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» Recently | was asked to answer two questions for a then forthcoming (summer 2023) workshop (“An
Introduction to Machine Learning and Big Data”) that | am giving at the Universidad Catdlica del
Uruguay. . .

» Why is this course important for academics?
This course is very important to researchers who use empirical data analysis in their research in the
21st century. Data science problems in academia now often involve large data sets which provide
challenges related to variable selection, clustering among a large number of cases, missing data
issues, and prediction classification. New tools in this area such as machine learning algorithms,
neural networks, nonparametric clustering, penalized regression, imputation methods, and more will
be covered.

» Why is it important for the labor market?
This course provides the most important set of skills available today. There is no more valued
expertise in the global labor market than machine learning and big data analysis, and these are in
high demand by corporations, government, and academia. The labor market for data scientists in
every modern country in the world exceeds the number of job candidates.
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BiG DATA

» Basically what anyone wants it to be

» Classic definition: volume, variety, velocity, value, and
veracity

» My definition: large enough to challenge available com-
putational resources

» By this definition self-aware humans have always been
in a “big data era”

» The current digital universe stored is at least 64
zettabytes (1,0007)

» Sometime before 2025 463 exabytes (1,000° bytes) of
stored data will be created every day

» By 2024 149 zettabytes of data will stored compared to
the 2 zettabytes in 2010
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» Machine Learning is a collection of tools mostly for classification and prediction.

» Most of these you already know or are close to something you already know, and the vocabulary is
simply different (logit).

» The focus is mostly on prediction, regression, and classification.

» The term is not as new as one would think (Samuel, IBM Journal of Research and Development,

1959).

» Modern definition: “A computer program is said to learn from experience E with regard to some
class of tasks 1" and performance measure P, if its performance at tasks 7', as measured by P,
improves with experience E." (Mitchell, Machine Learning, 1997).

» Common applications: credit card data analysis, speech recognition, text analysis, fraud detection,
self-driving cars, website ads, and many more.

» A lot of these applications were previously addressed with rigid rule-based systems.
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» One answer is that it is a simple classifier

» It is actually just statistics with an empha-
sis on prediction and accuracy

» Basically five tools: |Random Forests), Data —> | Statistical

Support Vector Machines|, o —> Answers
PP Rules — ' Estimation

Neural Networks| (in countless varia-

tions now, where the name comes from
resembling how the neuro-cranial system
works), and |Regularization| (LASSOs,
elastic nets, ridge,...) |Logit|(!) Data —> ' Machine

—> Rules

Answers ——> Learning

» ML is most effective when automated with
many hopefully reliable examples to adapt

to tasks independently, which is not how
social scientists typically use it due to data
limitations
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» Al was actually born in the
1950s and used to solve to prob-
lems for the most part.

» This led to Symbolic Al, up
through the 1980s, including the
development of expert systems.

» In one sense Al can be thought
of as the real-world application
of algorithms produced by ma-
chine learning, although there
are other sources/pathways.

Artificial
intelligence

Machine
learning

Deep
learning
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Activation function

N A Summing function
Weight

» Not a model of brain functions, but

a computational method for using
training data to classify and cluster
on testing data at high speed

Comprised of a node layers: an input
layer, one or more hidden layers, and
an output layer

Each node (artificial neuron) con-
nects to another and has an associ-
ated weight and threshold

|If the output of any individual node is
above the specified threshold value,
that node is activated sending data
to the next layer of the network (oth-
erwise not)



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [7]

» One view: Al D Machine Learning D Deep Learning

» Deep learning algorithms establish initial parameters from the data and then train the computer to
learn independently by recognizing data patterns using multiple layers of processing.

» These multiple layers can be in the single digits or the millions and each is a form of a neural network
that are connected together and jointly estimated with “backpropogation”

» The goal is to establish an optimal set of weights for each connection between each layer in total
» Using a training dataset the key is minimizing the classification difference between y and y.

» Achievements: near-human image classification, near-human speech transcription, near-human hand-
writing transcription, high quality text to speech, successful commercialization (Assistant and Alexa),
autonomous driving, better search results, superhuman GO competing.
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» There is a target variable Y that we want to predict given feature variables X by learning a function
such that F(X) =Y.

» When Y is interval measured this is regression and when Y is categorical this is classification.
» A key goal is to find the best F' possible to estimate/predict future (unseen) data.

» This is a different than classical statistical inference that focuses on the data at hand.
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» Here there is an identified target Y.
» The goal is to identify groupings within the data in different ways.
» Cluster identification, principal components analysis, are the classic examples.

» Note that this dichotomy is not strict and there are lots of tools in between supervised and unsu-
pervised learning: weakly supervised and hybrids/combinations.
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» In most social science settings the first emphasis is on selecting a parsimonious set of control variables
(“under the horizon”) and set of theory-based variables ( “over the horizon").

» But in ML the typical strategy is to have start with many explaining variables and reduce the number
with a hold-out/test strategy to winnow the number down possibly.

» There usually is not a concern about how many are left, unlike regular statistical inference (AIC,
BIC, DIC, etc.).

» A primary reason for this is that ML is most often used with big data so the p > n is unlikely to be
a concern.

» A lot of the work in ML is done to “process” the data with transformations of the data as part of
the fitting process and then have a relatively simple F().

» This is different trend than statistics.
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» Features: explanatory variables.

» Labels: outcome variables.

» Examples: the subjects (data).

» Learning: training with the data, estimating a function, building a model (the process).

» Deep Learning: a hierarchical process wherein complex representations (models) are created in the
algorithm from simple representations in a dynamic process (F'() is created from combining many
far simpler f() functions in multilevel structure).

» Overfitting: a sin in ML, the model is too closely aligned with a single dataset, including it's error
component, ruining generality (application to future datasets).

» Underfitting: the model does not adequately explain the underlying phenomenon.
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» Everything in machine learning, statistical analysis, and Al is focused on modeling
» We learn about human and human group behavior in data science and statistics through models

» But we do not learn without simplification of natural phenomenon using statistics and machine
learning

» Every model is a simplification /approximation and is thus actually wrong (huh?)
» Therefore models are never “true,” but good ones extract important features

» This distinction sometimes confuses journalists, policy-makers, and the public when models are
reported

» Model: a necessarily unrealistic picture of nature, a formal representation and simplification using
symbology and assumptions
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» Formal/Mathematical Model: a mathematical and logical construct.

» Statistical Model: a probabilistic construct (has an error term).

Yi=X;B+e e~ f(d?)

» Two models of humans...
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» Formal/Mathematical Model: a mathematical and logical construct.

» Statistical Model: a probabilistic construct (has an error term).

Yi=XB+e e~ f(o)

» Two models of humans...
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» Formal/Mathematical Model: a mathematical and logical construct.

» Statistical Model: a probabilistic construct (has an error term).

Y;=X;f+e e~ f(o?)

» Two models of humans...
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» Advantages of restrictive models:

> clear, parsimonious, easy to understand and explain, abstract,

» Advantages of non-restrictive models:

> detailed, contextual, realistic

» Quantitative models:

> looking at underlying trends and principles
> usually symbolic and abstract

> note: the quantification process produces precision but not necessarily accuracy since there is
always measurement error

» Qualitative models:

> good at seeing causality, but often not generalizable
> complements description
> provides nuance and detail otherwise unobservable
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» Describe the Objective:

> Formulate an exact statement of the problem to be solved: classifying types, searching for
patterns, sorting scores, scoping, etc.

