlation between these two variables is actually zero, then the equiprobability contours

(concentric lines indicating equal probability of occurrence) of these two variables is circular.

◮ On the other hand, if there is a non-zero ρ value then the shape of the equiprobability contours

will be elliptical where the cosine of the angle of intersection from the longest elliptical axis to the

original x-axis (measured at the origin since zero mean is assumed for both variables) is equal to ρ.

◮ In the extreme case of perfect correlation between X1 and X2 the equiprobability contours condense

to a single line.
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Illustration of 2-D PCA

From https://setosa.io/ev/principal-component-analysis/.
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Principal Components Analysis

◮ Begin with an n× p data matrix X, where variables are organized in columns, and standardize.

◮ Define R as the correlation matrix corresponding to X along with a matrix E of the eigenvectors

of the R matrix with the constraint that squared rows and columns of E sum to one.

◮ Then by standard spectral theory (Lax 1997, Chapter 6), the matrix defined by:

λλλ = E′RE

is a matrix containing the descending eigenvalues along the diagonal and zeros elsewhere.

◮ It is in fact the variance-covariance matrix of the rotation defined by the principal components.

◮ So each eigenvalue, λλλ1,λλλ2, . . ., is the variance of a principal component where the first principal

component now accounts for the largest variance by construction.

◮ Furthermore, since the off-diagonal elements are all zero, then the correlation has been removed in

the new coordinate system.
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Principal Components Analysis

◮ The importance of the E matrix is that it provides the transformation of the data points from the

original metric to the PCA metric through simple matrix multiplication: Y = XE.

◮ ThusY are the points in the new rotated coordinate system where the variance structure is preserved:

the principal component scores.

◮ The usefulness of this transformation is that it is one-to-one and therefore reversible, X = E′Y

because of the orthogonal property of the E matrix.

◮ The E matrix of normalized eigenvectors is orthogonal, meaning that:

E′E = EE′ = I.

◮ Also this property also allows us to modify λλλ = E′RE according to:

λλλE′ = E′REE′ = E′R

since EE′ = I.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [61]

Principal Components Analysis

◮ We can also define a new matrix called the component loadings according to:

L = Eλλλ
1

2

where the square root on λλλ is simply the square root of each diagonal element.

◮ The L matrix is theoretically important due to two related multiplicative properties:

LL′ = Eλλλ
1

2(Eλλλ
1

2)′ L′L = (Eλλλ
1

2)′Eλλλ
1

2

= EλλλE′ = (λλλ
1

2)′E′Eλλλ
1

2

= E(E′RE)E′ = λλλ

= R

◮ So the product of component loadings is either equal to the correlation matrix (R) or the diagonal

eigenvalue matrix (λλλ), depending on the order of matrix multiplication.

◮ This is a very, very cool property.
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Principal Components Analysis, Worked Example

◮ Consider the following contrived dataset and its standardized column variables:

X̃ =































1 2 1

2 4 3

3 1 2

4 3 6

5 5 5

6 7 6

7 9 9

8 8 8

9 8 3































X =































−1.461 −1.109 −1.385

−1.095 −0.421 −0.652

−0.730 −1.453 −1.018

−0.365 −0.765 0.448

0.000 −0.076 0.081

0.365 0.612 0.448

0.730 1.300 1.547

1.095 0.956 1.181

1.461 0.956 −0.652































tilde.X <- matrix(c(1,2,1,2,4,3,3,1,2,4,3,6,5,5,5,6,7,6,7,9,9,8,8,8,9,8,3),

ncol=3,byrow=TRUE)

X <- scale(tilde.X)
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Principal Components Analysis, Worked Example

◮ The correlation matrix from X is:

R =





1.000 0.880 0.619

0.880 1.000 0.716

0.619 0.716 1.000



 .

The eigenvalues and eigenvectors are found by solving the characteristic equation: |R− λλλ| = 0.

◮ This produces the matrices:

E =





−0.585 −0.514 0.628

−0.607 −0.236 −0.759

−0.538 0.825 0.174



 λλλ =





2.482 0.00 0.000

0.000 0.41 0.000

0.000 0.00 0.108



 L =





−0.921 0.328 0.206

−0.956 0.150 −0.249

−0.847 −0.528 0.057



 .

◮ Calculated by:

R <- cor(X)

E <- eigen(R)$vectors

lambda <- eigen(R)$values * diag(3)

L <- E %*% chol(lambda)
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Principal Components Analysis, Worked Example

◮ This means that the proportion of the total variance explained by each of the three principal com-

ponents are 2.482/3 = 0.827, 0.41/3 = 0.137, 0.108/3 = 0.036.

◮ By the same reasoning, the second principal component explains 13.7% of the total variance and

the third principal component explains 3.6% of the total variance.

◮ The component scores are produced by pre-multiplying the original data matrix by E, producing:

Y =































2.272 −0.130 −0.316

1.247 0.124 −0.482

1.857 −0.122 0.467

0.437 0.737 0.429

0.003 0.085 0.072

−0.826 0.038 −0.157

−2.049 0.595 −0.259

−1.856 0.186 0.168

−1.084 −1.513 0.078































.

diag(lambda)/3

Y <- X %*% E
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◮ Here the mean for each Y variable (the columns) remains zero and the corresponding variance is no

longer unity but rather the corresponding diagonal value of λλλ.

◮ Because of these component scores result from the simple matrix multiplication defined in Y = XE,

they are in fact linear combinations of the original data with weights determined by the eigenvector

matrix E.

◮ For instance, the first value of Y is produced from:

Y11 =

3
∑

j=1

E.1X1.

= 0.585×−1.461 + 0.607×−1.109 + 0.538×−1.385

= 2.272.

Y11 <- sum(E[,1] %*% X[1,])
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PCA In Practice

◮ PCA was shown with eigen-analysis to understand the process and the intution.

◮ In practice it is done by:

prcomp(iris2)

Standard deviations (1, .., p=4):

[1] 2.0562689 0.4926162 0.2796596 0.1543862

Rotation (n x k) = (4 x 4):

PC1 PC2 PC3 PC4

Sepal.Length 0.36138659 -0.65658877 0.58202985 0.3154872

Sepal.Width -0.08452251 -0.73016143 -0.59791083 -0.3197231

Petal.Length 0.85667061 0.17337266 -0.07623608 -0.4798390

Petal.Width 0.35828920 0.07548102 -0.54583143 0.7536574
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PCA In Practice

par(mfrow=c(1,1),mar=c(5,5,2,2),lwd=2,col.axis="white",col.lab="white",

col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)

biplot(prcomp(iris2))
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Association Rules

◮ This is a data mining tool (unsupervised) that answers the question of finding whether certain

“items” occur together with some specified outcome more frequently than randomness predicts.

◮ “Is this checkout cart on Amazon containing k specific goods (and possibly others that we can ignore

for now ) associated more with signing up for the Amazon+ streaming service.”

◮ The general construct is to find a set of events/items (itemsets) that are commonly associated with

some observed outcome: X1 . . . Xk −→ Y , having support S and confidence C.

◮
We care about when a purchase/event contains X1 . . . Xk at least C% of the time when Y

also occurs, and there are at least S% of these transactions total out of those observed.

◮ So we care about the context of relative frequency and statistical strength of these associations.
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Association Rules, Defining Lift

◮ The key linkage is through a probability calculation known as LIFT.

◮ For (only) two individual items X1 and X2, lift is the ratio of the probability of joint occurrence,

over the product of individual occurrences under the assumption of independence:

lift =
p(X1, X2)

p(X1)p(X2)
,

e.g. the probability of joint occurance/purchase/etc. divided by the probability of independent

occurance/purchase/etc.

◮ In practice lift is calculated for X1,X2, . . . , Xk.

◮ A value near one implies that the items are not associated, small values less than one imply that

these rarely occur together, and large values imply common joint occurrence.

◮ There are then two elements:

⊲ Antecedent: (if) this is an item/group of items that are identified in the itemsets,

⊲ Consequent (then): events that these are possibly associated with.
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Association Rules, Steps

◮ Commonly association rules are applied to big commercial datasets: p ≈ 105, n ≈ 1010.

◮ Algorithm:

⊲ Tabulate all combinations of items in a dataset that occur together with a minimum frequency:

frequent itemsets.

⊲ Assert association rules that parameterize co-occurrence within the frequent itemsets.

◮ This is implemented with rule mining algorithms that identify a basket of items X1 . . . Xk relative

to Y .

◮ Most often the Xs are binary such as bought/didn’t buy, and the dataset is checkout summaries so

that xij is person i’s realized (observed) purchase status of item j.
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Association Rules, Low Frequency?

◮ Often the events do not happen often enough for a single unit of study so regions of the event space

are considered: groups of events, events over time, groups of people, etc.

◮ Define Sj as the support of events for the jth variable and sj ⊆ Sj as a subset.

◮ Recall that there are at least Sp% of these sets total out of those observed.

◮ We want to find a subset of variable values such that the intersection has relatively large probability:

conjunctive rule = p





p
⋂

j=1

(Xj ∈ sj)



 .