> Moving from a vague goal ( “understanding credit card transactions”), to a clear question ( “why
do consumers spend more with prestige cards?"), to specific tasks (“we want to use FRED credit
card data to model spending by card type looking for important features”).
See https://fred.stlouisfed.org

> This process sounds obvious but almost all big data work is done in teams (social scientists,
computer scientists, data scientists, managers), so agreement is essential

» CMU Data Science Project Scoping Guide Initial Screening Criteria

> Impactful: The problem we're solving is real, important, and has social impact

> Solvable: Data can play a role in solving the problem, and the organization has access to the
right data

> Actionable: The organization has prioritized this problem, is ready to take actions based on the
work, and is willing to commit resources to validate and implement it
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» Formulate the Method:

> What type of machine learning task is needed?
> Regression? Classification? Outlier detection in new data? Risk determination? Path analysis?
> This will narrow the set of tools down to a manageable set of alternatives

> SVM, random forests, neural networks, regularization, categorical outcomes regression, regular-
Ization, etc.
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» Data Preparation and Exploration:

> Data acquisition: government, academic, or corporate sourced? Web scraping? Experimenta-
tion?

> The usual data cleaning, labeling, recoding, dealing with missingness, and documenting
> Visual and descriptive exploration

> ldentification of possibly important variables

> Determining the levels of measurement for variables to be included in the analysis

> Data storage and preservation are often a challenge for very big data



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [20]

» Feature Engineering

> What is the outcome variables of interest?
> What are the features of interest?

> Are temporal effects important?

> Are spatial effects important?

> Are interactions of possible importance?

> Are hierarchies (levels of aggregation) important?
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» Multiple Model Specification

> Determine a set of competing model approaches since it is not known in advance which will
perform the best with this specific dataset

> Apply this suite of models to these data at hand
> This includes evaluation methods to judge fit, prediction accuracy, reliability,. . .

> Subsetting, recoding, or combining data units may be needed after this step
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» Selection and Optimization

> Which models, model features, and model tunings are best?
> What are the implications of specific features?

> Robustness and Resistance evaluation

> Determination of errors and risks

> What are the tradeoffs?

> This step is also called interpretation because we are interpreting the implications of approaches
and features
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» Validation

> After picking a model (or possibly several) on historical /validation /test data (more on this later),
then validate it on out-of-sample data (either new data or a subset of the current data)

> Part of this approach can be simulation, experiments, or new data acquisition

> There are lots of approaches here and lots of definitions of valid
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» Fielding as Al

> Suppose now that there is a selection of the best model and it has been validated on out-of-
sample data

> Usually the process is not a one-off endeavor in the corporate or governmental setting

> Now the model is applied to new data that comes in over time or by broadening the scope of
the question

> Putting the model into practice can produce huge non-human analytical feats

> But it is important to realize that the data generation process can change over time
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» The most common unsupervised learning method: asserting/inferring substantive groups in the data
cases.

» This is hardly new/modern, e.g. statisticians have been arguing about the number of clusters in the
“galaxy” data for at least 50 years.

» Most often the determination of clusters is done spatially with respect to fixed data points based on
a distance measure like Euclidean, Manhattan, or Mahalanobis (d(x,y) = 1/(x — y)COV(x — y)).

» Not always so though, e.g. text analysis, genetics, social network analysis.

» Two different settings: users specifies the number of clusters in advance (relatively easy), or the
number of clusters is not known in advance (relatively hard).

» We often get different cluster arrangements with different algorithms.
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Partitions for n = 4

Y3|Y2Y4

» Four Cluster Classes. Five Confieuration Classes

» The number of configuration classes in each cluster class is b(n, p)

> b(n, p) = partitions of the integer n into p components > 1

>b4,1)=1, b(4,2)=2, b4,3)=1, b(4,4) =1,
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» So for this n = 4 illustration in each of the cluster classes, p = (1,2, 3,4), there are: b(n,p) =
(1,2,1,1) configuration classes, and (1,7,6,1) partition types.

» The number of partition types, for a given n and p is a Stirling number of the second kind from:

{ , } B ]% é(—l)pa‘ (1;)]

» In the example there are 15 total possible partitions (models), the Bell number for n = 4 from:

» We connect these because a Bell number can be expressed as the sum of Stirling numbers of the

S

p=0

second kind:

. . . m—1 . . .
» For a fixed m, the number of configuration classes b(n, m) grows as m with increasing n.
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» Agglomerative Clustering: at the beginning each data point is its own cluster then the algorithm
combines the points into clusters (e.g. K-Means).

» Divisive: at the beginning all the data points are in the same cluster then the algorithm breaks the
apart into a number of clusters (e.g. Mean Shift).

» We can actually get very different cluster configurations based on which algorithm is used.
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» This the oldest and most common method.

» It is basically a variance minimizer in the ANOVA sense (sum of squares).
» Guaranteed to converge (always “works" ).

» You have to assume the number of clusters in advance.

» Process:

> distribute & centroids in the data space, randomly, uniformly, or purposefully
> each data point gets assigned to the nearest centroid creating clusters

> within each cluster move the centroid to the spatial mean of the data points and calculate the
variance around this point

> since the centroids have moved repeat the last two steps
> continue until the centroids do not move anymore.

» Users often do this process multiple times with different starting points to gain confidence.

» K-Means is very fast and therefore very useful with big data.
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# GET FISHER’S IRIS DATA

data(iris)

head(iris, 10)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1
2
3
4
5
6
7
3
9
10

# REMOVE SPECIES LABEL
iris?2 <- iris[,-5]

5.

NN NS IS BN B N NG
©O D OO DO O N ©

1

3.
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5

1
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4

0.
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Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
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# LOAD PACKAGES
library(ClusterR); library(cluster)

# RUN K-MEANS, centers is k, nstarts is the number of random starts
set.seed(1234)
( k.means.out <- kmeans(x=iris2, centers = 3, nstart = 25) )

K-means clustering with 3 clusters of sizes 50, 62, 38

Cluster means:

Sepal.Length Sepal.Width Petal.Length Petal.Width
1 5.006000 3.428000 1.462000 0.246000
2 5.901613 2.748387 4.393548 1.433871
3 6.850000 3.0736384 5.742105 2.071053
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Clustering vector:
f[tJ]1111111111111111111111111111111111
[356] 1111111111111 111223222222222222222
[69] 2222222223222222222222222222222232
[103] 3333233333322333323232332233333233
[137] 33233323332332

Within cluster sum of squares by cluster:
[1] 15.15100 39.82097 23.87947
(between_SS / total_SS = 88.4 %)

# CONFUSION MATRIX
table(iris$Species, k.means.out$cluster)
1 2 3
setosa 50 0 O
versicolor O 48 2
virginica 0 14 36
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# PLOT 1
par (mfrow=c(1,1) ,mar=c(5,5,2,2),1lwd=2,col.axis="white",col.lab="white",
col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)
plot(iris2[c("Sepal.Length", "Sepal.Width")], col = k.means.out$cluster,
main = "K-Means Assignments", pch="+")
points(k.means.out$centers[, c("Sepal.Length", "Sepal.Width")],
col = 1:3, pch = 19, cex = 2)
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# PLOT 2

clusplot(iris2[, c("Sepal.Length", "Sepal.Width")], k.means.out$cluster,
lines = 1, shade = TRUE, color = TRUE, labels = 2, plotchar = TRUE,
span = FALSE, main = paste("K-Means Assignments"),
xlab = "Sepal.Length", ylab = "Sepal.Width")
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» The need to choose k in advance.