◮ Only 2 types of subsets are considered due to data size frequently encountered:

⊲ sj is a single value of Xj denoted sj = ηj0
⊲ all values that Xj can assume: sj = Sj.
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Illustration of Association Rules, Simple Illustration
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Association Example: Market Basket Analysis

◮ Consider a dataset of 9,409 questionnaires filled out by shoppers in the SF Bay Area where the

demographic questions only are studied:

Feature Number Feature Categories Type

1 Sex 2 Categorical

2 Marital Status 5 Categorical

3 Age 7 Ordinal

4 Education 6 Ordinal

5 Occupation 9 Categorical

6 Income 9 Ordinal

7 Years in Bay Area 5 Ordinal

8 Dual Income 3 Categorical

9 Number in Household 9 Ordinal

10 Number of Children 9 Ordinal

11 Householder Status 3 Categorical

12 Type of Home 5 Categorical

13 Ethnic Classification 8 Categorical

14 Language in Home 3 Categorical
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Association Example: Market Basket Analysis

◮ There are missing data, which was case-wise deleted by Hastie, Tibshirani, and Friedman.

◮ They used software called Apriori by Christian Borgelt.

◮ Ordinal features were cut at their median to produce dichotomous features (dummy variables).

◮ Categorical variables given a treatment contrast.

◮ The final dataset after pre-processing was 6,875 × 50.

◮ Apriori found 6,288 association rules that had 5 or less predictors and support of at least 10%.

◮ Reminder:

⊲ Support: % of these transactions/total observed

⊲ Confidence: % of the time when antecedent is positively observed

⊲ Lift: ratio of joint over all marginals

⊲ Antecedent: items of interest

⊲ Conseqent: outcome of interest
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Association Example: Market Basket Analysis

◮ Association Rule # 1: Support 25%, Confidence 97%, Lift 1.03

Antecedents Consequent

Number in Household = 1

Number of Children = 0 Language in Home = English

◮ Association Rule # 2: Support 13.4%, Confidence 80.8%, Lift 2.13

Antecedents Consequent

Language in Home = English

Householder Status = own

Occupation = Professional/Managerial Income ≥ $40,000

◮ Association Rule # 3: Support 26.5%, Confidence 82.8%, Lift 2.15

Antecedents Consequent

Language in Home = English

Income < $40,000

Marital Status = Not Married

Number of Children = 0 Education not college graduate or graduate study
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K-Nearest Neighbors

◮ This is a classifier in the family called memory-based models.

◮ It is very simple and very fast spatial approach, even with very large or very fast data.

◮ For the basic method there are only two Decisions: neighborhood size k, and the distance metric

(Euclidean, Manhattan, etc.).

◮ In picking a specific k, users usually do some trial and error since too small means high variance and

too large may miss important local features.

◮ Basic algorithm:

⊲ Identify a multidimensional query point x0.

⊲ Find the k points nearest to this points: xr for r = 1, . . . , k, usually using Euclidean distance

in feature space: d(r) = ‖x(r) − x0‖. (‖v‖ = (v21 + v22 + · · · + v2n)
1

2 = (v′ · v)
1

2).

⊲ For the feature of interest assign an attribute to xo based on some “voting” criteria amongst

the k, usually majority rule (ties settled at random).

⊲ Repeat as new starting points are specified.
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K-Nearest Neighbors

◮ Typically the variables (dimensions) are standardized to mean zero and standard deviation one such

that the measurement of variables does not lead to domination/sublimation.

◮ This is a old and popular tool that is well-suited to big data problems, including EKG patterns,

handwriting analysis, image analysis, satellite data, internet traffic, political ideology, and more.

◮ It performs well even when the decision barrier is very irregular.

◮ There are some challenges when the features are both continuous and categorical since more decisions

need to be made.

◮ Other challenges include sparsity and very high dimensions.

◮ There are many, many extensions/enhancements like weighting.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [78]

K-Nearest Neighbors, Example

library(neighbr)

data(iris); head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species ID

1 5.1 3.5 1.4 0.2 setosa 1

2 4.9 3.0 1.4 0.2 setosa 2

3 4.7 3.2 1.3 0.2 setosa 3

4 4.6 3.1 1.5 0.2 setosa 4

5 5.0 3.6 1.4 0.2 setosa 5

6 5.4 3.9 1.7 0.4 setosa 6

iris$ID <- c(1:150) # APPEND AN ID NUMBER COLUMN

train_set <- iris[1:145,] # USE FIRST 145 CASES AS TRAINING WITH ALL FEATURES

test_set <- iris[146:150,-c(4,5,6)] # REMOVE PREDICTED VARIABLES FROM TEST DATA
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K-Nearest Neighbors, Example

fit <- knn(train_set=train_set,test_set=test_set, k=9, categorical_target="Species",

continuous_target= "Petal.Width", comparison_measure="euclidean",

return_ranked_neighbors=9, id="ID")

fit$test_set_scores

categorical_target continuous_target neighbor1 neighbor2 neighbor3 neighbor4

146 virginica 2.022222 78 142 140 111

147 virginica 1.577778 73 124 134 84

148 virginica 1.933333 111 116 78 117

149 virginica 2.133333 137 116 138 111

150 virginica 1.855556 115 128 84 139

neighbor5 neighbor6 neighbor7 neighbor8 neighbor9

146 113 117 116 53 141

147 127 112 120 74 64

148 134 112 138 113 142

149 117 104 125 145 101

150 102 143 71 122 134
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Support Vector Machines

◮ This is a very useful and very popular supervised classifier on interval measured data.

◮ Consider multidimensional, interval-measured data where we want to separate (classify) points by

specifying lines in each dimension which collectively determine a hyperplane.

◮ The idea is to get the best separation possible and to not have the line too close to data points to

increase generalizability with future data.

◮ This is done by finding the hyperplane maximizes the margin of the training data.

◮ Unlike many other classifiers SVM does not provide probabilities.
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SVM Illustration
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Support Vector Machines

◮ Training sample Points are called support vectors and those closest to the margin are the most

influential.

◮ For non-linear structures in the features kernels (e.g. radial basis function) provide an efficient tool

for separation (not discussed here).

◮ The training data consists of n pairs: {(x1, y1) . . . (xn, yn)}, where xi ∈ R
p and yi ∈ {−1, 1}.

◮ Define a hyperplane by:

x : f (x) = β0 + xβ = 0

where β is of length 1.

◮ If the points are separable then yi = f (xi) > 0 ∀i.

◮ This means that we can find the hyperplane that provides the maximum margin between the y = −1

group and the y = 1 group:

max
β0,β

= M subject to yi = (f (xi)− β0 + xiβ) ≥ M, ∀i.

◮ So the band is M away from the hyperplane in both directions.
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Support Vector Machines

◮ If there is overlap in the feature space that cause some points to be on the wrong side of any specified

hyperplane then specify slack variables, ξi ≥ 0,
∑

ξi ≤ C, for some specified constant C, and we

now specify:

max
β0,β

= M(1− xi) subject to yi = (f (xi)− β0 + xiβ) ≥ M, ∀i.

◮ Since miscalculations occur when xi > 0 then C bounds the total number of training misclassifica-

tions.

◮ With overlap we drop the norm constraint on β and now define M = 1/||β||.

◮ This leads to a modified procedure:

min ||β|| subject to

{

yi = (f (xi)− β0 + xiβ) ≥ 1 = ξi, ∀i

ξi ≥
∑

xi ≤ C
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SVM Example in R

set.seed(999)

x <- matrix(rnorm(60), 30, 2)

y <- rep(c(-1, 1), c(15,15))

x[y==1,] = x[y==1,] + 1

par(mfrow=c(1,1),mar=c(5,5,2,2),lwd=2,col.axis="white",col.lab="white",

col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)

plot(x, col = y+51, pch = "+", cex=2)

library(e1071)

svm.example <- data.frame(x, y = factor(y))

svm.out <- svm(y ~ ., data = svm.example, kernel = "linear", cost = 5, scale = FALSE)
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SVM Example in R

summary(svm.out)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 5

Number of Support Vectors: 9

( 4 5 )

Number of Classes: 2

Levels:

-1 1

plot(svm.out,svm.example)
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SVM Example in R

Beta.times.Label <- svm.out$coefs

cbind(svm.out$SV,Beta.times.Label) # THE 9 SUPPORT VECTORS

X1 X2

1 -0.2817402 2.3826642 5.000000

11 2.3254637 0.5143633 5.000000

12 1.1339774 1.0084981 5.000000

15 1.9576504 1.3006654 5.000000

17 3.0683351 0.9491223 -1.601791

21 0.7714367 1.8833359 -5.000000

25 0.8747315 1.9331901 -3.398209

28 1.1151596 0.7207841 -5.000000

30 1.8733210 1.4344990 -5.000000
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SVM Example in R

svm.pred <- fitted(svm.out) # TEST WITH TRAINING DATA

rbind(svm.pred[1:15],svm.pred[16:30])

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[1,] 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2

[2,] 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2

Levels: -1 1

table(svm.pred,y) # ACCURACY SUMMARY

y

svm.pred -1 1

-1 13 1

1 2 14
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Bootstrapping for Standard Errors

◮ Big Idea: sometimes it is difficult to get the sampling properties of an estimator, even a commonly

used one.