» A heavy dependence on initial centroid locations.

» Performs poorly when real clusters are of very different sizes as it makes cluster sizes equal.
» Sensitivity to spatial outliers.

» Does poorly in high dimensions.

» Assumes that the variance within each cluster is the same.

» Will find clusters even if there aren’t any in the data.
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» A somewhat different approach that starts with the points rather than the centroids and is based on
density.

» Instead of & we have to define a bandwidth parameter h.

» Algorithm:

> create a circular window around every data point of radius / so every data point defines a cluster

> get the mean position of the points inside each window, make this a centroid

> move the center of the window to this centroid, meaning all of the points in the original circular
windows get a new assignment around this centroid

> apply a kernel density estimator (smoother) to create a response surface around the new centroids

> repeat until convergence to a finite number of clusters.

» Eventually all points in the same cluster will end up with basically the same steps towards conver-
gence.

» This is conditional on a reasonable bandwidth value, which must be chosen carefully.
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library(meanShiftR)

( ms.out <- meanShift(queryData = as.matrix(iris2),trainData = as.matrix(iris2),
algorithm="LINEAR") )

t (ms.out$assignment)

(,11 [,21 (,3]1 [,4] [,8] [,e] C,71 [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[,21] [,22] [,23] [,24] [,25] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38] [,39]
[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[,401 [,41]1 [,42]1 [,43]1 [,44] [,45]1 [,46] [,47]1 [,48] [,49] [,501 [,51]1 [,52]1 [,53] [,54] [,55]1 [,56] [,57]1 [,58]
[1,] 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
[,59] [,e60] [,61] [,62] [,63] [,64] [,65] [,66] [,67] [,68] [,69] [,70] [,71] [,721 [,73] [,74] [,75] [,76] [,77]
[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[,78] [,791 [,80] [,81] [,82] [,83] [,84] [,85] [,86] [,87] [,88] [,89] [,90] [,911 [,92] [,93] [,94] [,95] [,96]
[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(,971 [,981 [,99] [,100] [,101] [,102] [,103] [,104] [,105] [,106] [,107] [,108] [,109] [,110] [,111] [,112]
[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[,113] [,114] [,115] [,116] [,117]1 [,118] [,119] [,120] [,121] [,122] [,123] [,124] [,125] [,126] [,127] [,128]
[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[,129] [,130] [,131] [,132] [,133] [,134] [,135] [,136] [,137] [,138] [,139] [,140] [,141] [,142] [,143] [,144]
[1,] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[,145] [,146] [,147] [,148] [,149] [,150]
[1,] 2 2 2 2 2 2



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [40]

# PLOT

par (mfrow=c(1,1) ,mar=c(5,5,2,2),1lwd=2,col.axis="white",col.lab="white",
col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)

plot(iris2[c("Sepal.Length", "Sepal.Width")] [ms.out$assignment==1,], col = "white",
xlim=c(4,8), ylim=c(2,4.5),main = "Mean Shift Assignments", pch="+")

points(iris2[c("Sepal.Length", "Sepal.Width")] [ms.out$assignment==2,], col = "red",
pch="+")

points(ms.out$valuel[c(1,150),], col = c("white","red"), pch = 19, cex = 2)
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» Due to the cycling through the points and then cycling through the clusters on each iteration it can
be very compute-intensive, especially with big data.

» The choice of A is critical: too small and convergence may not happen, too large and distinct actual
clusters in the data get be merged.

» Cluster distinctions are “sharp” and not overlapping, which makes this method popular in computer
vision, but that may be less appropriate in the social sciences.
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» Spectral clustering works very differently than what we've seen so far by valuing “connectivity” over
convex boundaries.

» Spectral clustering can find non-convex clusters.

» |t uses a graph (network) setup where the data are nodes and the edges are similarity.
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» Algorithm:

> Create the similarity matrix from the distance between each pair of data points: which is square
with values n(n — 1)/2 that we care about.

> Perform graph partitioning whereby the edges between clusters are given low weights and the
edges within clusters are given high weights.

> Compute the eigenvalues and eigenvectors.

> The k eigenvectors are treated as data and supplied to k-means to create the clusters for the
original data.

» SC performs well but is slower with big data.

» There are also some important selection parameters and algorithmic decisions to be made.
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» We have n points =_in 937, where p is the dimension of the data (two so far in the slides).
» And d;; is the distance between x; and z; (generally Euclidean but any type).

» As a similarity graph S use the radial-kernel grain matrix, whose elements are defined by:

Sij — €XP

C

where positive ¢ is a (selection) scale parameter.

» Alternatively we could use as a similarity graph the mutual K-nearest neighbor graph that starts
with defining Ny as the symmetric set of nearby points: s;; is positive in N if 7 is in the K-nearest
neighbors of j. Then assemble the sets of nearest neighbors and assign them the edge weight w;;
and the excluded relationships are assigned zero.

» There are many other alternatives.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [46]

» Generally the result of the similarity process with its edge weights is called an adjacency matrix and
denoted W with elements w;;.

» Vertex i has degree that is the sum of its weights:

» Now define the diagonal matrix G that collects g;,2 = 1...n.

» The standardized graph Laplacian is given by:
L=1-G'W

» Now find the m smallest eigenvectors (selection parameter) of L corresponding to the m smallest
eigenvalues: E, ...

» Cluster the rows of E,,..,,, with K-Means (or some alternative).
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» Every p x p matrix X has p scalar values, \;,7 = 1,...,p, such that
Xe; = \¢g;
for some corresponding vector e;.
» In this decomposition, ); is called an eigenvalue of X and e; is called an eigenvector of X.
» These eigenvectors are linearly independent.

» These are also called the characteristic roots and characteristic vectors of X, and the process is also
called spectral decomposition.

» The full eigen-decomposition of the original square matrix is given by: X = E(AI)E ! where E is
a matrix with the eigenvectors down columns.

» The eigenvalues and eigenvectors are only guaranteed to be real-valued if the original square matrix
Is symmetric.

» The characteristic equation is given by: diag((X — ADE) = 0.

» The eigenvalues and eigenvectors are found by solving the characteristic equation.
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1.000 0.880 0.619

» A (contrived) symmetric square matrix X is given by: X =1 0.880 1.000 0.716
0.619 0.716 1.000

» Using R (note the descending order of the eigenvalues given):

X <- matrix(c(1,0.88,0.619,0.88,1,0.716,0.619,0.716,1),3,3)
( eigen.X <- eigen(X) )
eigen() decomposition

$values
[1] 2.4820708 0.4100160 0.1079132

$vectors

[,1] [,2] [,3]
[1,] 0.5850593 0.5127477 0.6283274
[2,] 0.6071390 0.2367286 -0.7585128
[3,] 0.5376688 -0.8252571 0.1728089

» Note: in the eigenvector matrix returned by R the eigenvectors are the columns.
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» Returning to the Eigen-analysis definition:

Xei = )\iei

» Test for 2 = 1 in Xe; = \e;:

cbind(
X %*% eigen.X$vectorsl[,1],
t(eigen.X$values[1] %*) eigen.X$vectors[,1])

[,1] [,2]
[1,] 1.452159 1.452159
[2,] 1.506962 1.506962
[3,] 1.334532 1.334532
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» Eigenvalues and eigenvectors are associated.