◮ Some statistics have known variance properties for finite samples and some do not. Does this mean

we should only use the former unless we have population data?

◮ Definitive citations: Efron (1979), Efron and Tibshirani (1993).

◮ Case Study: suppose we have a dataset on leukemia, ignoring a whole host of things and condensing

our analysis down to two variables: CD4 Count/10 a dichotomous outcome indicating that there

was a relapse from a remission stage:

Relapse 94 197 16 38 99 141 23

No Relapse 52 104 146 10 50 31 40 27 46

◮ Note that these data are imbalanced.
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Bootstrapping for Standard Errors

◮ The question is whether there is a difference by CD4 count, and the natural choice of test is the

difference of means: x̄relapse = 86.86, x̄no relapse = 56.22.

◮ This is easy since we know that:

SE(x̄relapse) =
√

(s2relapse/nrelapse) = 25.24,

SE(x̄no relapse) =
√

(s2no relapse/nno relapse) = 14.14

◮ But we also know that the mean is not very resistant to outliers and it could be that a notable case,

and one could be driving the subsequent findings.

◮ So what about using the median instead of the mean? This is obvious choice in one sense, but it

leaves us with no closed form solution for the standard error.
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Bootstrapping for Standard Errors

◮ So consider the following algorithm, for some statistic of interest, θ:

1. Draw B “bootstrap” samples of size n, independently, with replacement from the sample x:

x∗1,x∗2, . . . ,x∗B

(note the notation to differentiate the bootstrap sample from the original sample).

2. Calculate the sample statistic of interest, θ∗b for each bootstrap sample, and the mean of these

statistics:

θ̄∗ =
1

B

B
∑

b=1

θ∗b

3. Estimate the bootstrap standard error of the statistic by:

Var(θ) =
1

B − 1

B
∑

b=1

(

θ∗b − θ̄∗
)2

where obviously SE(θ) =
√

Var(θ).

◮ We call the limit of this standard error as B goes to infinity is called the ideal bootstrap estimate,

and this procedure is called the nonparametric bootstrap estimate.
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Bootstrapping for Standard Errors

relapse <- c(94,197,16,38,99,141,23)

no.relapse <- c(52,104,146,10,50,31,40,27,46)

B <- 1000

no.relapse.mat <- relapse.mat <- NULL

for (i in 1:B) {

relapse.mat <- rbind(relapse.mat, sample(relapse,length(relapse),

replace=TRUE))

no.relapse.mat <- rbind(no.relapse.mat,sample(no.relapse,length(no.relapse),

replace=TRUE))

}

relapse.mean <- mean(apply(relapse.mat,1,mean))

relapse.se <- sqrt(var(apply(relapse.mat,1,mean)))

no.relapse.mean <- mean(apply(no.relapse.mat,1,mean))

no.relapse.se <- sqrt(var(apply(no.relapse.mat,1,mean)))

relapse.median <- mean(apply(relapse.mat,1,median))

relapse.median.se <- sqrt(var(apply(relapse.mat,1,median)))

no.relapse.median <- mean(apply(no.relapse.mat,1,median))

no.relapse.median.se <- sqrt(var(apply(no.relapse.mat,1,median)))
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Bootstrapping for Standard Errors

final.relapse.mat <- rbind( c(relapse.mean, relapse.se,

no.relapse.mean, no.relapse.se),

c(relapse.median, relapse.median.se, no.relapse.median, no.relapse.median.se) )

dimnames(final.relapse.mat) <-

list( c("Mean","Median"), c("Relapse Est","Relapse SE",

"No Relapse Est","No Relapse SE") )

final.relapse.mat

Relapse Est Relapse SE No Relapse Est No Relapse SE

Mean 88.19143 21.57597 54.86444 12.45360

Median 84.37000 36.40226 44.07000 12.65810
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Bootstrapping for Standard Errors

par(mfrow=c(2,2),bg="white")

hist(apply(relapse.mat,1,mean), freq=FALSE, main="Bootstrap, Relapse Mean")

ruler <- seq(20,160,length=100)

lines(ruler,dnorm(ruler,relapse.mean,relapse.se),lwd=3)

hist(apply(relapse.mat,1,median), main="Bootstrap, Relapse Median")

hist(apply(no.relapse.mat,1,mean), ylim=c(0,0.04),freq=FALSE,

main="Bootstrap, No Relapse Mean")

ruler <- seq(20,100,length=100)

lines(ruler,dnorm(ruler,no.relapse.mean,no.relapse.se),lwd=3)

hist(apply(no.relapse.mat,1,median), main="Bootstrap, No Relapse Median")
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Bootstrapping for Standard Errors
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Random Forests

◮ Suppose we have a dataset with N cases and M features and we want to classify.