» For each set of eigenvectors of a given matrix X there is exactly one corresponding eigenvalue vector
such that ~
e’ Xe
= .
ce
diag(t(eigen.X$vectors) %*% X %*/ eigen.X$vectors)
/diag((t(eigen.X$vectors) %*% eigen.X$vectors))
[1] 2.4820708 0.4100160 0.1079132
> eigen.X$values

[1] 2.4820708 0.4100160 0.1079132

» But for each eigenvalue vector of the matrix there is an infinite number of eigenvectors, all determined
by scalar multiplication.

» Meaning that if e is an eigenvector corresponding to the eigenvalue )\, then se is also an eigenvector
corresponding to this same eigenvalue where s is any nonzero scalar.
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» The number of nonzero eigenvalues is the rank of the X.

» The sum of the eigenvalues is the trace of X.

» The product of the eigenvalues is the determinant of X.

» A matrix is singular if and only if it has a zero eigenvalue (and thus the determinant is zero).

» |f there are no zero-value eigenvalues, then the eigenvectors determine a basis for the space deter-
mined by the size of the matrix (FR*, JR?, etc.).

» Symmetric nonsingular matrices have eigenvectors that are perpendicular to each other (orthogonal).
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library("speccalt")

kern.partitioning <- local.rbfdot(iris2) # USES A KDE TO DEFINE SIMILARITY THRESHOLD

speccalt(kern.partitioning) # AUTOMATIC CHOICE OF m CLUSTERS

(1] 1111111111121 2111111111211111111111111111112111111112222222222
61] 222222222222222222222222222222222222222222222222222222222222

[1211 222 222222222222222222222222222

speccalt(kern.partitioning,5) # CHOOSE c

[11 255522225522552222222222252225522255225221522525223331313131
[61] 131313111133333333311113133111131111131143434414344343343441

[121] 4 343 44333444333443344434443343
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ruler <- seq(1.56,1.58,length=500)

yl <- tan(ruler)/1000 + rnorm(500,0,1.0)
yllyl > 20] <- 10; yil[yl < -20] <- -10
synth.dat <- cbind(ruler,yl)
kern.partitioning <- local.rbfdot(synth.dat)
sc.fit <- speccalt(kern.partitioning,2)

par (mfrow=c(1,1) ,mar=c(5,5,2,2),1lwd=2,col.axis="white",col.lab="white",
col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)

plot(synth.dat[1:270,],pch="+",col="black", x1lim=c(1.560,1.580), ylim=c(-15,12),
xlab="Explanatory Variable",ylab="Outcome Variable")

points(synth.dat[271:500,],pch="+",col="red")
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» Principal components analysis (PCA) is a means of data reduction with big data through rotation
in the sample space of observations.

» Principal components are the orthogonal directions in which the data varies and reduce the size of
the data down to a set of vectors that explain the variance: summarize the relationships among a
set of features with a smaller set of linear combinations.

» This is very useful in big data analysis where p > n.

» PCA re-expresses the variability of the data such that the total amount of variance is preserved but:

> Axes are enumerated in descending order of variance explained. That is, the first dimension
explains the most variance, the second dimension explains the second-most variance, and so on.
> The new axes are uncorrelated with each other: they are orthogonal.

> If there exists correlation in the original data then it is expressed as zero length along some
dimensions after the rotation of axes.
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» If there are p explanatory variables in the original data and there is some correlation between these
variables, then PCA produces a rotation in the p dimensions except that some number of these,
q, will be of zero length, where the magnitude of ¢ indicates the extent of the correlation between
variables and p — ¢ indicates the extent of orthogonal information in the data.

> this is almost always the situation in the social sciences that variables are correlated: there
is no such thing as a real set of “independent variables.”

» Therefore if all p variables are uncorrelated then the axes are already orthogonal and there is no need
to perform PCA (let me know if you have a real dataset like this because it would be amazing).

» Conversely, if the p variables are perfectly correlated then there exists only one dimension worth of
information in the data and all but one of the axes will have data of zero-length after PCA.
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» Consider for a moment only two variables: X; and X5, which are assumed for simplicity to have
mean zero each and unit variance.

» With this variance assumption the correlation reduces to covariance.

» If the correlation between these two variables is actually zero, then the equiprobability contours
(concentric lines indicating equal probability of occurrence) of these two variables is circular.

» On the other hand, if there is a non-zero p value then the shape of the equiprobability contours
will be elliptical where the cosine of the angle of intersection from the longest elliptical axis to the
original x-axis (measured at the origin since zero mean is assumed for both variables) is equal to p.

» In the extreme case of perfect correlation between X and X5 the equiprobability contours condense
to a single line.
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original data set output from PCA

From https://setosa.io/ev/principal-component-analysis/.
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» Begin with an n x p data matrix X, where variables are organized in columns, and standardize.

» Define R as the correlation matrix corresponding to X along with a matrix E of the eigenvectors
of the R matrix with the constraint that squared rows and columns of E sum to one.

» Then by standard spectral theory (Lax 1997, Chapter 6), the matrix defined by:
A = ERE
is a matrix containing the descending eigenvalues along the diagonal and zeros elsewhere.

» It is in fact the variance-covariance matrix of the rotation defined by the principal components.

» So each eigenvalue, A\, Ao, ..., is the variance of a principal component where the first principal
component now accounts for the largest variance by construction.

» Furthermore, since the off-diagonal elements are all zero, then the correlation has been removed in
the new coordinate system.
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» The importance of the EE matrix is that it provides the transformation of the data points from the
original metric to the PCA metric through simple matrix multiplication: Y = XE.

» Thus Y arethe points in the new rotated coordinate system where the variance structure is preserved:
the principal component scores.

» The usefulness of this transformation is that it is one-to-one and therefore reversible, X = E'Y
because of the orthogonal property of the E matrix.

» The E matrix of normalized eigenvectors is orthogonal, meaning that:
E'E = EE =1
» Also this property also allows us to modify A = E'RE according to:
AE' = EREE = E'R
since EE/ = 1.
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» We can also define a new matrix called the component loadings according to:
1
L =EX2
where the square root on A is simply the square root of each diagonal element.

» The L matrix is theoretically important due to two related multiplicative properties:

LL = EA(EX?) L'L = (EA?)EX?
— EAE/ — (\})E'EX’
— E(ERE)E/ ~
R

» So the product of component loadings is either equal to the correlation matrix (R) or the diagonal
eigenvalue matrix (\), depending on the order of matrix multiplication.

» This is a very, very cool property.
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» Consider the following contrived dataset and its standardized column variables:

[ —1.461 —1.109 —1.385
—1.095 —0.421 —0.652
—0.730 —1.453 —1.018
—0.365 —0.765  0.448

0.000 —0.076  0.081
0.365 0.612  0.448
0.730  1.300  1.547
1.095 0.956 1.181
1.461  0.956 —0.652

d

I
© 00 ~1 O T W N
00 00 © =1 Ut W — = N
W 0 OO Ut W

|

tilde.X <- matrix(c(1,2,1,2,4,3,3,1,2,4,3,6,5,5,5,6,7,6,7,9,9,8,8,8,9,8,3),
ncol=3,byrow=TRUE)
X <- scale(tilde.X)
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» T he correlation matrix from X is:

1.000 0.880 0.619
R = | 0.880 1.000 0.716
0.619 0.716 1.000

The eigenvalues and eigenvectors are found by solving the characteristic equation: |R — A| = 0.

» This produces the matrices:

—0.085 —0.514  0.628 2.482 0.00 0.000 —0.921  0.328  0.206
E=| —0.607 —0.236 —0.759 | A= | 0.000 0.41 0.000 [ L= | —0.956 0.150 —0.249
—0.538  0.825 0.174 0.000 0.00 0.108 —0.847 —=0.528  0.057

» Calculated by:

R <= cor(X)

E <- eigen(R)$vectors

lambda <- eigen(R)$values * diag(3)
L <= E %x*J chol(lambda)
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» This means that the proportion of the total variance explained by each of the three principal com-
ponents are 2.482/3 = 0.827,0.41/3 = 0.137,0.108/3 = 0.036.

» By the same reasoning, the second principal component explains 13.7% of the total variance and
the third principal component explains 3.6% of the total variance.

» The component scores are produced by pre-multiplying the original data matrix by E, producing:

2.272 —0.130 —0.316
1247 0.124 —0.482
1.857 —0.122  0.467
0.437  0.737  0.429
Y =| 0003 0.085 0.072
—0.826  0.038 —0.157
—2.049  0.595 —0.259
~1.856  0.186  0.168
| 1084 1513 0.078

diag(lambda)/3
Y <- X %% E
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» Here the mean for each Y variable (the columns) remains zero and the corresponding variance is no
longer unity but rather the corresponding diagonal value of .

» Because of these component scores result from the simple matrix multiplication defined in Y = XE,
they are in fact linear combinations of the original data with weights determined by the eigenvector
matrix E.

» For instance, the first value of Y is produced from:

3
Yi=)» EiXi

j=1
= 0.585 x —1.461 + 0.607 x —1.109 + 0.538 x —1.385
= 2.272.

Y11 <- sum(E[,1] %% X[1,1)
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» PCA was shown with eigen-analysis to understand the process and the intution.

» In practice it is done by:

prcomp(iris2)
Standard deviations (1, .., p=4):
[1] 2.0562689 0.4926162 0.2796596 0.1543862

Rotation (n x k) = (4 x 4):

PC1 PC2 PC3 PC4
Sepal.Length 0.36138659 -0.65658877 0.58202985 0.3154872
Sepal.Width -0.08452251 -0.73016143 -0.59791083 -0.3197231
Petal.Length 0.85667061 0.17337266 -0.07623608 -0.4798390
Petal .Width 0.35828920 0.07548102 -0.54583143 0.7536574
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par (mfrow=c(1,1) ,mar=c(5,5,2,2),1lwd=2,col.axis="white",col.lab="white",
col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)
biplot (prcomp(iris2))
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» This is a data mining tool (unsupervised) that answers the question of finding whether certain
“items” occur together with some specified outcome more frequently than randomness predicts.

» “Is this checkout cart on Amazon containing k specific goods (and possibly others that we can ignore
for now ) associated more with signing up for the Amazon+ streaming service.”

» The general construct is to find a set of events/items (itemsets) that are commonly associated with
some observed outcome: X ... X, — Y, having support S and confidence C.

We care about when a purchase/event contains X ... X} at least C% of the time when Y

also occurs, and there are at least S% of these transactions total out of those observed.

» So we care about the context of relative frequency and statistical strength of these associations.
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» The key linkage is through a probability calculation known as LIFT.

» For (only) two individual items X, and X5, lift is the ratio of the probability of joint occurrence,
over the product of individual occurrences under the assumption of independence:

p(Xh X2>
p(X1)p(Xa)’

e.g. the probability of joint occurance/purchase/etc. divided by the probability of independent
occurance/purchase/etc.

lift =

» In practice lift is calculated for X, X, ..., X}.

» A value near one implies that the items are not associated, small values less than one imply that
these rarely occur together, and large values imply common joint occurrence.

» There are then two elements:

> Antecedent: (if) this is an item/group of items that are identified in the itemsets,
> Consequent (then): events that these are possibly associated with.
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» Commonly association rules are applied to big commercial datasets: p ~ 10°,n ~ 10'°.

» Algorithm:

> Tabulate all combinations of items in a dataset that occur together with a minimum frequency:
frequent itemsets.

> Assert association rules that parameterize co-occurrence within the frequent itemsets.

» This is implemented with rule mining algorithms that identify a basket of items X ... X} relative
toY.

» Most often the X's are binary such as bought/didn’t buy, and the dataset is checkout summaries so
that x;; is person i's realized (observed) purchase status of item j.
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» Often the events do not happen often enough for a single unit of study so regions of the event space
are considered: groups of events, events over time, groups of people, etc.

» Define S; as the support of events for the jth variable and s; € .S as a subset.
» Recall that there are at least Sp% of these sets total out of those observed.

» We want to find a subset of variable values such that the intersection has relatively large probability:

p
conjunctive rule = ﬂ (X;€s;

» Only 2 types of subsets are considered due to data size frequently encountered:

> s; is a single value of X; denoted s; = 1)
> all values that X; can assume: s; = 5;.
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» Consider a dataset of 9,409 questionnaires filled out by shoppers in the SF Bay Area where the

demographic questions only are studied:

Feature Number Feature Categories Type
1 Sex 2 Categorical
2 Marital Status 5 Categorical
3 Age 7 Ordinal
4 Education 6 Ordinal
5 Occupation 9 Categorical
6 Income 9 Ordinal
7 Years in Bay Area 5 Ordinal
8 Dual Income 3 Categorical
9 Number in Household 9 Ordinal
10 Number of Children 9 Ordinal
11 Householder Status 3 Categorical
12 Type of Home 5 Categorical
13 Ethnic Classification 8 Categorical
14 Language in Home 3 Categorical
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» There are missing data, which was case-wise deleted by Hastie, Tibshirani, and Friedman.

» They used software called Apriori by Christian Borgelt.

» Ordinal features were cut at their median to produce dichotomous features (dummy variables).
» Categorical variables given a treatment contrast.

» The final dataset after pre-processing was 6,875 x 50.

» Apriori found 6,288 association rules that had 5 or less predictors and support of at least 10%.

» Reminder:

> Support: % of these transactions/total observed

> Confidence: % of the time when antecedent is positively observed
> Lift: ratio of joint over all marginals

> Antecedent: items of interest

> Consegent: outcome of interest
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» Association Rule # 1: Support 25%, Confidence 97%, Lift 1.03

Antecedents Consequent
Number in Household = 1

Number of Children = 0 | Language in Home = English

» Association Rule # 2: Support 13.4%, Confidence 80.8%, Lift 2.13

Antecedents Consequent
Language in Home = English
Householder Status = own

Occupation = Professional /Managerial | Income > $40,000

» Association Rule # 3: Support 26.5%, Confidence 82.8%, Lift 2.15

Antecedents Consequent
Language in Home = English
Income < $40,000

Marital Status = Not Married

Number of Children =0 Education not college graduate or graduate study
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» This is a classifier in the family called memory-based models.
» It is very simple and very fast spatial approach, even with very large or very fast data.

» For the basic method there are only two Decisions: neighborhood size £, and the distance metric
(Euclidean, Manhattan, etc.).

» In picking a specific k, users usually do some trial and error since too small means high variance and
too large may miss important local features.

» Basic algorithm:

> Identify a multidimensional query point x.

> Find the k points nearest to this points: z, for r = 1, ..., k, usually using Euclidean distance
: : _ (2 2 2\% () .
in feature space: d(r) = ||z — xo||. (||[v|| = (v] +v3 +---+ ;)2 = (v -v)2).

> For the feature of interest assign an attribute to x, based on some “voting” criteria amongst
the k, usually majority rule (ties settled at random).