◮ General Algorithm:

⊲ Draw B bootstrap samples of size n, independently, with replacement from the data. The

size of n depends on the context of the problem.

⊲ For each of these B train a decision tree sampling m ≪ M features uniformly from the full M

and the collection of decision trees picks the best features given the features that they individually

have.

⊲ New data is tested with all of the decision trees and the final result is an aggregation such as

majority vote.

◮ RFs can handle large problems very easily.

◮ Notice that this process can be parallelized for computational efficiency.

◮ RFs also provide a proximity matrix showing similarity between all of the points by counting the

proportion of times two selected data points are classified together at the bottom of the trees.
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Bagging: Bootstrap Aggregation

◮ This is more general ensemble method than random forests since any ML process can be used.

◮ Draw B bootstrap samples of size n, independently, with replacement from the data. The size

of n depends on the context of the problem and the size of N .

◮ Train a model on each of these B datasets.

◮ Obtain a out-of-sample test dataset in the typical fashion and use each of the B models to predict.

◮ The procedure can also easily be parallelized.
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Boosting

◮ This is another very general procedure whereby one iteratively trains classifiers using the data cases

where the previous model produced misclassifications.

◮ Therefore each iteration gets a smaller dataset than all of the previous models.

◮ Algorithm:

⊲ Give all the data points equal weights.

⊲ For the jth model in the series:

⊲ train a classifier using the current weights

⊲ predict from the training data

⊲ determine the error from this prediction

⊲ calculate new weights based on the errors in the jth classification

⊲ Repeat.

⊲ At the end of the run a weighted average of the predictions from all of the models where the

weight is proportional to each of the model’s prediction accuracy.
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Introduction to Neural Networks

◮ NN are a “black box” machine learning to explain some set of outcomes given a set of inputs.

◮ Also a classification problem.

◮ This means that the coefficients and values on the internal layers are not interpretable, and the only

result with any value is the final result.

◮ The network analysis is neurological/cerebrial wherein learning is done through a serial training

processes, which can be quite complex computationally.

◮ Unlike more conventional social science regression-style inference the (almost) only concern is ex-

plaining the outcome regardless of complexity or generalizability.
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What is an Artificial Neural Network

◮ Not a model of brain functions, but

a computational method for using

training data to classify and cluster

on testing data at high speed

◮ Comprised of a node layers: an input

layer, one or more hidden layers, and

an output layer

◮ Each node (artificial neuron) con-

nects to another and has an associ-

ated weight and threshold

◮ If the output of any individual node is

above the specified threshold value,

that node is activated sending data

to the next layer of the network (oth-

erwise not)
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Introduction to Neural Networks

◮ The starting point is a representation

of a simple linear model as a graph.

◮ The blue circles are input features.

◮ The green circle is the weighted sum

of the inputs, which is the output

(classification) of interest).

◮ This looks like a causal diagram, but

it is not meant to imply causality.
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Introduction to Neural Networks

◮ Now consider a single hidden layer of

intermediate values from an interme-

diate weighting process that is con-

ditional on each input features as a

weighted sum of these.

◮ This is the yellow circles in the figure.

◮ The weights could be (and many are

in complex models) equal to zero in

the first level relationships.

◮ Now the output is a direct weighted

linear sum of the hidden layer nodes.
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Introduction to Neural Networks

◮ A single hidden layer is unusually sim-

ple for real problems, so we can have

multiple iterations, each conditional

on the previous hidden layer with

weighting.

◮ This is still a linear construction in-

volving matrix algebra.
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Introduction to Neural Networks

◮ Of course we want to represent/solve

nonlinear relationships and this is

done by piping the linear weighted re-

lationships through a nonlinear func-

tion called an activation function.

◮ In the figure there is a single layer of

activation functions between two hid-

den layers.

◮ In practice we can model very com-

plicated relationships between the in-

puts and the final output by stacking

many linear and nonlinear layers inbe-

tween, creating higher level function-

ality.
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Activation Functions

◮ There are two very common forms which are really like CDFs.

◮ Sigmoid (logit), F (x) = [1 + exp(−x)]−1.

◮ Rectified Linear Unit (ReLu), F (x) = max(0, x).

◮ As with anything in this realm there are many alternatives in use.
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Neural Networks Development

◮ Phases: training, vesting, validating.

◮ The training data must have outcome labels: y.

◮ The testing data hides the label and is used for prediction and comparison to training data labels:

y − ŷ.

◮ There are many forms of assessment for neural networks but they basically compare known outcomes

to predicted outcomes.
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Deep Learning Illustration

From Chollet, Francois. Deep learning with Python. Simon and Schuster, 2021.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [107]

Neural Networks and Deep Learning

◮ For a long time researchers struggled to find a way to train neural nets, without success. Then

in 1986, David Rumelhart, Geoffrey Hinton and Ronald Williams published the paper: “Learning

Internal Representations by Error Propagation” introducing the backpropagation training algorithm,

which is still the standard today.

◮ Their idea is based on Gradient Descent using an efficient technique for computing the gradients

automatically.

◮ In two passes through the network (one forward, one backward), the backpropagation algorithm

computes the gradient of the network’s error with regards to every single model parameter.

◮ It finds out how each connection weight and each bias term should be tweaked in order to minimize

the error.

◮ With these gradients, it performs a regular Gradient Descent step, and the whole process is repeated

until the network converges to the solution.
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Deep Learning Algorithmic Forward Pass Details

◮ Process mini-batch one at a time going through the full training set multiples where each pass is

called an epoch.

◮ These mini-batches are then passed to the input layer of the network, which then sends it to the

first hidden layer.

◮ The initial weights of the hidden layers are randomly assigned.

◮ Then compute the output of all the neurons in this layer for every mini-batch instance.

◮ This result is then passed to the first hidden layer.

◮ Then repeat this process at this next layer, and so on until the last layer is reached: the output layer.

◮ All of these intermediate results are recorded for the backward pass.

◮ This completes the forward pass.

◮ Now calculate the network error: y − ŷ.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [109]

The Chain Rule

◮ This provides a means of differentiating nested functions of the form f ◦ g = f (g(x)).

◮ The case of g(x)−1 = (4x3 − 2x)−1fits this categorization because the inner function is g(x) =

4x3 − 2x and the outer function is f (u) = u−1.

◮ Usually u is used as a placeholder here to make the point that there is a distinct subfunction.

◮ To correctly differentiate such a nested function, we have to account for the actual order of the

nesting relationship, done by:
d

dx
f (g(x)) = f ′(g(x))g′(x),

provided that f (x) and g(x) are both differentiable functions.

◮ We can also express this in the other standard notation: if y = f (u) and u = g(x) are both

differentiable functions, then
dy

dx
=

dy

du

du

dx
,

which may better show the point of the operation.

◮ If we think about this in purely fractional terms, it is clear that du cancels out of the right-hand

side, making the equality obvious.
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The Chain Rule

◮ Let us use this new tool to calculate the function g(x)−1 from above (g(x) = 4x3 − 2x):

d

dx
g(x)−1 = (−1)(4x3 − 2x)−2 ×

d

dx
(4x3 − 2x)

=
−(12x2 − 2)

(4x3 − 2x)2

=
−6x2 + 1

8x6 − 8x4 + 2x2
.
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Deep Learning Algorithmic Backward Pass Details

◮ Starting with y − ŷ for the smaller number of nodes in the output layer measure these error

contributions backward for each connection in the layer below using the chain running backward

until the input layer is reached.

◮ The reverse pass efficiently measures the error gradients across every connection weight in the layer

below by propogating the error gradient backward through the networ..

◮ Thus the last step performs a Gradient Descent step to adjust all of the connection weights in the

network using all of the individual error gradients just calculated.

◮ Now the Deep Learning network is fully trained and can be applied to different test data.
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Gradient Descent for Machine Learning

◮ A gradient is a derivative that measures how much an (output) function changes for small changes

in an input.

◮ In the deep learning sense it measure the change in all the weights for a small change in an error.

◮ Since it is a derivative, higher values mean that the slope is steeper and lower values mean that the

slope is flatter.

◮ Higher slopes mean that the model can learn faster and zero slopes mean that no learning takes

place.

◮ We want to get to the minimum (of errors) in a multidimensional sense, which is to minimize the

function J(w, b), where w is a set of weights, then a Gradient Step looks like:

b = a− γ▽f (a),

where b is the next location, a is the current location, γ is the learning rate or step size, and ▽f (a)

is the direction of the step.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [113]

Gradient Descent Illustration
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Learning Rate

◮ This is the size of the steps that are

taken to reach the function minimum.

◮ It is usually a small value that is eval-

uated and updated based on the be-

havior of the cost func- tion.

◮ A large value results in larger steps

but risk overshooting the minimum.

◮ A small value is more precise, but low-

ers the efficiency since it takes more

cycles to reach the minimum.