> Repeat as new starting points are specified.
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» Typically the variables (dimensions) are standardized to mean zero and standard deviation one such
that the measurement of variables does not lead to domination /sublimation.

» This is a old and popular tool that is well-suited to big data problems, including EKG patterns,
handwriting analysis, image analysis, satellite data, internet traffic, political ideology, and more.

» |t performs well even when the decision barrier is very irregular.

» There are some challenges when the features are both continuous and categorical since more decisions
need to be made.

» Other challenges include sparsity and very high dimensions.

» There are many, many extensions/enhancements like weighting.
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library(neighbr)
data(iris); head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species ID

1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 2
3 4.7 3.2 1.3 0.2 setosa 3
4 4.6 3.1 1.5 0.2 setosa 4
5 5.0 3.6 1.4 0.2 setosa b
6 5.4 3.9 1.7 0.4 setosa 6

iris$ID <- c(1:150) # APPEND AN ID NUMBER COLUMN

train_set <- iris[1:145,] # USE FIRST 145 CASES AS TRAINING WITH ALL FEATURES

test_set <- iris[146:150,-c(4,5,6)] # REMOVE PREDICTED VARIABLES FROM TEST DATA
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fit <- knn(train_set=train_set,test_set=test_set, k=9, categorical_target="Species",
continuous_target= "Petal.Width", comparison_measure="euclidean",
return_ranked_neighbors=9, id="ID")

fit$test_set_scores
categorical_target continuous_target neighborl neighbor2 neighbor3 neighbor4

146 virginica 2.022222 78 142 140 111

147 virginica 1.577778 73 124 134 84

148 virginica 1.933333 111 116 78 117

149 virginica 2.133333 137 116 138 111

150 virginica 1.855556 115 128 384 139
neighborb neighbor6 neighbor7 neighbor8 neighbor9

146 113 117 116 53 141

147 127 112 120 74 64

148 134 112 138 113 142

149 117 104 125 145 101

150 102 143 71 122 134
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» This is a very useful and very popular supervised classifier on interval measured data.

» Consider multidimensional, interval-measured data where we want to separate (classify) points by
specifying lines in each dimension which collectively determine a hyperplane.

» The idea is to get the best separation possible and to not have the line too close to data points to
increase generalizability with future data.

» This is done by finding the hyperplane maximizes the margin of the training data.

» Unlike many other classifiers SVM does not provide probabilities.
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» Training sample Points are called support vectors and those closest to the margin are the most
influential.

» For non-linear structures in the features kernels (e.g. radial basis function) provide an efficient tool
for separation (not discussed here).

» The training data consists of n pairs: {(x1,v1)... (2, ys)}, where x; € RP and y; € {—1,1}.

» Define a hyperplane by:
z: flz)=0+z8=0
where (3 is of length 1.

» If the points are separable then y; = f(x;) > 0 Vi.

» This means that we can find the hyperplane that provides the maximum margin between the y = —1
group and the y = 1 group:

r/rjla? = M subjectto y; = (f(x;) — fo+x:8) > M, Vi.
0>

» So the band is M away from the hyperplane in both directions.
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» If there is overlap in the feature space that cause some points to be on the wrong side of any specified
hyperplane then specify slack variables, & > 0, > & < C, for some specified constant ', and we
now specify:

max = M(1 —x;) subjectto vy, = (f(z;) — o+ x:8) > M, Vi,
05

» Since miscalculations occur when x; > 0 then C' bounds the total number of training misclassifica-
tions.

» With overlap we drop the norm constraint on  and now define M = 1/||5]|.

» This leads to a modified procedure:

yi = (f(z;)) = Bo+xf) >1=¢&, Vi

min ||3]| subject to
&> x <C
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set.seed(999)

x <- matrix(rnorm(60), 30, 2)

y <- rep(c(-1, 1), c(15,15))

x[y==1,] = x[y==1,] + 1

par (mfrow=c(1,1) ,mar=c(5,5,2,2),1lwd=2,col.axis="white",col.lab="white",
col.main="white", col.sub="white", col="white",bg="slategray", cex.lab=1.3)

plot(x, col = y+51, pch = "+", cex=2)

library(el1071)
svm.example <- data.frame(x, y = factor(y))
svm.out <- svm(y ~ ., data = svm.example, kernel = "linear", cost = 5, scale = FALSE)
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summary (svm.out)

Parameters:
SVM-Type: C-classification
SVM-Kernel: 1linear
cost: b
Number of Support Vectors: 9
(45)
Number of Classes: 2
Levels:
-11

plot(svm.out,svm.example)
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Beta.times.Label <- svm.out$coefs
cbind(svm.out$SV,Beta.times.Label)

1

11
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15
17
21
25
28
30

-0.
2.
.1339774
. 9576504
.0683351
. (714367
.8747315
.1151596
.8733210
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2817402
3254637

H O, Pk OFr ~»r ON

X2

. 3826642
.5143633
.0084981
.3006654
.9491223
.8833359
.9331901
. 7207841
4344990

.000000
.000000
.000000
.000000
.601791
.000000
.398209
.000000
.000000

# THE 9 SUPPORT VECTORS
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svm.pred <- fitted(svm.out) # TEST WITH TRAINING DATA

rbind(svm.pred[1:15],svm.pred[16:30])
123456789 10 11 12 13 14 15

[1,J 211111111 1 1 1 1 1 2

[2,] 222222222 2 2 2 1 2 2

Levels: -1 1

table(svm.pred,y) # ACCURACY SUMMARY
y
svm.pred -1 1
-1 13 1
1 2 14
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» Big Idea: sometimes it is difficult to get the sampling properties of an estimator, even a commonly
used one.

» Some statistics have known variance properties for finite samples and some do not. Does this mean
we should only use the former unless we have population data?

» Definitive citations: Efron (1979), Efron and Tibshirani (1993).

» Case Study: suppose we have a dataset on leukemia, ignoring a whole host of things and condensing
our analysis down to two variables: CD4 Count/10 a dichotomous outcome indicating that there
was a relapse from a remission stage:

Relapse 94 197 16 38 99 141 23
No Relapse | 52 104 146 10 50 31 40 27 46

» Note that these data are imbalanced.
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» The question is whether there is a difference by CD4 count, and the natural choice of test is the
difference of means: Zielapse = 86.80, Tno relapse = 06.22.

» This is easy since we know that:

SE(jjreIapse) — \/(S?ebpse/nrelapse) — 25247

SE<fno relapse) — \/(SEO relapse/nno relapse) = 14.14

» But we also know that the mean is not very resistant to outliers and it could be that a notable case,
and one could be driving the subsequent findings.

» So what about using the median instead of the mean? This is obvious choice in one sense, but it
leaves us with no closed form solution for the standard error.
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» So consider the following algorithm, for some statistic of interest, 6:

1. Draw B “bootstrap” samples of size n, independently, with replacement from the sample x:

1 2 *B

X XM, xX

(note the notation to differentiate the bootstrap sample from the original sample).

2. Calculate the sample statistic of interest, 0*0 for each bootstrap sample, and the mean of these

1 B
g*:_ e*b
2

3. Estimate the bootstrap standard error of the statistic by:

statistics:

Var(0) = —— 3" (6 — 7°)

B -1
=1

2

where obviously SE(0) = /Var(6).

» We call the limit of this standard error as B goes to infinity is called the ideal bootstrap estimate,
and this procedure is called the nonparametric bootstrap estimate.
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relapse <- c¢(94,197,16,38,99,141,23)
no.relapse <- c(52,104,146,10,50,31,40,27,46)
B <- 1000
no.relapse.mat <- relapse.mat <- NULL
for (i in 1:B) A
relapse.mat <- rbind(relapse.mat, sample(relapse,length(relapse),
replace=TRUE) )
no.relapse.mat <- rbind(no.relapse.mat,sample(no.relapse,length(no.relapse),
replace=TRUE) )

relapse.mean <- mean(apply(relapse.mat,1,mean))

relapse.se <- sqrt(var(apply(relapse.mat,1,mean)))
no.relapse.mean <- mean(apply(no.relapse.mat,1,mean))
no.relapse.se <- sqrt(var(apply(no.relapse.mat,1,mean)))
relapse.median <- mean(apply(relapse.mat,l,median))
relapse.median.se <- sqrt(var(apply(relapse.mat,1,median)))
no.relapse.median <- mean(apply(no.relapse.mat,1,median))
no.relapse.median.se <- sqrt(var(apply(no.relapse.mat,1,median)))
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final.relapse.mat <- rbind( c(relapse.mean, relapse.se,
no.relapse.mean, no.relapse.se),
c(relapse.median, relapse.median.se, no.relapse.median, no.relapse.median.se) )
dimnames(final.relapse.mat) <-
list( c("Mean","Median"), c("Relapse Est","Relapse SE",
"No Relapse Est","No Relapse SE") )

final.relapse.mat

Relapse Est Relapse SE No Relapse Est No Relapse SE
Mean  88.19143 21.57597 54.386444 12.45360
Median 84.37000 36.40226 44.07000 12.65810
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par (mfrow=c(2,2) ,bg="white")

hist(apply(relapse.mat,l,mean), freq=FALSE, main="Bootstrap, Relapse Mean")

ruler <- seq(20,160,length=100)

lines(ruler,dnorm(ruler,relapse.mean,relapse.se),lwd=3)

hist(apply(relapse.mat,l,median), main="Bootstrap, Relapse Median")

hist(apply(no.relapse.mat,1,mean), ylim=c(0,0.04),freq=FALSE,
main="Bootstrap, No Relapse Mean")

ruler <- seq(20,100,length=100)

lines(ruler,dnorm(ruler,no.relapse.mean,no.relapse.se),lwd=3)

hist(apply(no.relapse.mat,l,median), main="Bootstrap, No Relapse Median")
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Bootstrap, Relapse Mean Bootstrap, Relapse Median

a | rela se mat a | rela se mat

Bootstrap, No Relapse Mean Bootstrap, No Relapse Median

Nno rela se mat Nno rela se mat
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» Suppose we have a dataset with NV cases and ) features and we want to classify.

» General Algorithm:

> Draw B bootstrap samples of size n, independently, with replacement from the data. The
size of n depends on the context of the problem.

> For each of these B train a decision tree sampling m < M features uniformly from the full M
and the collection of decision trees picks the best features given the features that they individually
have.

> New data is tested with all of the decision trees and the final result is an aggregation such as
majority vote.

» RFs can handle large problems very easily.
» Notice that this process can be parallelized for computational efficiency.

» RFs also provide a proximity matrix showing similarity between all of the points by counting the
proportion of times two selected data points are classified together at the bottom of the trees.
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» This is more general ensemble method than random forests since any ML process can be used.

» Draw B bootstrap samples of size n, independently, with replacement from the data. The size
of n depends on the context of the problem and the size of V.

» Train a model on each of these B datasets.
» Obtain a out-of-sample test dataset in the typical fashion and use each of the B models to predict.

» The procedure can also easily be parallelized.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [97]

» This is another very general procedure whereby one iteratively trains classifiers using the data cases
where the previous model produced misclassifications.

» Therefore each iteration gets a smaller dataset than all of the previous models.

» Algorithm:

> Give all the data points equal weights.
> For the jth model in the series:

> train a classifier using the current weights

> predict from the training data

> determine the error from this prediction

> calculate new weights based on the errors in the jth classification

> Repeat.

> At the end of the run a weighted average of the predictions from all of the models where the
weight is proportional to each of the model’s prediction accuracy.
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» NN are a “black box” machine learning to explain some set of outcomes given a set of inputs.
» Also a classification problem.

» This means that the coefficients and values on the internal layers are not interpretable, and the only
result with any value is the final result.

» The network analysis is neurological /cerebrial wherein learning is done through a serial training
processes, which can be quite complex computationally.

» Unlike more conventional social science regression-style inference the (almost) only concern is ex-
plaining the outcome regardless of complexity or generalizability.
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Activation function

N A Summing function
Weight

» Not a model of brain functions, but

a computational method for using
training data to classify and cluster
on testing data at high speed

Comprised of a node layers: an input
layer, one or more hidden layers, and
an output layer

Each node (artificial neuron) con-
nects to another and has an associ-
ated weight and threshold

|If the output of any individual node is
above the specified threshold value,
that node is activated sending data
to the next layer of the network (oth-
erwise not)
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» The starting point is a representation
of a simple linear model as a graph.

» The blue circles are input features.

Output

» The green circle is the weighted sum
of the inputs, which is the output
(classification) of interest).

» This looks like a causal diagram, but
it is not meant to imply causality.
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» Now consider a single hidden layer of
intermediate values from an interme-
diate weighting process that is con-
ditional on each input features as a
weighted sum of these.

» This is the yellow circles in the figure.

Hidden Layer

» The weights could be (and many are
in complex models) equal to zero in
the first level relationships.

» Now the output is a direct weighted
linear sum of the hidden layer nodes.
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Output

» A single hidden layer is unusually sim-
ple for real problems, so we can have
multiple iterations, each conditional Hidden Layer 2
on the previous hidden layer with

We|ght|ng. Hidden Layer 1

» This is still a linear construction in-
volving matrix algebra.
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» Of course we want to represent/solve
nonlinear relationships and this is
done by piping the linear weighted re-
lationships through a nonlinear func-

Output
tion called an activation function.

» In the figure there is a single layer of Hidden Layer 2
activation functions between two hid-

Non-Linear Transformation Layer

den |ayerS. (a.k.a. Activation Function)

Hidden Layer 1

» In practice we can model very com-
plicated relationships between the in-

puts and the final output by stacking
many linear and nonlinear layers inbe-
tween, creating higher level function-
ality.
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» There are two very common forms which are really like CDFs.
» Sigmoid (logit), F(x) = [1 + exp(—z)] .
» Rectified Linear Unit (ReLu), F(z) = max(0, x).

» As with anything in this realm there are many alternatives in use.

Sigmoi
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» Phases: training, vesting, validating.
» The training data must have outcome labels: y.

» The testing data hides the label and is used for prediction and comparison to training data labels:

A

y—Yy

» There are many forms of assessment for neural networks but they basically compare known outcomes
to predicted outcomes.
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From Chollet, Francois. Deep learning with Python. Simon and Schuster, 2021.
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» For a long time researchers struggled to find a way to train neural nets, without success. Then
in 1986, David Rumelhart, Geoffrey Hinton and Ronald Williams published the paper: “Learning
Internal Representations by Error Propagation” introducing the backpropagation training algorithm,
which is still the standard today.

» Their idea is based on Gradient Descent using an efficient technique for computing the gradients
automatically.

» In two passes through the network (one forward, one backward), the backpropagation algorithm
computes the gradient of the network'’s error with regards to every single model parameter.

» It finds out how each connection weight and each bias term should be tweaked in order to minimize
the error.