Source: IBM.
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A Recent Development to Pay a Lot of Attention To

◮ “Chat Generative Pre-trained Transformer”

◮ ChatGPT is a breakthrough application of Deep Learning by OpenAI (then purchased by Microsoft)

that can write essays, solve complex problems, seamlessly interact with humans, perform search in

a way not seen before, and more

◮ Only in general use since November 2022

◮ As of December, ChatGPT had an estimated more than 100 million monthly active users

◮ ChatGPT’s most recent GPT-3.5 model was trained on 570GB of text data from the internet, which

OpenAI says included books, articles, websites, and even social media

◮ This is only the beginning of a revolution in AI power that is extremely easy to use
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A Recent Development to Pay a Lot of Attention To

◮ The news media has recently exploded their coverage of OpenAI’s partial release of ChatGPT

◮ “We’ve trained a model called ChatGPT which interacts in a conversational way. The dialogue

format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge

incorrect premises, and reject inappropriate requests”

◮ Representative Ted Lieu, Democrat of California, wrote in a guest essay in The New York Times in

January that he was “freaked out” by the ability of the ChatGPT chatbot to mimic human writers

◮ Another Democrat, Representative Jake Auchincloss of Massachusetts, gave a one-minute speech

written by ChatGPT calling for regulation of AI

◮ The problem is that most lawmakers do not even know what AI is, said Representative Jay Ober-

nolte, a California Republican and the only member of Congress with a master’s degree in artificial

intelligence
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Some Final Thoughts on Machine Learning and AI Implementation

◮ There are usually a lot of decisions to be made that are contextual to the data and the problem:

⊲ size of the training set versus the test set within the same data set or outside of it.

⊲ tuning parameters

⊲ validation measures such as categorical prediction comparisons, distance measures, and cross-

validation.

◮ Leakage: the modeling process does not have access to the training anymore at testing time.

◮ This an incredibly fast moving area of study with contributions from computer scientists, statisticians,

mathematicians, and others.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [118]

Ethical Considerations

◮ Most ethical issues are well-known by data scientists but unappreciated by the general population

◮ Prejudice: skin color in images, race in financial assessments, recidivism, religious groups

◮ Fake humans, fake data, fake responses, fake information

◮ There are two major considerations:

⊲ Bias: algorithms that treat some groups differently based on criteria not directly important to

the question

⊲ Unfairness: algorithms that make predictions that harm people without transparency or human

review, meaning oppression, denial of property, denial of liberty, denial of opportunity

◮ Famous Examples: Optium Impact-Pro (2001) underpredicted AA healthcare needs, Apple credit

card (2019) biased against women, Correctional Offender Management Profiling for Alternative

Sanctions (COMPASS, 2016) for recidivism probability showed substantial race differences even for

the same profile, Clearview (2000s) invasion of privacy through face recognition (“face thieves”)
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Ethical Issues with Statistical Estimation (interpretable models)

◮ Generally we are taking about standard regression models: Y = g−1(Xβ) + ǫ

◮ Harmful Inclusion: including important explanatory variables (covariates, predictors, features) in the

model in X that cause negative consequences

◮ Harmful Incompleteness: not including important explanatory variables (covariates, predictors, fea-

tures) in the model in X that cause negative consequences

◮ Examples: SAT test (favors higher family income and SES), financial information tied to neighbor-

hood, college attended
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Ethical Issues with Machine Learning (black box models)

◮ Generally we are talking about models that incorporate feature inclusion and weighting without

human direction

◮ Same two issues but for non-human generated reasons, but typically more difficult to detect

◮ It is difficult to detect whether a substantively important variable has been left out of the layers or

a harmful variable has been included

◮ It is possible that unobserved combinations of features have been used together in a harmful way



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [121]

Reasons That Harmful AI Still Gets Created

◮ Fixation with recent models: technical creators are often infatuated with new algorithms without

fully considering the social implications

◮ Over-focusing on predictive performance: developers and users often value system performance over

other considerations, which can lead to exaggerating the effect of particular predictors, ignoring

groups of subjects that provide slower performance, and ignoring un-modeled effects that are impor-

tant

◮ Ease of use and availability: many complex machine learning tools are easy/free to obtain and very

easy to use without user sophistication

◮ Exporting to new problems: tools that were built for a specific set of applications are often exported

to new substantive areas without consideration of the consequences/differences
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The Principles of Responsible Data Science

◮ Non-maleficence: creating models that do not purposely have aspects that cause harm or harm by

negligence

◮ Fairness: creating models that not make decisions that disadvantage specific groups or uplift other

specific groups

◮ Transparency: documenting and communicating aspects of created models that reveal decisions

made during development, interpretations of results, options provided for usage, and changes made

over time

◮ Accountability: creating organizations comply with legal statutes, acting with integrity, responding

to users and subject concerns, and providing a mechanism for user recourse to perceived harm