» With these gradients, it performs a regular Gradient Descent step, and the whole process is repeated
until the network converges to the solution.
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» Process mini-batch one at a time going through the full training set multiples where each pass is
called an epoch.

» These mini-batches are then passed to the input layer of the network, which then sends it to the
first hidden layer.

» The initial weights of the hidden layers are randomly assigned.

» Then compute the output of all the neurons in this layer for every mini-batch instance.

» This result is then passed to the first hidden layer.

» Then repeat this process at this next layer, and so on until the last layer is reached: the output layer.
» All of these intermediate results are recorded for the backward pass.

» This completes the forward pass.

» Now calculate the network error: y — y.
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» This provides a means of differentiating nested functions of the form f o g = f(g(x)).

» The case of g(z) ! = (42° — 2z) fits this categorization because the inner function is g(z) =

42 — 2z and the outer function is f(u) = u .

» Usually u is used as a placeholder here to make the point that there is a distinct subfunction.

» To correctly differentiate such a nested function, we have to account for the actual order of the
nesting relationship, done by:

< flg(a)) = F'(g@))g/ (),

provided that f(x) and g(x) are both differentiable functions.

» We can also express this in the other standard notation: if ¥y = f(u) and u = g(x) are both

differentiable functions, then
dy dydu

dr  dudx’

which may better show the point of the operation.

» If we think about this in purely fractional terms, it is clear that du cancels out of the right-hand
side, making the equality obvious.
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» Let us use this new tool to calculate the function g(z)~! from above (g(z) = 42° — 2x):

d —1 3 —2 d 3
— = (— — — (42 — 2
T-9(@)" = (-1)4e” — 22)™" X ——(da” — 2z)
(1222 -2)
(423 — 22)2
—62% +1

Srb — 8xt + 222
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» Starting with y — y for the smaller number of nodes in the output layer measure these error
contributions backward for each connection in the layer below using the chain running backward
until the input layer is reached.

» The reverse pass efficiently measures the error gradients across every connection weight in the layer
below by propogating the error gradient backward through the networ..

» Thus the last step performs a Gradient Descent step to adjust all of the connection weights in the
network using all of the individual error gradients just calculated.

» Now the Deep Learning network is fully trained and can be applied to different test data.



JEFF GILL: Foundations of Machine Learning: Applications in the Social Sciences, [112]

» A gradient is a derivative that measures how much an (output) function changes for small changes
in an input.

» In the deep learning sense it measure the change in all the weights for a small change in an error.

» Since it is a derivative, higher values mean that the slope is steeper and lower values mean that the
slope is flatter.

» Higher slopes mean that the model can learn faster and zero slopes mean that no learning takes
place.

» We want to get to the minimum (of errors) in a multidimensional sense, which is to minimize the
function J(w, b), where w is a set of weights, then a Gradient Step looks like:

b:CL—”)/Vf<CZ>,

where b is the next location, a is the current location,  is the learning rate or step size, and V f(a)
is the direction of the step.
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Small learning rate Large learning rate

» This is the size of the steps that are
taken to reach the function minimum.

» It is usually a small value that is eval-
uated and updated based on the be-
havior of the cost func- tion.

» A large value results in larger steps
but risk overshooting the minimum.

» A small value is more precise, but low-
ers the efficiency since it takes more

cycles to reach the minimum.
Value of weight Value of weight

Source: IBM.
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» “Chat Generative Pre-trained Transformer”

» ChatGPT is a breakthrough application of Deep Learning by OpenAl (then purchased by Microsoft)
that can write essays, solve complex problems, seamlessly interact with humans, perform search in
a way not seen before, and more

» Only in general use since November 2022
» As of December, ChatGPT had an estimated more than 100 million monthly active users

» ChatGPT's most recent GPT-3.5 model was trained on 570GB of text data from the internet, which
OpenAl says included books, articles, websites, and even social media

» This is only the beginning of a revolution in Al power that is extremely easy to use
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» The news media has recently exploded their coverage of OpenAl’s partial release of ChatGPT

» “We've trained a model called ChatGPT which interacts in a conversational way. The dialogue
format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge
incorrect premises, and reject inappropriate requests”

» Representative Ted Lieu, Democrat of California, wrote in a guest essay in The New York Times in
January that he was “freaked out” by the ability of the ChatGPT chatbot to mimic human writers

» Another Democrat, Representative Jake Auchincloss of Massachusetts, gave a one-minute speech
written by ChatGPT calling for regulation of Al

» The problem is that most lawmakers do not even know what Al is, said Representative Jay Ober-
nolte, a California Republican and the only member of Congress with a master’s degree in artificial
intelligence
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» There are usually a lot of decisions to be made that are contextual to the data and the problem:

> size of the training set versus the test set within the same data set or outside of it.
> tuning parameters

> validation measures such as categorical prediction comparisons, distance measures, and cross-
validation.

» Leakage: the modeling process does not have access to the training anymore at testing time.

» This an incredibly fast moving area of study with contributions from computer scientists, statisticians,
mathematicians, and others.
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» Most ethical issues are well-known by data scientists but unappreciated by the general population
» Prejudice: skin color in images, race in financial assessments, recidivism, religious groups
» Fake humans, fake data, fake responses, fake information

» There are two major considerations:

> Bias: algorithms that treat some groups differently based on criteria not directly important to
the question

> Unfairness: algorithms that make predictions that harm people without transparency or human
review, meaning oppression, denial of property, denial of liberty, denial of opportunity

» Famous Examples: Optium Impact-Pro (2001) underpredicted AA healthcare needs, Apple credit
card (2019) biased against women, Correctional Offender Management Profiling for Alternative
Sanctions (COMPASS, 2016) for recidivism probability showed substantial race differences even for
the same profile, Clearview (2000s) invasion of privacy through face recognition ( “face thieves")
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» Generally we are taking about standard regression models: Y = ¢ 1(X3) + €

» Harmful Inclusion: including important explanatory variables (covariates, predictors, features) in the
model in X that cause negative consequences

» Harmful Incompleteness: not including important explanatory variables (covariates, predictors, fea-
tures) in the model in X that cause negative consequences

» Examples: SAT test (favors higher family income and SES), financial information tied to neighbor-
hood, college attended
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» Generally we are talking about models that incorporate feature inclusion and weighting without
human direction

» Same two issues but for non-human generated reasons, but typically more difficult to detect

» It is difficult to detect whether a substantively important variable has been left out of the layers or
a harmful variable has been included

» |t is possible that unobserved combinations of features have been used together in a harmful way
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» Fixation with recent models: technical creators are often infatuated with new algorithms without
fully considering the social implications

» Over-focusing on predictive performance: developers and users often value system performance over
other considerations, which can lead to exaggerating the effect of particular predictors, ignoring
groups of subjects that provide slower performance, and ignoring un-modeled effects that are impor-
tant

» Ease of use and availability: many complex machine learning tools are easy/free to obtain and very
easy to use without user sophistication

» Exporting to new problems: tools that were built for a specific set of applications are often exported
to new substantive areas without consideration of the consequences/differences
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» Non-maleficence: creating models that do not purposely have aspects that cause harm or harm by
negligence

» Fairness: creating models that not make decisions that disadvantage specific groups or uplift other
specific groups

» Transparency: documenting and communicating aspects of created models that reveal decisions
made during development, interpretations of results, options provided for usage, and changes made
over time

» Accountability: creating organizations comply with legal statutes, acting with integrity, responding
to users and subject concerns, and providing a mechanism for user recourse to perceived harm



